JPH06249831A - Measurement of chlorous acid ion - Google Patents

Measurement of chlorous acid ion

Info

Publication number
JPH06249831A
JPH06249831A JP5062875A JP6287593A JPH06249831A JP H06249831 A JPH06249831 A JP H06249831A JP 5062875 A JP5062875 A JP 5062875A JP 6287593 A JP6287593 A JP 6287593A JP H06249831 A JPH06249831 A JP H06249831A
Authority
JP
Japan
Prior art keywords
temperature
chlorite ion
concentration
ion concentration
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5062875A
Other languages
Japanese (ja)
Other versions
JP3372079B2 (en
Inventor
Taisuke Nakano
泰介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP06287593A priority Critical patent/JP3372079B2/en
Publication of JPH06249831A publication Critical patent/JPH06249831A/en
Application granted granted Critical
Publication of JP3372079B2 publication Critical patent/JP3372079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To provide a method for invariably obtaining the correct concentration of the chlorous acid ions continuously in a simple manner, without being affected by the dissolved dioxidized chlorine, even if the temperature of the sample liquid varies, by using the polarography method. CONSTITUTION:Two electrodes consisting of a working electrode 4 and a counter electrode 5 or three electrodes consisting of the working electrode 4, reference electrode 6 and the counter electrode 5 are immersed in a sample liquid. Relatively moving the working electrode 4 and the sample liquid, the voltage for generating the oxidation electric current of chlorous acid ion is applied on the working electrode 4, having the counter electrode 5 as standard in case of two electrodes, while having the reference electrode 6 as standard in case of three electrodes, and the concentration of the chlorous acid ions in the sample liquid is measured on the basis of the flowing oxidation electric current. Then, the chlorous acid ion for concentration is measured, carrying out compensation according to the temperature of the sample liquid for which the concentration of chlorous acid ion is measure separately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料液の温度に拘ら
ず、試料液中の亜塩素酸イオン(ClO2 -)濃度を正確
に測定する方法に関する。
The present invention relates, regardless of the temperature of the sample solution, chlorite ion in the sample solution - relates to a method for accurately measuring the concentration (ClO 2).

【0002】[0002]

【従来の技術】従来から、上水やプール水の殺菌には塩
素が使用されているが、塩素からは発癌性のトリハロメ
タンが発生することが判り問題となっている。そこで、
トリハロメタンを発生しない二酸化塩素を用いて上水や
プール水の殺菌を行うことが検討され、最近に至り厚生
省生活衛生局企画課長通知「衛企第46号」等により遊
泳用プール水の消毒に二酸化塩素の使用が認められるこ
ととなった。
2. Description of the Related Art Conventionally, chlorine has been used for sterilizing tap water or pool water, but it has been known that chlorine produces carcinogenic trihalomethanes, which has been a problem. Therefore,
It has been considered to sterilize tap water and pool water using chlorine dioxide that does not generate trihalomethane, and recently, it was used to disinfect swimming pool water by disinfecting swimming pool water according to the notification of the director of the Planning Division, Living Health Bureau, Ministry of Health and Welfare. Use of chlorine has been approved.

【0003】二酸化塩素を水の消毒に利用すると二酸化
塩素そのものは還元されるが、一部は分解されて亜塩素
酸となる。亜塩素酸は光や紫外線によって又酸性にする
ことによって二酸化塩素を生成し、二酸化塩素の酸化能
を潜在的に有するものであるから、上記の水の消毒に当
たっては二酸化塩素と共に亜塩素酸の濃度管理を行うこ
とが必要である。又、亜塩素酸は高濃度で摂取するとヘ
モグロビン障害や貧血等を起こすとの動物実験による報
告があるので、プール水においても亜塩素酸濃度を1.
2mg/l以下とすることが要望されている。
When chlorine dioxide is used for disinfection of water, chlorine dioxide itself is reduced, but part of it is decomposed to chlorous acid. Since chlorous acid produces chlorine dioxide when it is acidified by light or ultraviolet light and has the potential of oxidizing chlorine dioxide, the concentration of chlorous acid together with chlorine dioxide is used in disinfecting the above water. It is necessary to manage. In addition, since there is a report from an animal experiment that chlorous acid causes hemoglobin disorder and anemia when ingested at a high concentration, chlorous acid concentration in pool water is 1.
It is required to be 2 mg / l or less.

【0004】かかる亜塩素酸の濃度測定方法としては、
上記「衛企第46号」に付記されているジエチル−p−
フェニレンジアミン法(DPD法)、及び化学防災指針
(7)に定められたヨウ素滴定法が知られている。しかし
ながら、両方法とも試料液に硫酸とヨウ化カリウムを加
え、酸性下で亜塩素酸から生成した二酸化塩素によりヨ
ウ化カリウムをヨウ素に変えた後、このヨウ素の量から
亜塩素酸濃度を求める間接的な方法である。
As a method for measuring the concentration of chlorous acid,
Diethyl -p- added to the above "Eki 46th"
Phenylenediamine method (DPD method) and chemical disaster prevention guidelines
The iodometric titration method defined in (7) is known. However, in both methods, sulfuric acid and potassium iodide were added to the sample solution, and after changing potassium iodide to iodine by chlorine dioxide generated from chlorous acid under acidic conditions, the chlorous acid concentration was calculated from the amount of iodine. Method.

【0005】即ち、DPD法では発色試薬ジエチル−p
−フェニレンジアミンをヨウ素により発色させてその吸
光度を測定し、ヨウ素滴定法では遊離したヨウ素を酸化
還元滴定する。従って、いずれの方法も溶存二酸化塩素
の影響を受けるため、その影響を除く操作が必要であ
り、操作が極めて繁雑であって連続モニターするには不
適当であるうえ、試薬の1つとして硫酸を用いるため危
険である等の欠点があった。
That is, in the DPD method, the coloring reagent diethyl-p
-Phenylenediamine is colored with iodine and its absorbance is measured. In the iodine titration method, liberated iodine is subjected to redox titration. Therefore, since any of the methods is affected by dissolved chlorine dioxide, it is necessary to perform an operation to remove the effect, which is extremely complicated and not suitable for continuous monitoring, and sulfuric acid is used as one of the reagents. Since it is used, it has some drawbacks such as being dangerous.

【0006】ところで、亜塩素酸は解離定数pKa=
2.31(25℃)の弱酸で、図2に示すごとくpH約
4以上ではほぼ100%亜塩素酸イオンに解離してい
る。従って、上水やプール水のような中性付近の水中で
は亜塩素酸は全て亜塩素酸イオンになっていると考えて
良く、亜塩素酸イオンの濃度をもって亜塩素酸の濃度と
することができる。即ち、上記亜塩素酸の濃度管理に亜
塩素酸イオンの濃度を用いても実用上において問題はな
い。
By the way, chlorous acid has a dissociation constant pKa =
With a weak acid of 2.31 (25 ° C), as shown in Fig. 2, almost 100% dissociated into chlorite ions at a pH of about 4 or higher. Therefore, it can be considered that chlorous acid is all chlorite ions in near-neutral water such as tap water or pool water, and the concentration of chlorite ions can be regarded as the concentration of chlorite. it can. That is, even if the concentration of chlorite ion is used to control the concentration of chlorous acid, there is no practical problem.

【0007】かかる事実に基づいて、亜塩素酸イオンの
電解によって生じる酸化電流を測定することにより、亜
塩素酸イオン濃度ひいては亜塩素酸濃度を求める方法が
提案され、特開平2−296145号公報に開示されて
いる。この方法によれば、溶存二酸化塩素の影響を受け
ることなく、簡単にしかも連続的に亜塩素酸イオン濃度
を測定することができる。
Based on this fact, a method has been proposed in which the oxidation current generated by electrolysis of chlorite ions is measured to determine the chlorite ion concentration and thus the chlorous acid concentration, which is disclosed in JP-A-2-296145. It is disclosed. According to this method, the chlorite ion concentration can be easily and continuously measured without being affected by dissolved chlorine dioxide.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記特
開平2−296145号公報に開示された方法は、ポー
ラログラフィーを用いた方法であるため試料液の温度等
が変動すると測定値に誤差を生じることが判明した。化
学分析において温度の影響を回避するためには、恒温槽
等を用いて予め試料液の温度を一定に保持した後、測定
を行うのが一般的である。しかし、この方法は試料液の
温度調整の操作が必要なため、その操作に時間がかかる
うえ、この温度調整のため上水やプール水等の管理では
連続的な濃度管理が出来なくなる欠点がある。
However, since the method disclosed in Japanese Patent Laid-Open No. 2-296145 uses polarography, an error occurs in the measured value when the temperature of the sample solution changes. It has been found. In order to avoid the influence of temperature in the chemical analysis, it is general to carry out the measurement after keeping the temperature of the sample solution constant in advance by using a constant temperature bath or the like. However, since this method requires an operation for adjusting the temperature of the sample solution, the operation takes time, and this temperature adjustment has a drawback that continuous concentration control cannot be performed in the control of tap water or pool water. .

【0009】本発明は、かかる従来の事情に鑑み、特開
平2−296145号公報に記載の方法を用いて、試料
液の温度が変動した場合であっても、常に正しい亜塩素
酸イオン濃度を求めることができる方法を提供すること
を目的とする。
In view of such conventional circumstances, the present invention uses the method described in Japanese Patent Application Laid-Open No. 2-296145 to obtain a correct chlorite ion concentration, even when the temperature of the sample solution changes. The aim is to provide a method that can be sought.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する亜塩素酸イオンの測定方法におい
ては、試料液中に作用電極と対極の2極又は作用電極と
参照電極と対極の3極を浸漬し、貴金属又は炭素からな
る作用電極と試料液とを相対的に動かしながら、2極の
場合は対極を基準に又3極の場合は参照電極を基準にし
て作用電極に亜塩素酸イオンの酸化電流を生じる電圧を
印加し、流れる酸化電流に基づいて試料液中の亜塩素酸
イオンの濃度を測定し、この亜塩素酸イオンの濃度測定
値を、別途測定した試料液の温度に応じて補償すること
を特徴とする。
In order to achieve the above object, in the method for measuring chlorite ion provided by the present invention, a working electrode and a counter electrode are provided in a sample liquid, or a working electrode and a reference electrode and a counter electrode. While immersing the three electrodes, the working electrode made of a noble metal or carbon and the sample liquid are relatively moved, the working electrode is divided into two parts by using the counter electrode as a reference and the reference electrode as a reference in the case of three electrodes. A voltage that produces an oxidation current of chlorate ions is applied, the concentration of chlorite ion in the sample solution is measured based on the flowing oxidation current, and the measured value of the concentration of this chlorite ion is measured separately. The feature is that compensation is performed according to the temperature.

【0011】本発明方法に従って温度補償を行う具体的
な方法の1つは; (1) 任意の異なる温度の複数の亜塩素酸既知濃度の基
準液について、前記方法による酸化電流に基づいて各亜
塩素酸イオンの濃度測定値を求め、 (2) 得られた各濃度測定値から、少なくとも温度と当
該温度に対応する亜塩素酸イオン濃度とを変数として持
つ関数であって、任意指定の温度での正しい亜塩素酸イ
オン濃度を算出する計算式を予め求めておき、 (3) その後、試料液について前記方法による酸化電流
に基づく亜塩素酸イオンの濃度と温度を測定し、 (4) 試料液の亜塩素酸イオンの濃度測定値と温度を前
記計算式に代入して、試料液の温度補償された亜塩素酸
イオン濃度を演算する方法である。
One of the specific methods for performing temperature compensation according to the method of the present invention is: (1) For a plurality of reference solutions having known concentrations of chlorous acid at arbitrary different temperatures, each sub-method is based on the oxidation current according to the above method. Obtain the chlorate ion concentration measurement value, and (2) From each obtained concentration measurement value, a function having at least the temperature and the chlorite ion concentration corresponding to the temperature as variables, In advance, a calculation formula for calculating the correct chlorite ion concentration of (3) is measured, and then the concentration and temperature of chlorite ion based on the oxidation current according to the above method are measured for the sample solution, (4) Sample solution Is a method of calculating the temperature-compensated chlorite ion concentration of the sample liquid by substituting the measured concentration value of chlorite ion and the temperature in the above formula.

【0012】又、温度補償を行う別の方法として、前記
(1)で得られた複数の基準液の各温度に対応する各濃度
測定値から、温度と当該温度に対応する亜塩素酸イオン
濃度とを変数とする表又は図を予め作製し、その後試料
液について測定した亜塩素酸イオンの濃度測定値と温度
から、表又は図のいずれかを用いて、試料液の温度補償
された亜塩素酸イオン濃度を求めることも出来る。
As another method for temperature compensation,
From each concentration measurement value corresponding to each temperature of the plurality of reference liquids obtained in (1), a table or figure having variables of temperature and chlorite ion concentration corresponding to the temperature is prepared in advance, and then the sample is prepared. It is also possible to obtain the temperature-compensated chlorite ion concentration of the sample liquid using either the table or the figure from the measured value of the chlorite ion concentration measured for the liquid and the temperature.

【0013】[0013]

【作用】本発明者らは、上記特開平2−296145号
公報記載の方法の温度依存性を研究した結果、その濃度
測定値は試料液の温度による影響を受けること、及び温
度の影響は定量的に定め得ることを見い出し、この発見
に基づいて温度変動による影響を補償して正しい亜塩素
酸イオン濃度を求めることを可能にしたものである。
The present inventors have studied the temperature dependence of the method described in JP-A-2-296145, and as a result, the measured concentration value is affected by the temperature of the sample solution, and the effect of temperature is quantified. Based on this finding, it was possible to compensate for the influence of temperature fluctuations and to obtain the correct chlorite ion concentration.

【0014】即ち、本発明方法では、定量的に変化する
温度と亜塩素酸イオン濃度との関係を予め求めておき、
この関係を計算式、表又は図として表現若しくは記録し
た上で、実際の試料液の測定に際しては、試料液の亜塩
素酸イオンの濃度測定値と共に温度計で試料液の温度を
測定し、これらの値を用いて正しい亜塩素酸イオン濃度
を計算式から演算するか、表又は図から読み取るもので
ある。
That is, in the method of the present invention, the relationship between the quantitatively changing temperature and the chlorite ion concentration is obtained in advance,
After expressing or recording this relationship as a calculation formula, table, or diagram, when measuring the actual sample solution, measure the temperature of the sample solution with a thermometer along with the measured concentration of chlorite ion in the sample solution. The correct chlorite ion concentration is calculated from the calculation formula using the value of, or read from a table or a figure.

【0015】しかし、温度の影響が定量的であるとは言
っても、その程度は使用する測定装置、特に作用電極等
の構造により変わる可能性があるので、測定装置毎に本
発明方法を適用することが好ましい。又、温度の測定は
同一試料液について亜塩素酸イオン濃度の測定と同時に
行うことが好ましいが、温度の変動幅が小さい場合に
は、温度の測定間隔を長くして、1つの温度測定値を数
回の亜塩素酸イオン濃度の測定に利用することも可能で
ある。
However, even though the influence of temperature is quantitative, the degree thereof may vary depending on the measuring device used, particularly the structure of the working electrode, etc., so the method of the present invention is applied to each measuring device. Preferably. Moreover, it is preferable to measure the temperature at the same time as the measurement of the chlorite ion concentration in the same sample solution, but if the fluctuation range of the temperature is small, the temperature measurement interval is lengthened and one temperature measurement value is measured. It can also be used to measure the chlorite ion concentration several times.

【0016】[0016]

【実施例】本発明方法を実施するための測定装置の具体
例を図1に示す。電解セル1は底部に試料液流入口2を
及び上部に試料液流出口3を備え、感応部がグラッシー
カーボンからなる作用電極4が電解セル1の底部に配置
されると共に、銀/塩化銀電極からなる対極5と参照電
極6とが作用電極4の上方に配置されている。これらの
作用電極4、対極5及び参照電極6はポテンショスタッ
ト7に接続され、参照電極6を基準にして作用電極4に
亜塩素酸イオンの酸化電流を生じる0.6〜1.2Vの電
圧を印加できるようになっている。
EXAMPLE FIG. 1 shows a concrete example of a measuring apparatus for carrying out the method of the present invention. The electrolysis cell 1 is provided with a sample solution inlet 2 at the bottom and a sample solution outlet 3 at the top, and a working electrode 4 having a sensitive portion made of glassy carbon is arranged at the bottom of the electrolysis cell 1 and a silver / silver chloride electrode. A counter electrode 5 and a reference electrode 6 are arranged above the working electrode 4. The working electrode 4, the counter electrode 5 and the reference electrode 6 are connected to a potentiostat 7, and a voltage of 0.6 to 1.2 V that causes an oxidation current of chlorite ion in the working electrode 4 with reference to the reference electrode 6 is applied. It can be applied.

【0017】又、ポテンショスタット7はデータ処理部
8に接続されている。このデータ処理部8には予め実験
的に求めた亜塩素酸イオン濃度とその酸化電流との関係
が入力してあり、この入力データと実測によりポテンシ
ョスタット7で求められた試料液の酸化電流とに基づい
て、データ処理部8で試料液中の亜塩素酸イオンの濃度
測定値を算出し、これを表示/印字部9に表示し又は印
字できるようになっている。更に、電解セル1は温度測
定用の温度センサー10を備えており、温度センサー1
0は温度計11に接続されている。
The potentiostat 7 is connected to the data processing unit 8. The relation between the chlorite ion concentration experimentally obtained and its oxidation current is input to the data processing unit 8, and the input data and the oxidation current of the sample liquid obtained by the potentiostat 7 by actual measurement are input. Based on the above, the data processing unit 8 calculates the concentration measurement value of the chlorite ion in the sample liquid, and this can be displayed or printed on the display / printing unit 9. Further, the electrolysis cell 1 is equipped with a temperature sensor 10 for measuring temperature.
0 is connected to the thermometer 11.

【0018】図1の測定装置を用いて、以下のごとく試
料液の亜塩素酸イオン濃度を測定した。まず校正操作に
おいて、亜塩素酸イオン濃度が0mg/lと2.5mg
/lの2種類の校正液の温度を共に25℃に調整し、こ
の2種類の校正液を用いて2点校正を行った。校正後の
測定装置により、亜塩素酸イオン濃度の異なる5種の試
料液(いずれも温度25℃)について測定を行ったとこ
ろ、既知亜塩素酸イオン濃度とその測定値とは図3に示
す通り良好な直線性を示した。
The chlorite ion concentration of the sample liquid was measured as follows using the measuring apparatus shown in FIG. First, in the calibration operation, the chlorite ion concentration was 0 mg / l and 2.5 mg.
The temperature of each of the two kinds of calibration solutions of 1 / l was adjusted to 25 ° C., and two-point calibration was performed using these two kinds of calibration solutions. Measurements were carried out on five kinds of sample liquids having different chlorite ion concentrations (all at a temperature of 25 ° C.) with the measuring device after calibration, and the known chlorite ion concentrations and the measured values are as shown in FIG. It showed good linearity.

【0019】次に、校正後の測定装置を用い、亜塩素酸
イオン濃度が1.0mg/l(一定)で且つ温度が12.
5℃〜43.5の間にある7種の試料液〜につい
て、亜塩素酸イオンの濃度測定値と温度を同時に測定
し、下記表1に示した。表1の温度と濃度測定値及びこ
れをグラフ化した図4(図中○)から判るように、温度
補償を行わないままの濃度測定値は、校正温度25℃よ
りも低温度領域では実際の亜塩素酸イオン濃度よりも低
く、又高温度領域では高くなり、試料液の温度による影
響を受けていることが明白である。
Next, using the calibrated measuring device, the chlorite ion concentration was 1.0 mg / l (constant) and the temperature was 12.
With respect to 7 kinds of sample liquids between 5 ° C and 43.5, the measured concentration of chlorite ion and the temperature were measured at the same time, and the results are shown in Table 1 below. As can be seen from the measured values of temperature and concentration in Table 1 and FIG. 4 (○ in the figure) which is a graph thereof, the measured concentration values without temperature compensation are actually lower than the calibration temperature of 25 ° C. It is lower than the chlorite ion concentration and higher in the high temperature region, and it is clear that it is affected by the temperature of the sample solution.

【0020】[0020]

【表1】 試 料 液 試 料 液 温 度 (℃) 12.5 16.9 21.4 25.0 27.7 35.9 43.5 濃 度 測 定 値(mg/l) 0.63 0.71 0.90 1.00 1.07 1.52 2.16 [Table 1] Sample liquid              Sample temperature (° C) 12.5 16.9 21.4 25.0 27.7 35.9 43.5 Concentration measured value (mg / l) 0.63 0.71 0.90 1.00 1.07 1.52 2.16

【0021】そこで、基準液の測定により求めた表1及
び図4に示す亜塩素酸イオンの濃度測定値と試料液温度
とから、亜塩素酸イオン濃度と温度とを変数とする関数
であって、任意指定の温度での正しい亜塩素酸イオン濃
度を算出する計算式を求めたところ、下記式1の計算式
が得られた:
Therefore, from the measured values of the chlorite ion concentration and the sample solution temperature shown in Table 1 and FIG. 4 obtained by the measurement of the reference liquid, a function having the chlorite ion concentration and the temperature as variables is obtained. When the formula for calculating the correct chlorite ion concentration at an arbitrary specified temperature was calculated, the formula 1 below was obtained:

【式1】log(亜塩素酸イオン濃度値)=log(濃度
測定値)−0.0172(試料液温度−25)
[Formula 1] log (chlorite ion concentration value) = log (concentration measurement value) -0.0172 (sample solution temperature -25)

【0022】そこで、測定装置のデータ処理部8に式1
の計算式を記憶させ、亜塩素酸イオンの濃度測定値と温
度とから、式1に従ってデータ処理部8で温度の違いに
よる補償を行った温度補償濃度値を演算し、これを表示
/印字部9に表示又は印字するようにした。その後、同
じ試料液〜を再度測定して得られた温度補償を行っ
た亜塩素酸イオンの濃度値を、補償前の濃度測定値と共
に表2に示した。
Therefore, in the data processing section 8 of the measuring apparatus, the equation 1
The calculation formula is stored, and the temperature-compensated concentration value compensated by the difference in temperature is calculated by the data processing unit 8 according to Formula 1 from the measured value of the concentration of chlorite ion and the temperature, and the calculated value is displayed / printed. 9 is displayed or printed. Then, the concentration values of the temperature-compensated chlorite ions obtained by measuring the same sample liquids again are shown in Table 2 together with the concentration measurement values before compensation.

【0023】[0023]

【表2】 試 料 液 濃 度 測 定 値(mg/l) 0.63 0.71 0.90 1.00 1.07 1.52 2.16 温度補償濃度値(mg/l) 1.03 0.98 1.04 1.00 0.96 0.99 1.04 [Table 2] Sample liquid              Concentration measurement value (mg / l) 0.63 0.71 0.90 1.00 1.07 1.52 2.16 Temperature compensation concentration value (mg / l) 1.03 0.98 1.04 1.00 0.96 0.99 1.04

【0024】上記表2及びこれをグラフ化した図4(図
中●)から判るように、本発明方法により温度補償した
後の亜塩素酸イオンの濃度値は、試料液の温度の変動に
拘らず、常に実際の亜塩素酸イオン濃度である1.0m
g/lにほぼ等しい値を示すことが判る。従って、この
測定装置を使用すれば、以後いかなる温度の試料液を測
定しても、常に温度25℃における正しい亜塩素酸イオ
ン濃度を知ることが出来る。尚、前記計算式を求める際
に、意味のある任意の温度として25℃以外の温度を選
択すれば、当該任意温度における正しい温度補償濃度値
を算出する計算式を求めることが可能である。
As can be seen from the above Table 2 and the graph of FIG. 4 (● in the figure), the concentration value of the chlorite ion after temperature compensation by the method of the present invention is dependent on the temperature variation of the sample solution. No, always the actual chlorite ion concentration of 1.0 m
It can be seen that it shows a value approximately equal to g / l. Therefore, by using this measuring device, it is possible to always know the correct chlorite ion concentration at a temperature of 25 ° C., no matter what temperature the sample liquid is measured thereafter. When a temperature other than 25 ° C. is selected as a meaningful arbitrary temperature when obtaining the above calculation formula, it is possible to obtain a calculation formula for calculating a correct temperature compensation concentration value at the arbitrary temperature.

【0025】次に、温度と亜塩素酸イオン濃度との関係
を表又は図にまとめ、この表又は図を用いて亜塩素酸イ
オン濃度測定値を温度補償する方法を実施した。まず、
前記計算式を記憶させる前の図1の測定装置を用い、亜
塩素酸イオン濃度が0.1〜3.0mg/lの各基準液で
温度を5℃から45℃の範囲で変化させた多数の基準液
について、亜塩素酸イオンの濃度と温度を同時に測定
し、その結果を正しい亜塩素酸イオン濃度と各温度とを
それぞれ縦横の欄とし、各温度に対応する各亜塩素酸イ
オン濃度測定値を両欄の交差する位置に記入して表に整
理した。又、この表に整理された結果を、温度を横軸と
し、亜塩素酸イオンの濃度測定値と正しい濃度値とを左
右の縦軸とする図に表示した。
Next, the relationship between the temperature and the chlorite ion concentration was summarized in a table or a diagram, and a method for temperature-compensating the chlorite ion concentration measured value was carried out using this table or the diagram. First,
Using the measuring device of FIG. 1 before storing the above calculation formula, a large number of samples were prepared by changing the temperature in the range of 5 ° C. to 45 ° C. with each standard liquid having a chlorite ion concentration of 0.1 to 3.0 mg / l. Concentration and temperature of chlorite ion are simultaneously measured for the reference solution of, and the result is the correct chlorite ion concentration and each temperature in vertical and horizontal columns, and each chlorite ion concentration measurement corresponding to each temperature is measured. The values were entered in the intersections of both columns and arranged in a table. In addition, the results organized in this table are shown in a diagram in which the horizontal axis represents temperature and the left and right vertical axes represent the measured concentration of chlorite ion and the correct concentration value.

【0026】その後、同じ測定装置を用いて試料液の亜
塩素酸イオンの濃度と温度を測定した。得られた亜塩素
酸イオン濃度測定値と温度を表又は図にあてはめて、温
度補償された亜塩素酸イオン濃度を求めることが出来
た。即ち、表からは当該温度の欄の該当する濃度測定値
を摘出すれば、その濃度測定値に対応する任意温度にお
ける正しい濃度値(温度補償濃度値)を求めること出来
る。一方、図の場合には、当該温度と濃度測定値との交
点を求め、その交点近くを通る曲線又は直線を当該交点
に平行移動すれば、平行移動した曲線又は直線上で任意
温度に対応する正しい濃度値(温度補償濃度値)を求め
ることが出来る。
After that, the concentration and temperature of chlorite ion in the sample solution were measured using the same measuring device. The temperature-compensated chlorite ion concentration could be determined by applying the obtained chlorite ion concentration measured value and temperature to a table or a figure. That is, by extracting the corresponding concentration measurement value in the column of the temperature from the table, the correct concentration value (temperature compensation concentration value) at an arbitrary temperature corresponding to the concentration measurement value can be obtained. On the other hand, in the case of the figure, if the intersection of the temperature and the concentration measurement value is obtained, and a curve or a straight line passing near the intersection is translated to the intersection, the temperature corresponding to the arbitrary temperature on the translated curve or straight line is obtained. The correct density value (temperature-compensated density value) can be obtained.

【0027】[0027]

【発明の効果】本発明によれば、溶存二酸化塩素の影響
を受けることなく、簡単にしかも連続的に亜塩素酸イオ
ン濃度を測定することができる特開平2−296145
号公報記載のポーラログラフィーを用いた方法におい
て、試料液の温度が変動しても、測定値の温度補償を行
うことにより常に正確な亜塩素酸イオン濃度を求めるこ
とができる。
According to the present invention, the concentration of chlorite ion can be easily and continuously measured without being affected by dissolved chlorine dioxide. JP-A-2-296145
In the method using polarography described in the publication, even if the temperature of the sample solution changes, the accurate chlorite ion concentration can be always obtained by performing temperature compensation of the measured value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための測定装置の具体例
を示す概略の説明図である。
FIG. 1 is a schematic explanatory view showing a specific example of a measuring apparatus for carrying out the method of the present invention.

【図2】亜塩素酸(HClO2)の亜塩素酸イオン(ClO
2 -)への解離度αとpHとの関係を示すグラフである。
FIG. 2: Chlorite ion (ClO 2 ) of chlorous acid (HClO 2 ).
2 is a graph showing the relationship between the degree of dissociation α into 2 ) and pH.

【図3】温度一定の試料液の亜塩素酸イオン濃度と、本
発明方法に係わる測定装置により求めたその測定値との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the chlorite ion concentration of a sample liquid at a constant temperature and the measured value obtained by a measuring device according to the method of the present invention.

【図4】本発明方法により温度補償した場合と温度補償
しない場合について、試料液の温度と対数目盛で表した
亜塩素酸イオン濃度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the temperature of the sample solution and the chlorite ion concentration expressed on a logarithmic scale in the case of temperature compensation and the case of no temperature compensation by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 電解セル 2 試料液流入口 3 試料液流出口 4 作用電極 5 対極 6 参照電極 7 ポテンショスタット 8 データ処理部 9 表示/印字部 10 温度センサー 11 温度計 1 Electrolytic Cell 2 Sample Liquid Inlet 3 Sample Liquid Outlet 4 Working Electrode 5 Counter Electrode 6 Reference Electrode 7 Potentiostat 8 Data Processor 9 Display / Printer 10 Temperature Sensor 11 Thermometer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料液中に作用電極と対極の2極又は作
用電極と参照電極と対極の3極を浸漬し、貴金属又は炭
素からなる作用電極と試料液とを相対的に動かしなが
ら、2極の場合は対極を基準に又3極の場合は参照電極
を基準にして作用電極に亜塩素酸イオンの酸化電流を生
じる電圧を印加し、流れる酸化電流に基づいて試料液中
の亜塩素酸イオンの濃度を測定し、この亜塩素酸イオン
の濃度測定値を試料液の温度に応じて補償することを特
徴とする亜塩素酸イオンの測定方法。
1. Immersing a working electrode and a counter electrode or a working electrode and a reference electrode and a counter electrode into a sample solution, and moving the working electrode made of a noble metal or carbon and the sample solution relatively to each other. In the case of a pole, the counter electrode is used as a reference and in the case of a three pole, a voltage that causes an oxidation current of chlorite ions is applied to the working electrode as a reference, and the chlorite in the sample solution is based on the flowing oxidation current. A method for measuring chlorite ion, which comprises measuring the ion concentration and compensating the measured value of the chlorite ion concentration according to the temperature of the sample solution.
【請求項2】 請求項1記載の亜塩素酸イオンの測定方
法において、(1) 任意の異なる温度の複数の亜塩素酸
既知濃度の基準液について、前記方法による酸化電流に
基づいて各亜塩素酸イオンの濃度測定値を求め、(2)
得られた各濃度測定値から、少なくとも温度と当該温度
に対応する亜塩素酸イオン濃度とを変数として持つ関数
であって、任意指定の温度での正しい亜塩素酸イオン濃
度を算出する計算式を予め求めておき、(3) その後、
試料液について前記方法による酸化電流に基づく亜塩素
酸イオンの濃度と温度を測定し、(4) 試料液の亜塩素
酸イオンの濃度測定値と温度を前記計算式に代入して、
試料液の温度補償された亜塩素酸イオン濃度を演算する
ことを特徴とする亜塩素酸イオンの測定方法。
2. The method for measuring chlorite ion according to claim 1, wherein (1) a plurality of reference liquids with known concentrations of chlorous acid at arbitrary different temperatures are used, based on the oxidation currents obtained by the method. Obtain the measured value of acid ion concentration, and (2)
From each obtained concentration measurement value, a function having at least the temperature and the chlorite ion concentration corresponding to the temperature as a variable, a calculation formula for calculating the correct chlorite ion concentration at any specified temperature, In advance, (3) After that,
For the sample solution, the chlorite ion concentration and temperature based on the oxidation current according to the above method were measured, and (4) the measured chlorite ion concentration value and temperature of the sample solution were substituted into the above formula,
A method for measuring chlorite ion, comprising calculating a temperature-compensated chlorite ion concentration of a sample solution.
【請求項3】 請求項2における(2)の計算式の代わり
に、前記(1)で得られた複数の基準液の各温度に対応す
る各濃度測定値から、温度と当該温度に対応する亜塩素
酸イオン濃度とを変数とする表又は図を予め作製し、そ
の後試料液について測定した亜塩素酸イオンの濃度測定
値と温度から、表又は図のいずれかを用いて、試料液の
温度補償された亜塩素酸イオン濃度を求めることを特徴
とする、請求項2記載の亜塩素酸イオンの測定方法。
3. Instead of the calculation formula of (2) in claim 2, from the respective concentration measurement values corresponding to the respective temperatures of the plurality of reference liquids obtained in the above (1), the temperature and the corresponding temperature are corresponded. Prepare a table or figure with the chlorite ion concentration as a variable in advance, and then use either the table or the figure from the measured chlorite ion concentration value and the temperature measured for the sample solution to determine the temperature of the sample solution. The method for measuring chlorite ion according to claim 2, wherein the compensated chlorite ion concentration is obtained.
【請求項4】 試料液の温度の測定は、当該試料液の亜
塩素酸イオンの濃度測定と同時に行うことを特徴とす
る、請求項1ないし3のいずれかに記載の亜塩素酸イオ
ンの測定方法。
4. The measurement of the chlorite ion according to claim 1, wherein the measurement of the temperature of the sample liquid is performed simultaneously with the measurement of the concentration of chlorite ion of the sample liquid. Method.
JP06287593A 1993-02-26 1993-02-26 How to measure chlorite ion Expired - Fee Related JP3372079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06287593A JP3372079B2 (en) 1993-02-26 1993-02-26 How to measure chlorite ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06287593A JP3372079B2 (en) 1993-02-26 1993-02-26 How to measure chlorite ion

Publications (2)

Publication Number Publication Date
JPH06249831A true JPH06249831A (en) 1994-09-09
JP3372079B2 JP3372079B2 (en) 2003-01-27

Family

ID=13212885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06287593A Expired - Fee Related JP3372079B2 (en) 1993-02-26 1993-02-26 How to measure chlorite ion

Country Status (1)

Country Link
JP (1) JP3372079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
JP2010009632A (en) * 2008-06-24 2010-01-14 Sony Corp Recording medium control apparatus, recording medium controlling method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
JP2010009632A (en) * 2008-06-24 2010-01-14 Sony Corp Recording medium control apparatus, recording medium controlling method, and computer program

Also Published As

Publication number Publication date
JP3372079B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
US4049382A (en) Total residual chlorine
EP0896669A1 (en) Measuring chlorine concentration
WO2009055093A1 (en) Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine
Blatný et al. Trace determination of iron in water at the μg/l level by on-line coupling of capillary isotachophoresis and capillary zone electrophoresis with UV detection of the EDTA-Fe (III) complex
US20050011771A1 (en) Chlorite sensor
JP3372078B2 (en) How to measure chlorite ion
JP3372079B2 (en) How to measure chlorite ion
JPH06249832A (en) Measurement of chlorous acid ion
CN104977393A (en) Online effective chlorine detector and detection method for ship ballast water treatment system
US3960673A (en) Technique for continuously analyzing the concentration of ozone dissolved in water
Steininger et al. ORP sensor response in chlorinated water
Horvai The selectivity of polymer membrane ion-selective electrodes obeying the ion exchanger model
JPH0731157B2 (en) Simultaneous measurement method of chlorine dioxide and chlorite ion
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
DE1773834C3 (en) Device for the electrochemical determination of halogen ions by diffusion flow measurement and method for the continuous determination of halogenated hydrocarbons in air
JPH0746090B2 (en) Method for measuring dissolved chlorine dioxide
Einaga Industrial Application of Electrochemical Chlorine Sensor
US3494838A (en) Method for the instantaneous quantitative analysis of ozone
US3457145A (en) Liquid and gas analysis
JPH02296145A (en) Method for measuring chlorite ion
RU2178886C2 (en) Method and apparatus for detecting concentration of active chlorine in electrolyte solution
KR200344894Y1 (en) Gas Permeable Membrane Type Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
JPH04172243A (en) Method for measuring concentration of residual oxidant in sea water
JP2002228629A (en) Method for measuring nitrate ion concentration
Bonnick et al. Continuous monitoring in the water industry. Accurate monitoring of chlorine residuals in water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees