JPH03273152A - Method for calibrating instrument for measuring oxdiative gas - Google Patents

Method for calibrating instrument for measuring oxdiative gas

Info

Publication number
JPH03273152A
JPH03273152A JP2074162A JP7416290A JPH03273152A JP H03273152 A JPH03273152 A JP H03273152A JP 2074162 A JP2074162 A JP 2074162A JP 7416290 A JP7416290 A JP 7416290A JP H03273152 A JPH03273152 A JP H03273152A
Authority
JP
Japan
Prior art keywords
gas
chlorine dioxide
dissolved
soln
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074162A
Other languages
Japanese (ja)
Other versions
JPH0769287B2 (en
Inventor
Etsuo Furuya
降矢 悦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP2074162A priority Critical patent/JPH0769287B2/en
Publication of JPH03273152A publication Critical patent/JPH03273152A/en
Publication of JPH0769287B2 publication Critical patent/JPH0769287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make exact calibration with simple operations in a short period of time by calibrating a measured value as the corresponding chlorine dioxide concn. or the concn. corresponding to the corresponding chlorine dioxide concn. of another oxidative gas. CONSTITUTION:An Aq. soln. of NaClO2 of, for example, 1.30X10<4>M concn. and a sulfuric acid soln. of 2.4 pH contg. KCl of 0.1M concn. are put into separate containers and are preserved for 100 days at ordinary temp. Then, 50ml aq. NaClO2 soln. and 50ml sulfuric acid soln. contg. 0.1M KCl are mixed in a hermetic container of 120ml capacity and the pH of the aq. soln. mixture is adjusted to 2.7. The aq. soln. mixture in which gaseous ClO2 is dissolved at 6.2mg/l is obtd. as a liquid phase under the above-mentioned conditions from the previously obtd. relation between ClO2<-> and ClO2. The instrument for measuring the gaseous ClO2 is then calibrated to 6.2mg/l with the aq. soln. mixture as a standard liquid. The plural solns. which are so adjusted as to have 11.4mg/l concn. of the dissolved gaseous ClO2 are continuously measured by the instrument for measuring the gaseous ClO2 after the calibration. The instrument for measuring the gas, such as chlorine dioxide, is easily and exactly calibrated in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二酸化塩素やオゾン等の酸化性ガス測定装置
の校正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for calibrating an apparatus for measuring oxidizing gases such as chlorine dioxide and ozone.

〔従来の技術〕[Conventional technology]

二酸化塩素(atO>やオゾン(0)は強い酸化力を有
するので、例えば二酸化塩素は繊維等の漂白及び最近で
は塩素に代わる殺菌剤として上水やプール水の殺菌等に
利用され、オゾンも上水の脱臭等に使用されている。
Chlorine dioxide (atO> and ozone (0) have strong oxidizing power, so for example, chlorine dioxide is used to bleach textiles, etc., and recently, as a disinfectant instead of chlorine, it is used to sterilize tap water and pool water. It is used for deodorizing water, etc.

二酸化塩素、オゾン、#[素等の酸化性ガスの濃度測定
は、溶存酸化性ガス溶液については従来からヨウ素滴定
法が行なわれていたが、連続測定に適さず又滴定操作が
煩雑である等の欠点がある為最近では二酸化塩素、オゾ
ン、塩素等を選択的に透過する隔膜を用いた隔膜形ポー
ラログラフ電極法(特開昭54−125095号公報)
による酸化性ガス測定装置が使用されている。又、同様
の隔膜を用いた隔膜電極により電位を測定する隔膜電極
式酸化性ガス測定装置では、溶存酸化性ガス溶液であっ
ても気相の酸化性ガスであっても測定が可能である。
Concentrations of oxidizing gases such as chlorine dioxide, ozone, and Due to these drawbacks, recently a diaphragm-type polarographic electrode method using a diaphragm that selectively permeates chlorine dioxide, ozone, chlorine, etc. (Japanese Unexamined Patent Publication No. 125095/1982) has been developed.
An oxidizing gas measuring device is used. Furthermore, with a diaphragm electrode type oxidizing gas measuring device that measures the potential with a diaphragm electrode using a similar diaphragm, it is possible to measure both dissolved oxidizing gas solutions and gaseous oxidizing gases.

上記の酸化性ガス測定装置は、何れも隔膜を具えた電極
を試料液又は試料ガスに接触させるだけで酸化性ガス濃
度が指示値として得られるので、簡便であり連続測定に
も適するが、電気化学的測定装置の常として校正を必要
とする。
The above-mentioned oxidizing gas measuring devices can obtain the oxidizing gas concentration as an indicator simply by bringing an electrode equipped with a diaphragm into contact with a sample liquid or sample gas, so they are simple and suitable for continuous measurement, but they are As with any chemical measurement device, calibration is required.

従来、酸化性ガス測定装置の校正は測定対象とする酸化
性ガスを用いて行なっていたが、校正に用いる酸化性ガ
スは当然一定濃度に調整する必要がある。例えば一定濃
度の溶存CtOガス水溶液を調整するには、公知の塩素
酸塩の還元若しくは亜塩素酸塩の酸化によりcto  
ガスを発生させ、このCtOガスを純水中に捕集し、そ
の濃度をヨウ素滴定法により決定する方法が用いられる
が、この調整操作は面倒である。
Conventionally, oxidizing gas measuring devices have been calibrated using the oxidizing gas to be measured, but the oxidizing gas used for calibration naturally needs to be adjusted to a constant concentration. For example, to adjust a dissolved CtO gas aqueous solution with a certain concentration, cto
A method is used in which gas is generated, the CtO gas is collected in pure water, and its concentration is determined by iodometric titration, but this adjustment operation is troublesome.

しかも、酸化性ガスは何れも不安定であり、気相でも溶
存状態でも短期間保存する間に分解が進行し、力価が減
少し若しくは濃度が低下する。例えば、二酸化塩素(C
tO)ガスを純水に溶解させた溶存oto ガス水溶液
の場合、第4図に点線で示す如く褐色ポリプロピレン製
ビ■)、狭口褐色カラスピン(△)及び広口褐色ガラス
ピン(ロ)ノ何れに保存しても、極めて短期間で分解し
て溶存010ガス濃度が低下する。かかる事情はオゾン
ガスや塩素ガス等についても同様である。
Moreover, all oxidizing gases are unstable, and decomposition progresses during short-term storage in either the gas phase or the dissolved state, resulting in a decrease in titer or concentration. For example, chlorine dioxide (C
In the case of a dissolved OTO gas aqueous solution in which tO) gas is dissolved in pure water, as shown by the dotted line in Figure 4, a brown polypropylene bi-), a narrow-mouth brown glass pin (△), and a wide-mouth brown glass pin (b) are used. Even when stored, it decomposes in a very short period of time and the concentration of dissolved 010 gas decreases. The same situation applies to ozone gas, chlorine gas, and the like.

背って、校正用の標準液や擦動スとして、測定対象の酸
化性ガス又はその溶存水溶液を一定濃度のま&長期に保
存することは殆ど不可能であるため、校正の度に新たに
標準液等として調製する必要があるが、その度に面倒な
調製操作を繰り返すので極めて煩雑であり、そのため校
正にも長時間を要するという欠点があった。
On the other hand, it is almost impossible to store the oxidizing gas to be measured or its dissolved aqueous solution at a constant concentration for a long period of time as a standard solution or rubbing solution for calibration. Although it is necessary to prepare it as a standard solution, it is extremely complicated as the troublesome preparation operation is repeated each time, and therefore, there is a drawback that calibration requires a long time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、簡単な操作により短
時間で正確な校正が可能な酸化性ガス測定装置の校正方
法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the conventional circumstances, it is an object of the present invention to provide a method for calibrating an oxidizing gas measuring device that allows accurate calibration in a short time with simple operations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を遠戚するため、本発明の酸化性ガス測定装置
の校正方法は、亜塩素酸塩を溶解した亜塩素酸イオン水
溶液と塩化物を溶解した酸、又は前記亜塩素酸イオン水
溶液と酸と塩化物若しくは塩化物を溶解した水溶液を別
々の容器に保存し、酸化性ガス測定装置の校正時に密閉
容器中で前記各液を所定散づつ混4合することにより亜
塩素酸イオンを定量的に二酸化塩素ガスに変化させ、密
閉容器中に得られた既知濃度の二酸化塩素ガス又は混合
水溶液中の既知濃度の溶存二酸化塩素ガスを前記測定装
置で測定し、その指示値を当該二酸化塩素濃度とするか
又は他の酸化性ガスの当該二酸化塩素濃度に対応する濃
度として校正することを特徴とする。
In order to achieve the above object, the method for calibrating the oxidizing gas measuring device of the present invention is to use a chlorite ion aqueous solution in which chlorite is dissolved and an acid in which chloride is dissolved, or the chlorite ion aqueous solution and an acid. and chloride or an aqueous solution containing chloride are stored in separate containers, and when calibrating the oxidizing gas measuring device, each liquid is mixed in a predetermined amount in a closed container to quantitatively measure chlorite ions. chlorine dioxide gas with a known concentration obtained in a sealed container or dissolved chlorine dioxide gas with a known concentration in a mixed aqueous solution with the measuring device, and the indicated value is used as the chlorine dioxide concentration. or calibrate the concentration of other oxidizing gas as corresponding to the chlorine dioxide concentration.

〔作用〕[Effect]

亜塩素酸イオン(C10)は塩素イオン(C1)の存在
下で液のpHを低下させると、あるp l(において二
酸化塩素(C!10 )に定量的に且つ急激に変化する
。従って、上記操作を密閉容器中で定量的に行なえば、
発生したCtOガスが気相と液相とで平衡状態となるの
で、密閉容器中の気相には一定濃度のclo ガスが含
まれ、且つ発生したCIOガスを捕集して別途純水に溶
解させなくても、液相(混合水溶液)中にも一定濃度の
atOガスが溶存する。
When the pH of the solution is lowered in the presence of chlorine ions (C1), chlorite ions (C10) quantitatively and rapidly change to chlorine dioxide (C!10) at a certain p l (. Therefore, the above If the operation is carried out quantitatively in a closed container,
Since the generated CtO gas is in an equilibrium state between the gas phase and the liquid phase, the gas phase in the sealed container contains a certain concentration of clo gas, and the generated CIO gas is collected and separately dissolved in pure water. Even if this is not done, a certain concentration of atO gas is dissolved in the liquid phase (mixed aqueous solution).

即ち、第1図に示すように、密閉容器中においてKCI
 1)度が異なる濃度101MのNaC10水溶液に硫
酸を加えてpHを低下させていくと、KOI 9度に応
じてほぼ一定のpH値において、密閉容器中の液相であ
る混合水溶液は各々所定濃度の溶存CtOガスを含む水
溶液となる。例えば、KC1濃度が101Mの場合には
、第1図から約pi(“本においてC10−がCtOに
変化し、混1合水溶液には4.2m9/lの010  
ガスが溶存する。
That is, as shown in FIG.
1) When sulfuric acid is added to NaC10 aqueous solutions with different concentrations of 101 M to lower the pH, the mixed aqueous solutions, which are the liquid phase in the sealed container, will each reach a predetermined concentration at a nearly constant pH value depending on the KOI 9 degrees. The result is an aqueous solution containing dissolved CtO gas. For example, when the KC1 concentration is 101M, from Figure 1, approximately pi ("In the book, C10- changes to CtO, and the mixed aqueous solution contains 4.2 m9/l of 010
Gas is dissolved.

往って、予め一定のKOl濃度の下で、C10−がct
oに変化するpH並びにcto−とC1Oの定量関係を
求めておけば、ある定めた条件下では既知濃度のCtO
ガス及びatO溶液が密閉容器中に得られるので、これ
をそのま\校正に使用出来る。
Often, under a predetermined KOl concentration, C10- is ct
By determining the pH that changes to o and the quantitative relationship between cto- and C1O, under certain conditions, a known concentration of CtO
Since the gas and atO solution are obtained in a closed container, this can be used as is for calibration.

尚、密閉容器とは、気体が全く流通しない完全密閉状態
でなくても良く、CtOガスが気−液平衡状蔗に達する
までに外部に殆ど逃げない程度の密閉状態の容器であれ
ばよく、例えばピンホール状の小さな孔等が存在しても
かまわない。
Note that the sealed container does not have to be a completely sealed state where no gas flows, but may be a container that is sealed to the extent that almost no gas escapes to the outside before the CtO gas reaches a gas-liquid equilibrium state. For example, a small hole such as a pinhole may be present.

しかも、標準液又は標準ガス用のctoの生戊に使用す
るCtOJは、第4図に実線で示すように液中において
極めて安定であり、長期間保存しても濃度の変化がみら
れない。従って、保存しである既知濃度のCtO−溶液
から、必要なときに何時でも簡単に既知濃度のCIO溶
液又はCtOガスが得られ、これを標準液又は標準ガス
として溶存又は気相のCtOガス測定装置の校正を簡単
にしかも正確に行なうことが出来る。
Moreover, CtOJ used for producing CTO for standard solution or standard gas is extremely stable in the solution, as shown by the solid line in FIG. 4, and no change in concentration is observed even after long-term storage. Therefore, from a stored CtO solution with a known concentration, a CIO solution or CtO gas with a known concentration can be easily obtained whenever needed, and this can be used as a standard solution or standard gas to measure CtO gas in the dissolved or gas phase. It is possible to calibrate the device easily and accurately.

又、0ガスや塩素ガス等の他の酸化性ガス測定装置につ
いても、当該酸化性ガスとclo ガスとの感度の関係
を予め求めておけば、上記方法に従ってCtO,ガスを
用いて校正を行なうことが可能である。
Also, for other oxidizing gas measuring devices such as 0 gas and chlorine gas, if the sensitivity relationship between the oxidizing gas and chlor gas is determined in advance, calibration can be performed using CtO and gas according to the above method. Is possible.

(実施例) 実施例1 濃度1.30X10−’MのNa(310水溶液と、濃
度0.1MのKO/を含む硫酸溶液(pH2,4)を別
々のHfMに入れ、常温で100日間保存した。次に、
容量120−の密閉容器中で前記NaC10水溶液5o
−と0.1MKC/を含む硫、酸溶液5o−を混合し、
混合水溶液のpHを2.7とした。予め求めたC10−
とCIOとの関係から、上記条件下では液相としてC1
Oガスが6.2rn9/l溶存した混合水溶液が得られ
ることが判っていた。
(Example) Example 1 A sulfuric acid solution (pH 2,4) containing a Na(310 aqueous solution with a concentration of 1.30×10-'M and KO/with a concentration of 0.1M) was placed in separate HfM and stored at room temperature for 100 days. .next,
In a closed container with a capacity of 120 liters, 50 liters of the above NaCl aqueous solution was added.
- and 0.1 MKC/containing sulfur, acid solution 5o-,
The pH of the mixed aqueous solution was set to 2.7. C10- determined in advance
From the relationship between
It was known that a mixed aqueous solution containing 6.2rn9/l of O gas dissolved therein could be obtained.

上記操作で得られた混合水溶液を標準液として隔膜形ポ
ーラログラフ電極を用いたC2Oガス測定装置(東亜電
波工業■のCLO−20?)を6.2ツ/lに校正した
。次に、校正後の上記C1Oガス測定装置により、溶存
CIOガス濃度が1).C++s/lになるように調整
した複数の溶液を連続測定した所第2図に示す応答曲線
が得られ、良好な再現性と応答が得られていることが判
った。
Using the mixed aqueous solution obtained in the above procedure as a standard solution, a C2O gas measuring device (CLO-20? manufactured by Toa Denpa Kogyo ■) using a diaphragm-type polarographic electrode was calibrated to 6.2 T/l. Next, the dissolved CIO gas concentration is determined to be 1) by the calibrated C1O gas measuring device. When a plurality of solutions adjusted to have C++s/l were continuously measured, the response curve shown in FIG. 2 was obtained, and it was found that good reproducibility and response were obtained.

実施例2 上記実施例1と同様の操作で、IJaCIO水溶液とK
Ctを含む硫酸溶液かむ密閉容器中の気相として濃度6
.2WQ/lのC10ガスを得た。試作した隔膜電接式
0 ガス測定装置について、CIOガスとOガスの感度
の関係を予め求め、この感度の関係から上記6.2yn
iy/lのCIOガスを用いて同Oガス制定装置を15
.51n9/lに校正した。
Example 2 IJaCIO aqueous solution and K
Concentration 6 as a gas phase in a closed container containing a sulfuric acid solution containing Ct.
.. 2WQ/l of C10 gas was obtained. Regarding the prototype diaphragm electrical connection type 0 gas measuring device, the relationship between the sensitivity of CIO gas and O gas was determined in advance, and from this sensitivity relationship, the above 6.2yn
Using iy/l of CIO gas, the same O gas establishment device was installed at 15
.. It was calibrated to 51n9/l.

次に、校正後の上記0 ガス測定装置を用いて、尚、隔
膜電極式塩素ガス測定装置も、0 ガスの場合と同様に
cIOガスとcl、ガスの感度の関係を求めておくこと
によって、CjlOガスを用いて校正を行なうことが出
来る。
Next, using the above-mentioned 0 gas measuring device after calibration, and also using the diaphragm electrode type chlorine gas measuring device, by determining the relationship between cIO gas, Cl, and gas sensitivity in the same manner as in the case of 0 gas, Calibration can be performed using CjlO gas.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、長期保存できる複数の液がら簡単な混
合操作だけで既知濃度の気相の又は液相に溶存した二酸
化塩素が得られるので、これをそのま\標準ガス又は標
準液として用い、二酸化塩素やオゾン、塩素等の酸化性
ガス測定装置を簡単且つ正確に校正することが出来る。
According to the present invention, chlorine dioxide of a known concentration in the gas phase or dissolved in the liquid phase can be obtained by a simple mixing operation of multiple liquids that can be stored for a long period of time, so that it can be used as it is as a standard gas or standard solution. , oxidizing gas measuring devices such as chlorine dioxide, ozone, and chlorine can be easily and accurately calibrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMCI濃度が異なる一定濃度のNacl。 水溶液を硫酸酸性にした時のpHと溶存clo 濃度と
の関係を示すグ、ラフであり、第2図は本発明方法によ
り校正した隔膜形ポーラログラフN極式二酸化塩素ガス
測定装置の応答曲線であり、第3図は本発明方法により
校正した隔膜電極式オゾンガス測定装置の応答曲線であ
り、第4図は溶存○lo2水溶液と溶存CtOJ溶液の
保存時間の変化に伴なうei度変化を示すグラフである
Figure 1 shows constant concentrations of Nacl with different MCI concentrations. Figure 2 is a graph showing the relationship between pH and dissolved chlorine concentration when an aqueous solution is made acidic with sulfuric acid, and Figure 2 is a response curve of a diaphragm type polarographic N-pole type chlorine dioxide gas measuring device calibrated by the method of the present invention. , Fig. 3 is a response curve of the diaphragm electrode type ozone gas measuring device calibrated by the method of the present invention, and Fig. 4 is a graph showing the change in ei degree with the change in storage time of the dissolved ○lo2 aqueous solution and the dissolved CtOJ solution. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)亜塩素酸塩を溶解した亜塩素酸イオン水溶液と塩
化物を溶解した酸、又は前記亜塩素酸イオン水溶液と酸
と塩化物若しくは塩化物を溶解した水溶液を別々の容器
に保存し、酸化性ガス測定装置の校正時に密閉容器中で
前記各液を所定量づつ混合することにより亜塩素酸イオ
ンを定量的に二酸化塩素ガスに変化させ、密閉容器中に
得られた既知濃度の二酸化塩素ガス又は混合水溶液中の
既知濃度の溶存二酸化塩素ガスを前記測定装置で測定し
、その指示値を当該二酸化塩素濃度とするか又は他の酸
化性ガスの当該二酸化塩素濃度に対応する濃度として校
正することを特徴とする酸化性ガス測定装置の校正方法
(1) Storing an aqueous chlorite ion solution in which chlorite is dissolved and an acid in which a chloride is dissolved, or the aqueous chlorite ion solution and an acid and chloride, or an aqueous solution in which a chloride is dissolved, in separate containers, When calibrating the oxidizing gas measuring device, chlorite ions are quantitatively converted into chlorine dioxide gas by mixing predetermined amounts of each of the above liquids in a sealed container, and chlorine dioxide with a known concentration is obtained in the sealed container. Measure dissolved chlorine dioxide gas at a known concentration in the gas or mixed aqueous solution with the measuring device, and use the indicated value as the chlorine dioxide concentration, or calibrate it as a concentration corresponding to the chlorine dioxide concentration of another oxidizing gas. A method for calibrating an oxidizing gas measuring device, characterized in that:
JP2074162A 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device Expired - Fee Related JPH0769287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074162A JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074162A JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Publications (2)

Publication Number Publication Date
JPH03273152A true JPH03273152A (en) 1991-12-04
JPH0769287B2 JPH0769287B2 (en) 1995-07-26

Family

ID=13539183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074162A Expired - Fee Related JPH0769287B2 (en) 1990-03-23 1990-03-23 Calibration method for oxidizing gas measuring device

Country Status (1)

Country Link
JP (1) JPH0769287B2 (en)

Also Published As

Publication number Publication date
JPH0769287B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
EP0335055B1 (en) Amperometric method
EP0347320B1 (en) Manufacturing method of aqueous stabilized chlorine dioxide solution
US11782008B2 (en) Method for correcting two measured values from different analytical measuring devices and measuring point for carrying out the method
US5061631A (en) Method, apparatus and solution for calibration of partial pressure value
Gordon et al. Methods of measuring disinfectant residuals
JPH03273152A (en) Method for calibrating instrument for measuring oxdiative gas
Wheeler et al. A rapid microdetermination of chlorine dioxide in the presence of active chlorine compounds
JP3372078B2 (en) How to measure chlorite ion
CN108351337B (en) Storage stable standards for aqueous chlorine analysis
Ikeda et al. Iodometric method for determination of trace chlorate ion
Harp et al. Spectrophotometric determination of chlorine dioxide
LT4886B (en) Azo dye aqueous solution, preparation method and use
Steininger et al. ORP sensor response in chlorinated water
JP7179289B2 (en) Method and device for detecting concentration of pernitric acid, and device for generating pernitric acid for sterilization
JPH06249832A (en) Measurement of chlorous acid ion
DE19960275A1 (en) Determination of chlorine dioxide, chlorite and/or chlorous acid in aqueous solution, useful for analyzing disinfectant, bleach and deodorizing solutions, involves measuring redox and pH before and after treatment or dilution
JPH0387649A (en) Method for measuring chlorous acid ion
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
US5204266A (en) Method and apparatus for liquid phase calibration of oxygen and carbon dioxide partial pressure
JPH06249831A (en) Measurement of chlorous acid ion
Gordon et al. Lower detection limits found for chlorine dioxide contaminants
CN214583355U (en) Hydrogen peroxide concentration sensor calibrator
Oikawa et al. Determination of ClO2 Using ClO2 Selective Electrode.
JP3106447B2 (en) Residual chlorine meter with automatic calibration function
WO1999030142A1 (en) Determination of concentration of a compound in a multiple component fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees