JPH076776A - Stack of solid electrolyte fuel cell - Google Patents

Stack of solid electrolyte fuel cell

Info

Publication number
JPH076776A
JPH076776A JP5144731A JP14473193A JPH076776A JP H076776 A JPH076776 A JP H076776A JP 5144731 A JP5144731 A JP 5144731A JP 14473193 A JP14473193 A JP 14473193A JP H076776 A JPH076776 A JP H076776A
Authority
JP
Japan
Prior art keywords
stack
gas
electrode
solid electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5144731A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Isao Nemoto
勲 根本
Toshitaka Yumiba
利恭 弓場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5144731A priority Critical patent/JPH076776A/en
Publication of JPH076776A publication Critical patent/JPH076776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the power generating efficiency of a stack of a solid electrolyte fuel cell, and to reduce the consumption of fuel, and to improve the output density. CONSTITUTION:A hollow base plate 11 with bottom, which is made of the first electrode material and which has an opening only at one end thereof and which is formed with a flow passage, in which the gas to be used as a first electrode is U-turned and passed, inside thereof, and a second electrode, which is formed of a solid electrolyte layer and the second electrode material different from the first electrode material, are layered to form a cell. Plural cells are layered through each porous conductor 18 having elasticity to form a stack of a solid electrolyte fuel cell. The stack of a solid electrolyte fuel cell is formed with a partitioning plate for preventing the mixture of the gas as the gas to be used for the first electrode, which is forcedly passed along the flow passage inside of the hollow base plate and led into the flow passage inside of the hollow base plate, and the gas discharged from the flow passage inside of the hollow base plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
スタックの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stack structure of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(SOFC)は、
電極、固体電解質をはじめとする単セルのすべてがセラ
ミックス材料によって構成された燃料電池であり、電解
質としてはイットリアの添加によって結晶構造の安定化
をはかったジルコニア(YSZ)が使用されている。こ
の材料は、高い酸素イオン導電性を有するが、その温度
依存性を見ると温度が低いと導電性は低く、900〜1
000℃という温度にすることで燃料電池を構成するた
めに必要とする充分な導電率が得られるようになる。し
たがって、SOFCの運転温度は900〜1000℃と
いう高温に設定されている。しかし、上記のYSZ電解
質の導電率は、1000℃においても高々0.1S/c
m程度であるので、単セルを構成するに際してYSZの
薄膜化が必要となる。従来のSOFCにおいて、例えば
図5(a)に示すように、YSZで作製した固体電解質
層1の表面に、空気極3と燃料極2の2つの電極を形成
した平板型の単セルの検討が進められてきた。しかし、
この方式のようにYSZを電極の支持体とするためには
充分な機械的強度を必要とするものであるが、イットリ
アを添加したYSZの中でも高い導電率を持つ、イット
リアを8モル%添加したYSZは機械的強度が弱いとい
う欠点があった。そのため、YSZからなる支持体の厚
さを増加する必要性が生じ、このYSZの厚さを増すと
導電性の高い材料を用いているにもかかわらず固体電解
質部でのiR損による電圧降下が増大し、充分に満足の
いく発電特性が得られないという問題があった。そこ
で、平板型単セルの機械的強度の不足を補うため、図5
(b)に示されるような円筒型と呼ばれる方式が検討さ
れている。これは図に示すように、不活性なカルシア安
定化ジルコニア等からなる多孔体を支持体10とし、こ
の上に燃料極2、固体電解質層1、空気極3、インタコ
ネクタ4の順に各材料を積層して単位発電セルを構成す
るものである。このSOFCにおいては、燃料ガスと酸
化剤ガスを発電セルの外側と内側に流すことにより発電
が行われる。このような構成の単セルとすると、もはや
固体電解質層は単セルの支持体としての役割から解放さ
れ、緻密な膜でありさえすれば限りなく薄くしても良い
ことになり、単セルの発電性能を飛躍的に向上させるこ
とが可能となる。しかし、SOFCは単セル1枚だけで
使用されることはなく、単セルを直列に、また必要によ
っては並列に接続して所定の出力をもった発電スタック
を構成している。例えば、この方式のセルを多数接続し
て所定の出力を得るためには、図5(c)に示されるよ
うに、通常、単セルはインタコネクタ4と金属製フェル
ト7によって電気的に接続され縦に積み重ねられて使用
される。
2. Description of the Related Art Solid oxide fuel cells (SOFC) are
A single cell including an electrode and a solid electrolyte is a fuel cell composed of a ceramic material, and zirconia (YSZ) whose crystal structure is stabilized by adding yttria is used as an electrolyte. This material has high oxygen ion conductivity, but its temperature dependence shows that the conductivity is low at low temperatures, and 900 to 1
By setting the temperature to 000 ° C., the sufficient electric conductivity required for constructing the fuel cell can be obtained. Therefore, the operating temperature of the SOFC is set to a high temperature of 900 to 1000 ° C. However, the conductivity of the above YSZ electrolyte is at most 0.1 S / c even at 1000 ° C.
Since it is about m, it is necessary to reduce the thickness of YSZ when forming a single cell. In the conventional SOFC, for example, as shown in FIG. 5A, a study has been made on a flat plate type single cell in which two electrodes, an air electrode 3 and a fuel electrode 2, are formed on the surface of a solid electrolyte layer 1 made of YSZ. It has been advanced. But,
As in this system, YSZ needs a sufficient mechanical strength to serve as a support for electrodes, but yttria-added 8 mol% yttria, which has a high conductivity among YSZ-added yttria, is added. YSZ has a drawback that mechanical strength is weak. Therefore, it becomes necessary to increase the thickness of the support made of YSZ. When the thickness of YSZ is increased, a voltage drop due to iR loss in the solid electrolyte portion occurs even though a highly conductive material is used. There has been a problem that the power generation characteristics are increased and a sufficiently satisfactory power generation characteristic cannot be obtained. Therefore, in order to compensate for the lack of mechanical strength of the flat plate type single cell,
A method called a cylindrical type as shown in (b) is under study. As shown in the figure, as shown in the figure, a porous body made of inert calcia-stabilized zirconia or the like is used as a support body 10, on which a fuel electrode 2, a solid electrolyte layer 1, an air electrode 3, and an interconnector 4 are formed in order of materials. The units are stacked to form a unit power generation cell. In this SOFC, power generation is performed by flowing a fuel gas and an oxidant gas to the outside and the inside of the power generation cell. With a single cell having such a structure, the solid electrolyte layer is no longer functioning as a support for the single cell, and as long as it is a dense membrane, it can be made as thin as possible. It is possible to dramatically improve the performance. However, the SOFC is not used with only one single cell, and the single cells are connected in series and, if necessary, in parallel to form a power generation stack having a predetermined output. For example, in order to connect a large number of cells of this system to obtain a predetermined output, a single cell is normally electrically connected by an interconnector 4 and a metal felt 7 as shown in FIG. 5 (c). Used vertically stacked.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記図5
(c)に示されるような従来の円筒型の発電セルの場合
は、(1)発電電流が矢印のように電極面に沿って流れ
るため電流の通路が長くなり、単セル全体としての内部
抵抗が大きくなる。また、(1)円筒型の構造で出力を
大きくするためには支持体の長さを増すことが必要とな
るが、製造上の制約から長さと管径の細さに限度があ
る。さらに、(3)円筒状の管の内外に空間が生じ、こ
れが死容積となり出力密度には限界が生じる。などの問
題があった。
However, the above-mentioned FIG.
In the case of the conventional cylindrical power generation cell as shown in (c), (1) the generated current flows along the electrode surface as shown by the arrow, so that the current path becomes long and the internal resistance of the entire unit cell is increased. Grows larger. Further, (1) it is necessary to increase the length of the support in order to increase the output in the cylindrical structure, but there is a limit to the length and the thinness of the pipe diameter due to manufacturing restrictions. Further, (3) a space is formed inside and outside the cylindrical tube, which becomes a dead volume, and the output density is limited. There was such a problem.

【0004】本発明は、電極材料により作製された一端
にのみ開口部を有する有底で中空状の基板の片側表面
に、発電部を形成した構造の単セルを使用すると共に、
単セルの組合せ方法をも具体的に示すものであり、その
目的とするところは、酸化剤ガスと燃料ガスの分離を完
全に行うと共に、各単セルのガスシール部の数を低減
し、上記2つのガスの混合の防止と、ガスのリサイクル
使用を可能とするものである。さらに、従来の円筒型の
発電セルにおける発電電流の横流れ現象の防止と、全体
としての電気抵抗を減少させるために、部分的に支柱部
を設けた中空状基板を使用し、これに電極を形成して単
セルとする固体電解質型燃料電池のスタック構造を提供
することにある。
The present invention uses a single cell having a structure in which a power generation section is formed on one side surface of a bottomed hollow substrate having an opening only at one end, which is made of an electrode material.
It also specifically shows the method of combining the single cells, and the purpose thereof is to completely separate the oxidant gas and the fuel gas and reduce the number of gas seal portions of each single cell. It is possible to prevent mixing of the two gases and to reuse the gases. Furthermore, in order to prevent the transverse flow phenomenon of the generated current in the conventional cylindrical power generation cell and reduce the electric resistance as a whole, a hollow substrate partially provided with pillars is used and electrodes are formed on it. It is to provide a stack structure of a solid oxide fuel cell as a single cell.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、第1の電極材料により作製され、一端に
のみ開口部を有し、内部に第1の電極に使用されるガス
がUターンして通過する流路を形成した有底の中空状基
板の表面に、固体電解質層と、上記第1の電極材料とは
異なる第2の電極材料によって作製された第2の電極を
積層して構成した単セルを、弾性のある多孔質導電体を
介して複数個重ね合わせて発電スタックとする固体電解
質型燃料電池のスタックにおいて、上記燃料電池のスタ
ックには、第1の電極に使用されるガスが上記中空状基
板内の流路に沿って流れ、かつ中空状基板内の流路に導
入するガスと、上記流路内を通過して排出されるガスと
が混合しないように隔離する仕切り板を配設するもので
ある。従来の固体電解質型燃料電池のスタックを構成す
る単セルは、上述したごとく平板型と円筒型の2方式し
か存在せず、本発明のように、一端にのみ開口部を有
し、内部に第1の電極に使用されるガスがUターンして
通過する流路を形成した有底の中空状基板を単セルとす
る構造の発電スタックは従来技術において提案されてい
なかった。本発明のSOFCにおける単セルの構成は、
一端にのみ開口部を有し、部分的に支柱部によって上下
の薄板を接合しガスの流路が形成された有底の中空状の
平板基板を作製し、この中空状基板の片側表面に、固体
電解質層と、もう一つの電極層を形成し、これを単セル
としている。そして、このような単セルの組み合わせに
よって所定の出力が得られる発電スタックを構成するも
のであるが、発電スタックの組み立てに当って、仕切り
板によりガスが基板内を強制的に流れるようにし、かつ
単セル間には伸縮性に富んだ金属製フェルトを配置して
いる。このような中空状基板を使用することによって単
セルの強度が確保され、また、発電反応により発生した
電流は、支柱部を通って基板の厚み方向に流れるので、
従来の円筒型の単セルで生じていた支持体の表面に沿っ
て流れる電流の電圧降下も防止され、優れた単セルの発
電性能を得ることができる。また、各ガスの分離は、単
セルによって確実に行われるので、各単セル間には、従
来の平板型で見られたような厚いインタコネクタ板は不
要となり、従来の平板型において生じていたインタコネ
クタ部での電圧降下も生じない高性能の発電スタックを
得ることができる。そして、上記の優れた発電性能を持
った各単セルは、充分な導電率を有する金属製フェルト
によって電気的に接続されているので、インタコネクタ
板の電気抵抗による電圧降下や支持体表面に沿って流れ
る電流の電圧降下もなく、従来の方式に比べ、優れた発
電性能を持つ単セルそのままの性能を持つSOFCスタ
ックを実現することができる。具体的には、発電効率の
向上と、燃料消費量の低減および出力密度の向上と、こ
れによる必要体積の減少といった優れた効果を得ること
ができ、産業上において甚大な効果を発揮することがで
きる。
In order to achieve the above-mentioned object, the present invention is made of a first electrode material, has an opening only at one end, and is a gas used for the first electrode inside. On the surface of a bottomed hollow substrate having a flow path through which a U-turn passes, a solid electrolyte layer and a second electrode made of a second electrode material different from the first electrode material are provided. In a stack of solid oxide fuel cells, wherein a plurality of single cells formed by stacking are stacked via an elastic porous conductor to form a power generation stack, the fuel cell stack has a first electrode as a first electrode. The gas used flows along the flow path in the hollow substrate, and the gas introduced into the flow path in the hollow substrate and the gas discharged through the flow path are not mixed with each other. A partition plate for isolation is provided. As described above, the single cell that constitutes the stack of the conventional solid oxide fuel cell has only two types, that is, the flat plate type and the cylindrical type, and as in the present invention, has an opening only at one end and has a first internal portion. A power generation stack having a structure in which a single cell is a bottomed hollow substrate having a flow path through which a gas used for the first electrode makes a U-turn and passes through has not been proposed in the prior art. The configuration of the single cell in the SOFC of the present invention is
An open portion is formed only at one end, and a bottomed hollow flat plate substrate in which a gas passage is formed by partially joining upper and lower thin plates by a pillar portion is produced, and on one surface of this hollow substrate, A solid electrolyte layer and another electrode layer are formed to form a single cell. Then, a combination of such single cells constitutes a power generation stack that can obtain a predetermined output, but when assembling the power generation stack, a partition plate forces gas to flow in the substrate, and Metallic felt with high elasticity is placed between the unit cells. By using such a hollow substrate, the strength of the single cell is ensured, and the current generated by the power generation reaction flows in the thickness direction of the substrate through the supporting columns,
The voltage drop of the current flowing along the surface of the support, which has occurred in the conventional cylindrical single cell, is also prevented, and excellent power generation performance of the single cell can be obtained. Further, since the separation of each gas is surely performed by the single cell, the thick interconnector plate as seen in the conventional flat plate type is not necessary between the single cells, which has occurred in the conventional flat plate type. It is possible to obtain a high-performance power generation stack in which no voltage drop occurs in the interconnector section. Since each unit cell having the above-mentioned excellent power generation performance is electrically connected by the metal felt having sufficient conductivity, the voltage drop due to the electric resistance of the interconnector plate and the surface of the support body are caused. It is possible to realize an SOFC stack having a single cell as it is, which has an excellent power generation performance as compared with the conventional method, without the voltage drop of the flowing current. Specifically, it is possible to obtain excellent effects such as improvement of power generation efficiency, reduction of fuel consumption and output density, and reduction of required volume due to this, and it is possible to exert enormous effects in industry. it can.

【0006】[0006]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1(a)、(b)に本実施例
で作製した単セルの一例を示す。なお、図1(b)は、
図1(a)のA−A矢視図である。単セルは、第1の電
極材料で作製した一端にのみ開口部を有する有底の中空
状基板11の片側表面に、固体電解質層1と、上記の第
1の電極材料とは異なる第2の電極材料よりなる燃料極
2を積層して形成し、上記中空状基板11の反対側の面
には単セル間の電気接続用のインタコネクタ4を形成す
る。残りの部分には、ガスの透過を防止するためにガス
不透過性層9が形成されている。なお、中空状基板11
の上下の薄板の間には、中空状基板11の補強と電流確
保のための支柱部12が形成されている。本実施例で使
用する単セルの作製例として、空気極材料を中空状基板
11に用いた単セルを例に挙げ、以下に説明する。空気
極材料としては、一般的に広く使用されているペロブス
カイト構造を持つ(La1-XSrX)YMnO3(0≦X≦
0.6、0≦Y≦0.2)の中から、組成;La0.8
0.2MnO3およびLa0.9Sr0.1MnO3を選択し、
平均粒径が1〜3μmの原料粉末を使用した。そして、
一端にのみ開口部をもつ有底の中空状基板11は、シー
ト状に成形したセラミックスを加熱圧着し、これを焼結
する方法により作製した。セラミックスシートは、ドク
ターブレード法によって作製し、これに必要なスラリ
は、以下に示す混合比で調製した。 原料粉末 100重量部 結合剤 10〜15重量部 可塑剤 5〜10重量部 溶媒 200重量部 結合剤として、ポリビニルブチラール、可塑剤として、
フタル酸ブチルを、そして溶媒としてはイソブチルアル
コールを使用した。結合剤と可塑剤の量は、原料粉末の
粒径が異なると表面積も変わり、同一の使用量ではスラ
リの性状に差が生じてくるので、これを適切に調節する
ために、上記の範囲で使用した。また、上記の他に、ス
ラリの性状に応じて分散剤と消泡剤を少量添加した。こ
のような混合物を、約24〜48時間ボールミルによっ
て混合撹拌した後、減圧下で脱気して溶媒を除去し粘度
の調整を行い、この後に、ドクターブレード装置によっ
てシート成形体を作製した。次に、このシート成形体か
ら、一端にのみ開口部を有し支柱部を持つ有底の中空状
基板11を得るために、所定の大きさのシートを切り出
し、これを加熱・加圧し、中空状のシート融着体を作製
した。シート融着体の作製の方法を図2に示す。すなわ
ち、シート融着体は上部と下部の平板シート26の間
に、支柱部12となるシートと、周辺部を塞ぐコの字状
シート27とを加熱圧着して作製した。なお、この時の
加熱・加圧条件は、シートの軟らかさによって変える必
要があるが、おおむね70〜80℃、30〜70kg/
cm2の条件内で行った。なお、中空状基板11の形状
は、各層に重ねるシートの形状、大きさ、および厚みを
選択することで任意の形とすることができる。また、こ
の際、焼結時におけるシート成形体の収縮率を考慮する
必要があり、空気極材料の収縮率15〜20%を見込ん
で融着体を作製した。次に、作製した中空状基板11を
約400℃において脱脂し、この後1200〜1400
℃で加熱し焼結体を得た。作製した中空状基板11の大
きさは、幅および奥行きが100×150mm、厚みは
約5mmとした。なお、焼結の進行は、使用した原料粉
末の粒径と、結合剤や可塑剤の添加量によって影響され
るので、使用原料に応じて温度と時間を適宜選定した。
例えば、粒径が小さい原料は表面積が大きく低温領域か
ら焼結が始まるので、低温・短時間の焼成条件とした
(具体的に例えば、1250℃で2時間加熱)。このよ
うに、焼成条件を原料粉末や結合剤等の添加量に応じて
適宜選定して焼成することで、原料粉末が変わっても多
孔度が30%前後の焼結体が得られるようにした。な
お、作製した空気極の導電率は約100S/cm(10
00℃)であった。次に、作製した中空状基板11の片
側表面上に、固体電解質層1と燃料極2の薄膜を形成し
た。本実施例では、プラズマ溶射法を用いた。用いた溶
射機は大気溶射法によるものであり、固体電解質材料に
は8モル安定化YSZ(粒径:10〜50μm)を使用
した。作製した電解質の厚みは、約150μmであり、
ガス透過率は1〜5×10~6〔cc・cm/sec・
(g/cm2)cm2〕であった。また、燃料極として
は、酸化ニッケル粉末(粒径:10〜50μm)と、8
モル安定化YSZを使用した。燃料極は、多孔質体が望
ましいので、固体電解質の場合よりも膜形成は容易に行
うことができた。200〜300μm程度の厚みで作製
した、膜のガス透過率は10~4〔cc・cm/sec・
(g/cm2)cm2〕オーダであり、電極として適切な
ものが得られた。なお、インタコネクタ4とガス不透過
性層9も溶射法で作製し、材料には、それぞれNi−A
23やLaCrO3、およびAl23を使用した。本
実施例では、上記のごとく固体電解質層1やインタコネ
クタ4等の各層を形成した中空状基板11を用い電気的
に接続して発電スタックを構成した。図3に、本実施例
で作製した発電スタックの構成の一例を示す。図3は、
側面部から見た断面構造を示し、図4は、図3に示すA
−A断面を示している。なお、図4におけるB−B断面
は図3に相当する。本実施例では、容器13内に、基板
固定用の固定板14が設けられ、各中空状基板11は、
固定板14に設けられた固定用溝15と、容器13の天
井部に設けられた溝16によって位置が固定され、固定
用溝15内には、ガスシール用としてガラス材を主成分
とするシール材17が充填されている。そして、各中空
状基板間には、各中空状基板を電気的に接続するための
多孔質導電体18が配置される。多孔質導電体18とし
ては、Ni等の金属をフェルト状に加工した弾性に富ん
だものを使用した。なお、中空状基板11の構造は、図
1(a)、(b)に示したように、一方の面にのみ開口
部を有している。そして、スタック化にあたっては中空
状基板11の内部を流れるガスが、基板の内部を強制的
に流れるように中空状基板11の下部に、仕切り板25
を配置して発電スタックの組み立てを行った。この状態
を図4に示す。すなわち、酸化材ガス導入口19から導
入された空気等の酸化剤ガスは、中空状基板11の内部
に流入し、中空状基板11の内部で折返しUターンした
後、酸化剤ガス排出口20から容器13の外部に排出さ
れる。本発明のスタックによって発電を行うためには、
スタックを1000℃程度の温度条件下に設置し、酸化
剤ガスと燃料ガスを供給するだけでよい。この時、酸化
剤ガスは、上述したように、酸化剤ガス導入口19から
供給され、各中空状基板11の内部に達して発電反応を
行った後、残ガスが酸化剤ガス排出口20から外部に排
気される。一方、燃料ガスは燃料ガス導入口21から供
給され、基板表面において発電反応を起こした後、外部
に排出される。なお、燃料ガス導入口21については、
ガスと燃料極との接触を向上させる観点から、ガスの流
れが中空状基板11の厚み方向となるような位置であれ
ば特に問題は生じない。また、酸化剤ガス導入口19と
酸化剤ガス排出口20は、図4に示すような位置に取り
付けていれば良い。このとき、各中空状基板11の間に
は、燃料ガスの電極表面への拡散の妨げにならない多孔
質導電体18が配置されているだけであるので、各中空
状基板11の表面への燃料ガスの供給は支障無く行われ
る。そして、本実施例では、中間部に支柱部12を有す
る中空構造の中空状基板11を用いているために、従来
の円筒型の単セルのように発電電流が流れた際に生じる
電圧降下が極めて少なく、発電によって得られた電力を
低損失で単セルから取り出すことができる。そして、各
単セルは、多孔質導電体18によって電気的に接触され
ているので、発電された電力の損失なく外部に取り出す
ことができる。
Embodiments of the present invention will be described below in more detail with reference to the drawings. 1A and 1B show an example of a single cell manufactured in this example. In addition, FIG.
It is an AA arrow line view of Drawing 1 (a). The unit cell has a solid electrolyte layer 1 and a second electrode different from the above-mentioned first electrode material on one surface of a bottomed hollow substrate 11 having an opening only at one end made of the first electrode material. A fuel electrode 2 made of an electrode material is formed by stacking, and an interconnector 4 for electrically connecting the unit cells is formed on the opposite surface of the hollow substrate 11. In the remaining portion, a gas impermeable layer 9 is formed to prevent gas permeation. The hollow substrate 11
Between the upper and lower thin plates, pillars 12 for reinforcing the hollow substrate 11 and securing an electric current are formed. As an example of producing a single cell used in this example, a single cell using an air electrode material for the hollow substrate 11 will be taken as an example and described below. As an air electrode material, a (La 1-X Sr X ) Y MnO 3 (0 ≦ X ≦) having a perovskite structure that is generally widely used is used.
0.6, 0 ≦ Y ≦ 0.2), and the composition is La 0.8 S
r 0.2 MnO 3 and La 0.9 Sr 0.1 MnO 3 are selected,
Raw material powder having an average particle diameter of 1 to 3 μm was used. And
The bottomed hollow substrate 11 having an opening only at one end was produced by a method in which sheet-shaped ceramics were thermocompression bonded and then sintered. The ceramic sheet was prepared by the doctor blade method, and the slurry required for this was prepared in the following mixing ratio. Raw material powder 100 parts by weight Binder 10 to 15 parts by weight Plasticizer 5 to 10 parts by weight Solvent 200 parts by weight As a binder, polyvinyl butyral, as a plasticizer,
Butyl phthalate was used and isobutyl alcohol as the solvent. The amount of binder and plasticizer varies depending on the particle size of the raw material powder, and the surface area also changes.Therefore, with the same amount of use, the properties of the slurry will differ. used. In addition to the above, a small amount of a dispersant and an antifoaming agent was added depending on the properties of the slurry. Such a mixture was mixed and stirred by a ball mill for about 24 to 48 hours, degassed under reduced pressure to remove the solvent and adjust the viscosity, and thereafter, a sheet molded body was produced by a doctor blade device. Next, in order to obtain a bottomed hollow substrate 11 having an opening only at one end and a column portion from this sheet molded body, a sheet of a predetermined size is cut out, heated and pressed, and hollowed. A sheet-shaped fused body was produced. FIG. 2 shows a method for producing the fused sheet. That is, the sheet-fused body was produced by thermocompression-bonding a sheet to be the pillar portion 12 and a U-shaped sheet 27 for closing the peripheral portion between the upper and lower flat sheet sheets 26. The heating / pressurizing conditions at this time need to be changed depending on the softness of the sheet, but generally 70 to 80 ° C., 30 to 70 kg /
It was performed under the condition of cm 2 . The hollow substrate 11 can have any shape by selecting the shape, size, and thickness of the sheets to be stacked on each layer. Further, at this time, it is necessary to consider the shrinkage rate of the sheet molded body at the time of sintering, and the fused body was produced in consideration of the shrinkage rate of the air electrode material of 15 to 20%. Next, the produced hollow substrate 11 is degreased at about 400 ° C., and then 1200 to 1400.
It heated at ℃ and obtained the sintered compact. The manufactured hollow substrate 11 had a width and depth of 100 × 150 mm and a thickness of about 5 mm. Since the progress of sintering is affected by the particle size of the raw material powder used and the amount of the binder or plasticizer added, the temperature and time were appropriately selected according to the raw material used.
For example, since a raw material having a small particle size has a large surface area and begins to sinter in a low temperature region, firing conditions were set to a low temperature for a short time (specifically, for example, heating at 1250 ° C. for 2 hours). As described above, by appropriately selecting the firing conditions according to the addition amount of the raw material powder, the binder, etc. and firing, a sintered body having a porosity of about 30% can be obtained even if the raw material powder is changed. . The conductivity of the prepared air electrode is about 100 S / cm (10
Was 00 ° C). Next, thin films of the solid electrolyte layer 1 and the fuel electrode 2 were formed on one surface of the manufactured hollow substrate 11. In this example, the plasma spraying method was used. The thermal spraying machine used was an atmospheric thermal spraying method, and 8 mol-stabilized YSZ (particle size: 10 to 50 μm) was used as the solid electrolyte material. The thickness of the prepared electrolyte is about 150 μm,
Gas permeability 1 to 5 × 10 ~ 6 [cc · cm / sec ·
(G / cm 2 ) cm 2 ]. As the fuel electrode, nickel oxide powder (particle size: 10 to 50 μm) and 8
Molar stabilized YSZ was used. Since the fuel electrode is preferably a porous body, the film formation could be performed more easily than in the case of the solid electrolyte. The film having a thickness of about 200 to 300 μm has a gas permeability of 10 to 4 [cc · cm / sec ·
(G / cm 2 ) cm 2 ], and a suitable electrode was obtained. The interconnector 4 and the gas impermeable layer 9 were also produced by the thermal spraying method, and were made of Ni-A.
l 2 O 3 , LaCrO 3 , and Al 2 O 3 were used. In this example, a power generation stack was constructed by electrically connecting using the hollow substrate 11 on which each layer such as the solid electrolyte layer 1 and the interconnector 4 was formed as described above. FIG. 3 shows an example of the structure of the power generation stack manufactured in this example. Figure 3
FIG. 4 shows a cross-sectional structure seen from the side surface, and FIG.
-A cross section is shown. Note that the BB cross section in FIG. 4 corresponds to FIG. 3. In this embodiment, a fixing plate 14 for fixing a substrate is provided in the container 13, and each hollow substrate 11 is
The position is fixed by the fixing groove 15 provided in the fixing plate 14 and the groove 16 provided in the ceiling portion of the container 13, and in the fixing groove 15, a seal containing a glass material as a main component is used for gas sealing. The material 17 is filled. Then, a porous conductor 18 for electrically connecting the hollow substrates is arranged between the hollow substrates. As the porous conductor 18, a highly elastic material such as a metal such as Ni processed into a felt was used. The structure of the hollow substrate 11 has an opening on only one surface, as shown in FIGS. 1 (a) and 1 (b). When stacking, the partition plate 25 is provided under the hollow substrate 11 so that the gas flowing inside the hollow substrate 11 is forced to flow inside the substrate.
Was placed to assemble the power generation stack. This state is shown in FIG. That is, the oxidant gas such as air introduced from the oxidant gas inlet 19 flows into the hollow substrate 11 and makes a U-turn back inside the hollow substrate 11, and then from the oxidant gas outlet 20. It is discharged to the outside of the container 13. In order to generate electricity with the stack of the present invention,
It suffices to install the stack under a temperature condition of about 1000 ° C. and supply the oxidant gas and the fuel gas. At this time, as described above, the oxidant gas is supplied from the oxidant gas introduction port 19, reaches the inside of each hollow substrate 11 to perform the power generation reaction, and then the residual gas is discharged from the oxidant gas discharge port 20. Exhausted to the outside. On the other hand, the fuel gas is supplied from the fuel gas inlet 21, causes a power generation reaction on the substrate surface, and is then discharged to the outside. Regarding the fuel gas inlet 21,
From the viewpoint of improving the contact between the gas and the fuel electrode, there is no particular problem at a position where the gas flow is in the thickness direction of the hollow substrate 11. Further, the oxidant gas inlet 19 and the oxidant gas outlet 20 may be attached at the positions shown in FIG. At this time, since only the porous conductors 18 that do not hinder the diffusion of the fuel gas to the electrode surface are arranged between the hollow substrates 11, the fuel on the surface of each hollow substrate 11 is not disposed. Gas supply will be performed without any problems. In addition, in this embodiment, since the hollow substrate 11 having the hollow structure having the column portion 12 in the middle portion is used, the voltage drop caused when the generated current flows like the conventional cylindrical single cell is generated. The amount of electric power generated by power generation is extremely small and can be extracted from the single cell with low loss. Since each unit cell is electrically contacted by the porous conductor 18, it can be taken out to the outside without loss of generated power.

【0007】[0007]

【発明の効果】以上詳細に説明したごとく、本発明のS
OFCにおいては、第1の電極材料によって一端にのみ
開口部を有し、部分的に支柱部により上下の薄板が接合
された有底の中空状基板を作製し、この基板の片側の面
に固体電解質層と、第1の電極材料とは異なる第2の電
極材料により第2の電極を形成して単セルとしており、
この単セルを組み合わせて所定の出力が得られる発電ス
タックを構成し、しかも第1の電極に使用されるガスが
上記中空状基板内の流路に沿って流れ、かつ中空状基板
内の流路に導入するガスと、上記流路内を通過して排出
されるガスとが混合しないように隔離する仕切り板を配
設し、ガスが中空状基板内を強制的に流れるように構成
し、かつ単セル間には伸縮性に富んだ金属製フェルトを
配設しているので発電性能が極めて高いスタックを実現
することができる。また、中空状基板の使用によって単
セルの機械的強度が確保され、発電反応で発生した電流
は支柱部を通って基板の厚み方向に流れるので、従来の
円筒型の単セルにおける支持体の表面に沿って流れる電
流の電圧降下も生じることなく、優れた単セル性能を得
ることができる。さらに、各ガスの分離は単セルによっ
て確実に行われ、各単セル間には従来の平板型で見られ
るような厚いインタコネクタ板は不要となり、従来の平
板型の単セルで生じていたインタコネクタ部での電圧降
下のないスタックが得られる。さらに、優れた発電性能
を持った各セルは、充分な導電率を持つ金属製フェルト
により電気的に接続されているので、インタコネクタ板
の電気抵抗による電圧降下や、支持体表面に沿って流れ
る電流の電圧降下もなく、従来の方式に比べ、優れた発
電性能をもつ単セル性能がそのまま得られるSOFCス
タックが実現できる。具体的には、発電効率の向上と燃
料消費量の低減、および出力密度の向上と、これによる
必要体積の減少などの優れた効果があり、産業上甚大な
効果が得られる。
As described above in detail, the S of the present invention
In OFC, a bottomed hollow substrate having an opening only at one end made of a first electrode material, and upper and lower thin plates partially joined by a pillar is produced, and a solid substrate is formed on one surface of the substrate. A second electrode is formed of an electrolyte layer and a second electrode material different from the first electrode material to form a single cell,
The unit cells are combined to form a power generation stack capable of obtaining a predetermined output, and the gas used for the first electrode flows along the flow path in the hollow substrate and the flow path in the hollow substrate. The partition plate is provided so as to prevent the gas introduced into the gas and the gas discharged through the flow path from being mixed with each other, and the gas is configured to forcibly flow in the hollow substrate, and Since the metallic felt having high elasticity is arranged between the unit cells, a stack having extremely high power generation performance can be realized. In addition, the use of the hollow substrate ensures the mechanical strength of the unit cell, and the current generated by the power generation reaction flows through the support column in the thickness direction of the substrate, so that the surface of the support in the conventional cylindrical unit cell is Excellent single-cell performance can be obtained without causing a voltage drop of the current flowing along. Furthermore, the separation of each gas is ensured by the single cell, and the thick interconnector plate seen in the conventional flat plate type is not necessary between the single cells, and the interface generated in the conventional flat plate type single cell is not necessary. A stack with no voltage drop at the connector can be obtained. Furthermore, since each cell with excellent power generation performance is electrically connected by the metal felt having sufficient conductivity, the voltage drop due to the electrical resistance of the interconnector plate and the flow along the support surface It is possible to realize an SOFC stack in which there is no voltage drop of current and single cell performance with excellent power generation performance is directly obtained as compared with the conventional method. Specifically, there are excellent effects such as improvement in power generation efficiency, reduction in fuel consumption, improvement in output density, and reduction in required volume due to this, and a great industrial effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で作製した単セルの外観図
(a)および図1(a)のA−A断面構造を示す模式図
(b)。
FIG. 1 is an external view (a) of a single cell produced in an example of the present invention and a schematic view (b) showing a cross-sectional structure taken along line AA of FIG. 1 (a).

【図2】本発明の実施例で作製した単セルに用いる中空
状基板の構成を示す模式図。
FIG. 2 is a schematic diagram showing the configuration of a hollow substrate used in a single cell produced in an example of the present invention.

【図3】本発明の実施例で作製した固体電解質型燃料電
池のスタックの構成の一例を示す模式図。
FIG. 3 is a schematic diagram showing an example of the structure of a stack of a solid oxide fuel cell produced in an example of the present invention.

【図4】図3のA−A断面図。4 is a sectional view taken along line AA of FIG.

【図5】従来の平板型燃料電池の単セルの構成を示す分
解図(a)、従来の円筒型燃料電池の単セルの構造示す
模式図(b)、従来の円筒型燃料電池の単セルを用いた
発電スタックの構成を示す模式図(c)。
FIG. 5 is an exploded view (a) showing a configuration of a single cell of a conventional flat plate fuel cell, a schematic diagram (b) showing a structure of a single cell of a conventional cylindrical fuel cell, and a single cell of a conventional cylindrical fuel cell. Schematic diagram (c) showing the configuration of a power generation stack using.

【符号の説明】[Explanation of symbols]

1…固体電解質層 2…燃料極 3…空気極 4…インタコネクタ 5…燃料ガス流路 6…酸化剤ガス流路 7…金属製フェルト 8…集電板 9…ガス不透過性層 10…支持体 11…中空状基板 12…支柱部 13…容器 14…固定板 15…固定用溝 16…溝 17…シール材 18…多孔質導電体 19…酸化剤ガス導入口 20…酸化剤ガス排出口 21…燃料ガス導入口 22…燃料ガス排出口 23…端末板 24…導線 25…仕切り板 26…平板シート 27…コの字状シート DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte layer 2 ... Fuel electrode 3 ... Air electrode 4 ... Interconnector 5 ... Fuel gas flow path 6 ... Oxidant gas flow path 7 ... Metal felt 8 ... Current collector 9 ... Gas impermeable layer 10 ... Support Body 11 ... Hollow substrate 12 ... Strut portion 13 ... Container 14 ... Fixing plate 15 ... Fixing groove 16 ... Groove 17 ... Sealing material 18 ... Porous conductor 19 ... Oxidizing gas introduction port 20 ... Oxidizing gas discharge port 21 ... Fuel gas inlet 22 ... Fuel gas outlet 23 ... Terminal plate 24 ... Conductive wire 25 ... Partition plate 26 ... Flat sheet 27 ... U-shaped sheet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の電極材料により作製され、一端にの
み開口部を有し、内部に第1の電極に使用されるガスが
Uターンして通過する流路を形成した有底の中空状基板
の表面に、固体電解質層と、上記第1の電極材料とは異
なる第2の電極材料によって作製された第2の電極を積
層して構成した単セルを、弾性のある多孔質導電体を介
して複数個重ね合わせて発電スタックとする固体電解質
型燃料電池のスタックにおいて、上記燃料電池のスタッ
クには、第1の電極に使用されるガスが上記中空状基板
内の流路に沿って流れ、かつ中空状基板内の流路に導入
するガスと、上記流路内を通過して排出されるガスとが
混合しないように隔離する仕切り板を配設してなること
を特徴とする固体電解質型燃料電池のスタック。
1. A bottomed hollow, which is made of a first electrode material, has an opening only at one end, and has therein a flow path through which a gas used for the first electrode makes a U-turn and passes. An elastic porous conductor having a unit cell formed by laminating a solid electrolyte layer and a second electrode made of a second electrode material different from the first electrode material on the surface of a substrate In the stack of the solid oxide fuel cell in which a plurality of cells are superposed through the stack to form a power generation stack, in the stack of the fuel cell, the gas used for the first electrode is distributed along the flow path in the hollow substrate. A solid characterized in that a partition plate is provided so as to separate the gas that flows and is introduced into the channel in the hollow substrate from the gas discharged through the channel. Electrolyte fuel cell stack.
JP5144731A 1993-06-16 1993-06-16 Stack of solid electrolyte fuel cell Pending JPH076776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5144731A JPH076776A (en) 1993-06-16 1993-06-16 Stack of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144731A JPH076776A (en) 1993-06-16 1993-06-16 Stack of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH076776A true JPH076776A (en) 1995-01-10

Family

ID=15369028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144731A Pending JPH076776A (en) 1993-06-16 1993-06-16 Stack of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH076776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756347A3 (en) * 1995-07-28 1997-03-12 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
US6818340B2 (en) * 2001-09-10 2004-11-16 Industrial Technology Research Institute Capillary transporting fuel battery
US6995578B2 (en) 2003-04-04 2006-02-07 Advantest Corporation Coupling unit, test head, and test apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756347A3 (en) * 1995-07-28 1997-03-12 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
US5786105A (en) * 1995-07-28 1998-07-28 Nippon Telegraph And Telephone Public Corporation Solid oxide fuel cell
US6818340B2 (en) * 2001-09-10 2004-11-16 Industrial Technology Research Institute Capillary transporting fuel battery
US6995578B2 (en) 2003-04-04 2006-02-07 Advantest Corporation Coupling unit, test head, and test apparatus

Similar Documents

Publication Publication Date Title
US7232626B2 (en) Planar electrochemical device assembly
CN100530766C (en) Sealed joint structure for electrochemical device
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
US5312700A (en) Solid oxide fuel cell and method for producing the same
JPH01502993A (en) Solid electrolyte single oxygen pump
CN1326280C (en) Sealless radial solid oxide fuel cell stack design
KR20000059873A (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
JPH1040934A (en) Electrochemical cell, manufacture thereof and electrochemical device
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
CA2833343C (en) Fuel cell and fuel cell stack including inclined side surface
JP2001273914A (en) Electrochemical device and accumulated electrochemical device
JP3137177B2 (en) Solid oxide fuel cell
JP2000086204A (en) Separation method of oxygen from oxygen-containing gas
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP3166888B2 (en) Solid oxide fuel cell stack
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2826243B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH06325779A (en) Stack for solid electrolytic fuel cell and its manufacture
JPH076776A (en) Stack of solid electrolyte fuel cell
JPH06338336A (en) Conductive nonuniform hollow flat plate
JP2018032578A (en) Method for manufacturing electrochemical reaction cell
JP5203635B2 (en) Solid oxide fuel cell stack and monolithic solid oxide fuel cell
JPH06349515A (en) Solid electrolyte type fuel cell and its operation
JP2802196B2 (en) Method for producing fuel cell support