JPH0769287B2 - Calibration method for oxidizing gas measuring device - Google Patents

Calibration method for oxidizing gas measuring device

Info

Publication number
JPH0769287B2
JPH0769287B2 JP2074162A JP7416290A JPH0769287B2 JP H0769287 B2 JPH0769287 B2 JP H0769287B2 JP 2074162 A JP2074162 A JP 2074162A JP 7416290 A JP7416290 A JP 7416290A JP H0769287 B2 JPH0769287 B2 JP H0769287B2
Authority
JP
Japan
Prior art keywords
gas
concentration
clo
measuring device
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2074162A
Other languages
Japanese (ja)
Other versions
JPH03273152A (en
Inventor
悦雄 降矢
Original Assignee
東亜電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亜電波工業株式会社 filed Critical 東亜電波工業株式会社
Priority to JP2074162A priority Critical patent/JPH0769287B2/en
Publication of JPH03273152A publication Critical patent/JPH03273152A/en
Publication of JPH0769287B2 publication Critical patent/JPH0769287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二酸化塩素やオゾン等の酸化性ガス測定装置
の校正方法に関する。
TECHNICAL FIELD The present invention relates to a method for calibrating an apparatus for measuring an oxidizing gas such as chlorine dioxide or ozone.

〔従来の技術〕[Conventional technology]

二酸化塩素(ClO2)やオゾン(O3)は強い酸化力を有す
るので、例えば二酸化塩素は繊維等の漂白及び最近では
塩素に代わる殺菌剤として上水やプール水の殺菌等に利
用され、オゾンも上水の脱臭等に使用されている。
Since chlorine dioxide (ClO 2 ) and ozone (O 3 ) have a strong oxidizing power, for example, chlorine dioxide is used as a bactericidal agent for bleaching fibers and the like, and recently as a sterilizing agent to replace chlorine. Is also used for deodorizing tap water.

二酸化塩素,オゾン,塩素等の酸化性ガスの濃度測定
は、溶存酸化性ガス溶液については従来からヨウ素滴定
法が行なわれていたが、連続測定に適さず又滴定操作が
煩雑である等の欠点がある為最近では二酸化塩素,オゾ
ン,塩素等を選択的に透過する隔膜を用いた隔膜形ポー
ラログラフ電極法(特開昭54−125095号公報)による酸
化性ガス測定装置が使用されている。又、同様の隔膜を
用いた隔膜電極により電位を測定する隔膜電極式酸化性
ガス測定装置では、溶存酸化性ガス溶液であっても気相
の酸化性ガスであっても測定が可能である。
Concentration measurement of oxidizing gases such as chlorine dioxide, ozone, chlorine, etc., has conventionally been carried out by an iodine titration method for dissolved oxidizing gas solutions, but it is not suitable for continuous measurement and the titration operation is complicated. For this reason, recently, an oxidizing gas measuring device using a diaphragm type polarographic electrode method (Japanese Patent Laid-Open No. 54-125095) using a diaphragm that selectively permeates chlorine dioxide, ozone, chlorine and the like has been used. In addition, a diaphragm electrode-type oxidizing gas measuring device that measures the potential with a diaphragm electrode using a similar diaphragm can measure a dissolved oxidizing gas solution or a gas-phase oxidizing gas.

上記の酸化性ガス測定装置は、何れも隔膜を具えた電極
を試料液又は試料ガスに接触させるだけで酸化性ガス濃
度が指示値として得られるので、簡便であり、連続測定
にも適するが、電気化学的測定結果の常として校正を必
要とする。
The above-described oxidizing gas measuring device is simple and suitable for continuous measurement because the oxidizing gas concentration can be obtained as an indicated value simply by contacting an electrode equipped with a diaphragm with a sample liquid or a sample gas. Calibration is always required as an electrochemical measurement result.

従来、酸化性ガス測定装置の校正は測定対象とする酸化
性ガスを用いて行なつていたが、校正に用いる酸化性ガ
スは当然一定濃度に調整する必要がある。例えば一定濃
度の溶存ClO2ガス水溶液を調整するには、公知の塩素酸
塩の還元若しくは亜塩素酸塩の酸化によりClO2ガスを発
生させ、このClO2ガスを純水中に捕集し、その濃度をヨ
ウ素滴定法により決定する方法が用いられるが、この調
整操作は面倒である。
Conventionally, the calibration of the oxidizing gas measuring device has been performed using the oxidizing gas to be measured, but it is naturally necessary to adjust the oxidizing gas used for calibration to a constant concentration. For example, in order to adjust the dissolved ClO 2 gas aqueous solution of a constant concentration, ClO 2 gas is generated by known reduction of chlorate or oxidation of chlorite, and the ClO 2 gas is collected in pure water. A method of determining the concentration by an iodometric titration method is used, but this adjusting operation is troublesome.

しかも、酸化性ガスは何れも不安定であり、気相でも溶
存状態でも短期間保存する間に分解が進行し、力価が減
少し若しくは濃度が低下する。例えば、二酸化塩素(Cl
O2)ガスを純粋に溶解させた溶存ClO2ガス水溶液の場
合、第4図に点線で示す如く褐色ポリプロピレン製ビン
(○)、狭口褐色ガラスビン(△)及び広口褐色ガラス
ビン(□)の何れに保存しても、極めて短期間で分解し
て溶存ClO2ガス濃度が低下する。かかる事情はオゾンガ
スや塩素ガス等についても同様である。
In addition, all the oxidizing gases are unstable, and decomposition progresses during storage for a short period in either a gas phase or a dissolved state, resulting in a decrease in titer or a decrease in concentration. For example, chlorine dioxide (Cl
In the case of a dissolved ClO 2 gas aqueous solution in which O 2 ) gas is purely dissolved, as shown by the dotted line in FIG. Even if it is stored in, the concentration of dissolved ClO 2 gas decreases in a very short period of time. The same applies to ozone gas and chlorine gas.

従つて、校正用の標準液や標準ガスとして、測定対象の
酸化性ガス又はその溶存水溶液を一定濃度のまゝ長期に
保存することは殆ど不可能であるため、校正の度に新た
に標準液等として調製する必要があるが、その度に面倒
な調製操作を繰り返すので、極めて煩雑であり、そのた
め校正にも長時間を要するという欠点があつた。
Therefore, as the standard solution or standard gas for calibration, it is almost impossible to store the oxidizing gas to be measured or its dissolved aqueous solution at a constant concentration for a long period of time. However, since it is necessary to prepare the same as the above, the complicated preparation operation is repeated each time, so that it is extremely complicated and, therefore, it takes a long time to calibrate.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明はかかる従来の事情に鑑み、簡単な操作により短
時間で正確な校正が可能な酸化性ガス測定装置の校正方
法を提供することを目的とする。
In view of such conventional circumstances, it is an object of the present invention to provide a method for calibrating an oxidizing gas measuring device, which enables accurate calibration in a short time by a simple operation.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、本発明の酸化性ガス測定装置
の校正方法は、亜塩素酸塩を溶解した亜塩素酸イオン水
溶液と塩化物を溶解した酸、又は前記亜塩素酸イオン水
溶液と酸と塩化物若しくは塩化物を溶解した水溶液を別
々の容器に保存し、酸化性ガス測定装置の校正時に密閉
容器中で前記各液を混合液中の亜塩素酸イオンと塩化物
の濃度及びpHが予め定めた条件になるように所定量づつ
混合することにより亜塩素酸イオンを定量的に二酸化塩
素ガスに変化させ、密閉容器中に得られた既知濃度の二
酸化塩素ガス又は混合水溶液中の既知濃度の溶存二酸化
塩素ガスを前記測定装置で測定し、その指示値を当該二
酸化塩素濃度とするか又は他の酸化性ガスの当該二酸化
塩素濃度に対応する濃度として校正することを特徴とす
る。
In order to achieve the above object, the calibration method of the oxidizing gas measuring device of the present invention is an acid in which a chlorite salt is dissolved in a chlorite ion aqueous solution and a chloride, or the chlorite ion aqueous solution and an acid. Store chloride or an aqueous solution in which chloride is dissolved in a separate container, and adjust the concentration and pH of chlorite ion and chloride in the mixed solution in advance in a closed container when calibrating the oxidizing gas measuring device. The chlorite ion is quantitatively changed to chlorine dioxide gas by mixing each in a predetermined amount so that the specified conditions are met, and chlorine dioxide gas of a known concentration obtained in a closed container or a known concentration of a mixed aqueous solution is obtained. Dissolved chlorine dioxide gas is measured by the measuring device, and the indicated value is set to the chlorine dioxide concentration or calibrated as a concentration corresponding to the chlorine dioxide concentration of another oxidizing gas.

〔作用〕[Action]

亜塩素酸イオン(ClO2 -)は塩素イオン(Cl-)の存在下
で液のpHを低下させると、あるpHにおいて二酸化塩素
(ClO2)に定量的に且つ急激に変化する。従つて、上記
操作を密閉容器中で定量的に行なえば、発生したClO2
スが気相と液相とで平衡状態となるので、密閉容器中の
気相には一定濃度のClO2ガスが含まれ、且つ発生したCl
O2ガスを捕集して別途純水に溶解させなくても、液相
(混合水溶液)中にも一定濃度のClO2ガスが溶存する。
Chlorite ions (ClO 2 -) is chloride ion (Cl -) Reducing the pH of the solution in the presence of quantitatively and rapidly changes to chlorine dioxide (ClO 2) in certain pH. Therefore, if the above operation is quantitatively carried out in a closed container, the generated ClO 2 gas will be in an equilibrium state with the gas phase and the liquid phase, so that the gas phase in the closed container will have a certain concentration of ClO 2 gas. Cl contained and generated
Even if O 2 gas is not collected and dissolved in pure water separately, ClO 2 gas having a constant concentration is dissolved in the liquid phase (mixed aqueous solution).

即ち、第1図に示すように、密閉容器中においてKCl濃
度が異なる濃度10-3MのNaClO2水溶液に硫酸を加えてpH
を低下させていくと、KCl濃度に応じてほぼ一定のpH値
において、密閉容器中の液相である混合水溶液は各々所
定濃度の溶存ClO2ガスを含む水溶液となる。例えば、KC
l濃度が10-1Mの場合には、第1図から約pH4においてClO
2 -がClO2に変化し、混合水溶液には4.2mg/のClO2ガス
が溶存する。
That is, as shown in Fig. 1, sulfuric acid was added to NaClO 2 aqueous solutions having different KCl concentrations of 10 -3 M in a closed container to adjust pH.
When the pH is decreased, the mixed aqueous solution which is the liquid phase in the closed container becomes an aqueous solution containing a dissolved ClO 2 gas of a predetermined concentration at an almost constant pH value depending on the KCl concentration. For example, KC
When the l concentration is 10 -1 M, ClO at about pH 4 from Fig. 1
2 - changes to ClO 2, the mixed aqueous solution 4.2 mg / of ClO 2 gas is dissolved.

従つて、予め一定のKCl濃度の下で、ClO2 -がClO2に変化
するpH並びにClO2 -とClO2の定量関係を求めておけば、
ある定めた条件下では既知濃度のClO2ガス及びClO2溶液
が密閉容器中に得られるので、これをそのまゝ校正に使
用出来る。尚、密閉容器とは、気体が全く流通しない完
全密閉状態でなくても良く、ClO2ガスが気−液平衡状態
に達するまでに外部に殆ど逃げない程度の密閉状態の容
器であればよく、例えばピンホール状の小さな孔等が存
在してもかまわない。
Accordance connexion, under advance certain KCl concentration, ClO 2 - if seeking a quantitative relationship ClO 2, - the pH and ClO 2 changes ClO 2
Under certain defined conditions, ClO 2 gas and ClO 2 solution of known concentration can be obtained in a closed container, which can be used as it is for calibration. Incidentally, the closed container does not have to be a completely closed state in which gas does not flow at all, and may be a closed state container in which ClO 2 gas hardly escapes to the outside until reaching a gas-liquid equilibrium state, For example, a pinhole-shaped small hole may be present.

しかも、標準液又は標準ガス用のClO2の生成に使用する
ClO2 -は、第4図に実線で示すように液中において極め
て安定であり、長期間保存しても濃度の変化がみられな
い。従つて、保存してある既知濃度のClO2 -溶液から、
必要なときに何時でも簡単に既知濃度のClO2溶液又はCl
O2ガスが得られ、これを標準液又は標準ガスとして溶存
又は気相のClO2ガス測定装置の校正を簡単にしかも正確
に行なうことが出来る。
Moreover, it is used to generate ClO 2 for standard solution or standard gas.
ClO 2 is extremely stable in the liquid as shown by the solid line in FIG. 4, and the concentration does not change even after long-term storage. From solution, - accordance connexion, ClO 2 of known concentrations that are stored
Easy to use ClO 2 solution or Cl of known concentration whenever needed
O 2 gas is obtained, and the dissolved or gas phase ClO 2 gas measuring device can be easily and accurately calibrated using this as a standard solution or standard gas.

又、O3ガスや塩素ガス等の他の酸化性ガス測定装置につ
いても、当該酸化性ガスとClO2ガスとの感度の関係を予
め求めておけば、上記方法に従つてClO2ガスを用いて校
正を行なうことが可能である。
Also, for other oxidizing gas measuring devices such as O 3 gas and chlorine gas, if the relationship of sensitivity between the oxidizing gas and ClO 2 gas is obtained in advance, ClO 2 gas is used according to the above method. It is possible to calibrate.

〔実施例〕〔Example〕

実施例1 濃度1.30×10-4MのNaClO2水溶液と、濃度0.1MのKClを含
む硫酸溶液(pH2.4)を別々の容器に入れ、常温で100日
間保存した。次に、容量120mlの密閉容器中で前記NaClO
2水溶液50mlと0.1MKClを含む硫酸溶液50mlを混合し、混
合水溶液のpHを2.7とした。予め求めたClO2 -とClO2との
関係から、上記条件下では液相としてClO2ガスが6.2mg/
溶存した混合水溶液が得られることが判つていた。
Example 1 An aqueous NaClO 2 solution having a concentration of 1.30 × 10 −4 M and a sulfuric acid solution (pH 2.4) containing KCl having a concentration of 0.1 M were placed in separate containers and stored at room temperature for 100 days. Next, the NaClO
50 ml of a 2 aqueous solution and 50 ml of a sulfuric acid solution containing 0.1 M KCl were mixed to adjust the pH of the mixed aqueous solution to 2.7. From the relationship between ClO 2 and ClO 2 obtained in advance, ClO 2 gas was 6.2 mg / g as a liquid phase under the above conditions.
It has been found that a dissolved mixed aqueous solution can be obtained.

上記操作で得られた混合水溶液を標準液として隔膜ポー
ラログラフ電極を用いたClO2ガス測定装置(東亜電波工
業(株)のCLO−20型)を6.2mg/に校正した。次に、
校正後の上記ClO2ガス測定装置により、溶存ClO2ガス濃
度が11.4mg/になるように調製した複数の溶液を連続
測定した所第2図に示す応答曲線が得られ、良好な再現
性と応答が得られていることが判つた。
A ClO 2 gas measuring device (CLO-20 type manufactured by Toa Denpa Kogyo KK) using a diaphragm polarographic electrode was calibrated to 6.2 mg / using the mixed aqueous solution obtained by the above operation as a standard solution. next,
After the calibration, the ClO 2 gas measuring device was used to continuously measure a plurality of solutions prepared so that the dissolved ClO 2 gas concentration was 11.4 mg /, and the response curve shown in Fig. 2 was obtained. It turned out that a response was obtained.

実施例2 上記実施例1と同様の操作で、NaClO2水溶液とKClを含
む硫酸溶液から密閉容器中の気相として濃度6.2mg/の
ClO2ガスを得た。試作した隔膜電極式O3ガス測定装置に
ついて、ClO2ガスとO3ガスの感度の関係を予め求め、こ
の感度の関係から上記6.2mg/のClO2ガスを用いて同O3
ガス測定装置を15.5mg/に校正した。
Example 2 By the same operation as in Example 1 above, a concentration of 6.2 mg / as a gaseous phase in a closed container was obtained from a sulfuric acid solution containing NaClO 2 aqueous solution and KCl.
ClO 2 gas was obtained. Regarding the prototype diaphragm electrode type O 3 gas measuring device, the sensitivity relationship between ClO 2 gas and O 3 gas was obtained in advance, and the same O 3 gas was used using the above-mentioned 6.2 mg / ClO 2 gas from this relationship of sensitivity.
The gas measuring device was calibrated to 15.5 mg /.

次に、校正後の上記O3ガス測定装置を用いて、0.4mg/
のO3を含む空気を連続測定したところ第3図の応答曲線
が得られ、良好な応答が得られていることが判つた。
Next, using the above-mentioned O 3 gas measuring device after calibration, 0.4 mg /
When the air containing O 3 was continuously measured, the response curve of FIG. 3 was obtained, and it was found that a good response was obtained.

尚、隔膜電極式塩素ガス測定装置も、O3ガスの場合と同
様にClO2ガスとCl2ガスの感度の関係を求めておくこと
によつて、ClO2ガスを用いて校正を行なうことが出来
る。
Note that the diaphragm electrode type chlorine gas measuring device can also be calibrated using ClO 2 gas by obtaining the relationship between the sensitivities of ClO 2 gas and Cl 2 gas as in the case of O 3 gas. I can.

〔発明の効果〕〔The invention's effect〕

本発明によれば、長期保存できる複数の液から簡単な混
合操作だけで既知濃度の気相の又は液相に溶存した二酸
化塩素が得られるので、これをそのまゝ標準ガス又は標
準液として用い、二酸化塩素やオゾン、塩素等の酸化性
ガス測定装置を簡単且つ正確に校正することが出来る。
According to the present invention, chlorine dioxide dissolved in a gas phase or in a liquid phase having a known concentration can be obtained from a plurality of liquids which can be stored for a long period of time by a simple mixing operation, and therefore this is used as the standard gas or standard liquid. It is possible to calibrate an oxidizing gas measuring device for chlorine dioxide, ozone, chlorine, etc. easily and accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図はKCl濃度が異なる一定濃度のNaClO2水溶液を硫
酸酸性にした時のpHと溶存ClO2濃度との関係を示すグラ
フであり、第2図は本発明方法により校正した隔膜形ポ
ーラログラフ電極式二酸化塩素ガス測定装置の応答曲線
であり、第3図は本発明方法により校正した隔膜電極式
オゾンガス測定装置の応答曲線であり、第4図は溶存Cl
O2水溶液と溶存ClO2 -溶液の保存時間の変化に伴なう濃
度変化を示すグラフである。
FIG. 1 is a graph showing the relationship between the pH and the dissolved ClO 2 concentration when a constant concentration of NaClO 2 aqueous solution having different KCl concentrations was acidified with sulfuric acid, and FIG. 2 is a diaphragm type polarographic electrode calibrated by the method of the present invention. Fig. 3 is a response curve of a chlorine dioxide gas measuring device, Fig. 3 is a response curve of a diaphragm electrode type ozone gas measuring device calibrated by the method of the present invention, and Fig. 4 is a dissolved Cl
3 is a graph showing changes in concentration of O 2 aqueous solution and dissolved ClO 2 solution with changes in storage time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】亜塩素酸塩を溶解した亜塩素酸イオン水溶
液と塩化物を溶解した酸、又は前記亜塩素酸イオン水溶
液と酸と塩化物若しくは塩化物を溶解した水溶液を別々
の容器に保存し、酸化性ガス測定装置の校正時に密閉容
器中で前記各液を混合液中の亜塩素酸イオンと塩化物の
濃度及びpHが予め定めた条件となるように所定量づつ混
合することにより、亜塩素酸イオンを定量的に二酸化塩
素ガスに変化させ、密閉容器中に得られた既知濃度の二
酸化塩素ガス又は混合水溶液中の既知濃度の溶存二酸化
塩素ガスを前記測定装置で測定し、その指示値を当該二
酸化塩素濃度とするか又は他の酸化性ガスの当該二酸化
塩素濃度に対応する濃度として校正することを特徴とす
る酸化性ガス測定装置の校正方法。
1. A chlorite ion aqueous solution in which chlorite is dissolved and an acid in which chloride is dissolved, or an aqueous solution of chlorite ion and an acid and an aqueous solution in which chloride or chloride is dissolved are stored in separate containers. Then, by mixing each of the liquids in a closed container at the time of calibration of the oxidizing gas measuring device by a predetermined amount so that the concentration and pH of the chlorite ion and chloride in the mixed liquid are predetermined conditions, Chlorite ion is quantitatively changed to chlorine dioxide gas, chlorine dioxide gas of known concentration obtained in a closed container or dissolved chlorine dioxide gas of known concentration in the mixed aqueous solution is measured by the above-mentioned measuring device, and the instruction is given. A method for calibrating an oxidizing gas measuring device, wherein the value is set to the chlorine dioxide concentration or is calibrated as a concentration corresponding to the chlorine dioxide concentration of another oxidizing gas.
JP2074162A 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device Expired - Fee Related JPH0769287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074162A JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074162A JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Publications (2)

Publication Number Publication Date
JPH03273152A JPH03273152A (en) 1991-12-04
JPH0769287B2 true JPH0769287B2 (en) 1995-07-26

Family

ID=13539183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074162A Expired - Fee Related JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Country Status (1)

Country Link
JP (1) JPH0769287B2 (en)

Also Published As

Publication number Publication date
JPH03273152A (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US5030334A (en) Ozone measuring method
EP0347320B1 (en) Manufacturing method of aqueous stabilized chlorine dioxide solution
JPH05196597A (en) Gas detector
Ingols et al. Chemical properties of chlorine dioxide in water treatment
áO'Halloran Use of Lissamine Green B as a spectrophotometric reagent for the determination of low residuals of chlorine dioxide
Jiang et al. A new sensitive and selective fluorescence method for determination of chlorine dioxide in water using rhodamine S
JPH0769287B2 (en) Calibration method for oxidizing gas measuring device
Gottardi Redox-potentiometric/titrimetric analysis of aqueous iodine solutions
JPH02296146A (en) Method for simultaneously measuring chlorine dioxide and chlorite ion
Harp et al. Spectrophotometric determination of chlorine dioxide
JP3372078B2 (en) How to measure chlorite ion
US4278507A (en) Method for amperometric measurement of the free-chlorine content in a solution
Steininger et al. ORP sensor response in chlorinated water
JPH06249832A (en) Measurement of chlorous acid ion
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
JP3372079B2 (en) How to measure chlorite ion
Gordon et al. Lower detection limits found for chlorine dioxide contaminants
Llmoni et al. Determination of oxidants formed upon the disinfection of drinking water with chlorine dioxide
Hu Chronoamperometric determination of free chlorine by using a wax‐impregnated carbon electrode
SU701252A1 (en) Method of potentiometric determination of gold and silver in cyanide solutions
JPH0758280B2 (en) Method for measuring chlorite ion
Oikawa et al. Determination of ClO2 Using ClO2 Selective Electrode.
Howell et al. The preparation and indirect spectrophotometric determination of total oxidizing capacity of chlorine dioxide in acidic solution
Masschelein Experience with chlorine dioxide in Brussels, part 2: methods for controlling chlorine dioxide operation
JPS6391194A (en) Production of mineralized water from pure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees