JPH0767090B2 - Harmonic diversity transceiver - Google Patents

Harmonic diversity transceiver

Info

Publication number
JPH0767090B2
JPH0767090B2 JP4248245A JP24824592A JPH0767090B2 JP H0767090 B2 JPH0767090 B2 JP H0767090B2 JP 4248245 A JP4248245 A JP 4248245A JP 24824592 A JP24824592 A JP 24824592A JP H0767090 B2 JPH0767090 B2 JP H0767090B2
Authority
JP
Japan
Prior art keywords
signal
frequency
signals
harmonic
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4248245A
Other languages
Japanese (ja)
Other versions
JPH06224803A (en
Inventor
英明 大森
善一郎 長沢
Original Assignee
株式会社小電力高速通信研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小電力高速通信研究所 filed Critical 株式会社小電力高速通信研究所
Priority to JP4248245A priority Critical patent/JPH0767090B2/en
Publication of JPH06224803A publication Critical patent/JPH06224803A/en
Publication of JPH0767090B2 publication Critical patent/JPH0767090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Transmission System (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディジタル無線通信方式
における高調波ダイバーシティ送受信機に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic diversity transmitter / receiver in a digital wireless communication system.

【0002】[0002]

【従来の技術】ディジタル無線通信、特に移動通信にお
いてはフェージングが常時存在しているため受信信号の
品質を確保することが容易ではない。このため、ダイバ
ーシティ技術が良く用いられる。例えば、受信レベルの
空間相関が低くなるように離した2つ以上のアンテナを
用い、レベルの高い方に切り換えて受信する空間ダイバ
ーシティ、あるいは2つ以上の送信基地局から特定の周
波数だけ異なる搬送周波数を同一ベースバンド信号で変
調して同時に送出し、受信部においては1個のアンテナ
で受信する送信ダイバーシティ等が使用されている。前
者においては、二つの受信アンテナが必要で更に、これ
ら2つの受信レベルを比較する回路、及びこれに基づい
て信号を選択する回路が必要である。このため回路構成
は複雑になる。さらに後者においては距離的に離れた複
数の基地局間の一定の周波数差の確保と変調ベースバン
ド信号の基地局間の時間的ズレを小さく保持する必要が
あり、システム構成が複雑になる欠点を有する。
2. Description of the Related Art In digital radio communication, especially mobile communication, fading is always present, so that it is not easy to secure the quality of received signals. For this reason, diversity technology is often used. For example, using two or more antennas that are separated so that the spatial correlation of the reception level is low, the spatial diversity of receiving by switching to the higher level or the carrier frequency that differs from two or more transmitting base stations by a specific frequency is used. Are modulated by the same baseband signal and transmitted at the same time, and the receiving section uses transmission diversity or the like in which the signal is received by one antenna. In the former case, two receiving antennas are required, and further a circuit for comparing these two receiving levels and a circuit for selecting a signal based on this are required. Therefore, the circuit configuration becomes complicated. Further, in the latter case, it is necessary to secure a constant frequency difference between a plurality of base stations that are distant from each other in distance and to keep the time lag between the base stations of the modulated baseband signal small, which causes a problem that the system configuration becomes complicated. Have.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来のよ
うな複雑な装置構成の問題点を解決するため、一つの局
から信号を送信し、受信部で1つのアンテナから受信し
て復調してもダイバーシティ効果が得られる簡単な構成
の高調波ダイバーシティ送受信機を提供することを目的
とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the complicated apparatus structure of the present invention, a signal is transmitted from one station and a receiving section receives it from one antenna and demodulates it. Even so, it is an object of the present invention to provide a harmonic diversity transmitter / receiver having a simple configuration that can obtain a diversity effect.

【0004】[0004]

【課題を解決するための手段及び作用】本発明は上記課
題を解決するために、空間伝搬路で相関が少なくなるよ
うに周波数を離した2信号を逓倍関係にして1つのアナ
テナから送信する。この際、基本周波数信号のディジタ
ルFM変調指数を、任意の偶数を上記逓倍次数で割った
値に等しくする。次に、このように発生させた基本周波
数信号成分と逓倍した高調波信号成分を所要伝送RF帯
域に周波数変換し、適当に増幅して一つのアナテナから
送信する。
In order to solve the above-mentioned problems, the present invention transmits two signals whose frequencies are separated so as to reduce the correlation in the spatial propagation path in a multiplication relationship from one anthena. At this time, the digital FM modulation index of the fundamental frequency signal is made equal to a value obtained by dividing an arbitrary even number by the multiplication order. Next, the fundamental frequency signal component thus generated and the multiplied harmonic signal component are frequency-converted into a required transmission RF band, appropriately amplified, and transmitted from one anthena.

【0005】受信部では、RF帯に周波数変換されて送
信された上記2信号を1つのアナテナで受信し、検波帯
域の同一中心周波数のIF信号に変換し1個のFM検波
器により元の信号を復調する。
In the receiving section, the above-mentioned two signals which have been frequency-converted into the RF band and transmitted are received by one anthena, are converted into IF signals having the same center frequency in the detection band, and the original signal is outputted by one FM detector. Demodulate.

【0006】[0006]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。図1は請求項1の発明に対応した送信部の周
波数関係を示す図で、1は周波数ダイバーシティにおい
て一方のダイバーシティブランチを構成する信号1、2
はIF帯で信号1と逓倍関係にあってRF帯でもう一つ
のダイバーシティブランチを構成する信号2、3は信号
1と2の差周波数である周波数間隔、4は周波数間隔3
を分周した間隔の周波数である周波数間隔、5は前記分
周した間隔に相当する周波数を中心周波数とするIF基
本信号、6はその2逓倍信号、7は所要の次数だけ逓倍
した高調波信号である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram showing a frequency relationship of a transmitting unit according to the invention of claim 1, and 1 is a signal 1, 2 which constitutes one diversity branch in frequency diversity.
Is a frequency interval that is a difference frequency between the signals 1 and 2 in the IF band and constitutes another diversity branch in the RF band and constitutes another diversity branch in the RF band, and 4 is a frequency interval 3
Is a frequency interval which is the frequency of the frequency divided by 5; 5 is an IF basic signal whose center frequency is the frequency corresponding to the frequency divided; 6 is its doubled signal; 7 is a harmonic signal multiplied by the required order. Is.

【0007】図1における信号1の周波数をfc1、信号
2の周波数fc2、周波数間隔3をΔf、分周比をKとす
ると、4の周波数間隔はΔf/Kで表され、IF帯にお
ける逓倍次数はK+1となる。請求項1で述べたよう
に、ここではΔf/KをIF周波数とする。今これをf
i とする、即ち fi =Δf/K この周波数のIF信号をディジタルFMした信号は良く
知られているように次式で表すことができる。 s1 (t) =cos{2πfi t+φ1 (t) } (1) ここで、
When the frequency of the signal 1 in FIG. 1 is f c1 , the frequency of the signal 2 is f c2 , the frequency interval 3 is Δf, and the division ratio is K, the frequency interval of 4 is represented by Δf / K, and in the IF band. The multiplication order is K + 1. As described in claim 1, Δf / K is the IF frequency here. Now this is f
i , that is, f i = Δf / K A signal obtained by digitally FMing an IF signal of this frequency can be expressed by the following equation as well known. s 1 (t) = cos {2πf i t + φ 1 (t)} (1) where

【0008】[0008]

【数1】 [Equation 1]

【0009】ここで、基本IF信号s1 (t) を2逓倍し
た周波数が6で、請求項1にあるようにK+1逓倍した
周波数が7となる。この時の高調波信号s2 (t) は次式
で表される。 s2 (t) =cos{2π(K+1)fi t+φ2 (t) } (2) ここで、変調指数も逓倍されるから次のようになる。
Here, the frequency obtained by multiplying the basic IF signal s 1 (t) by 2 is 6 and the frequency obtained by multiplying K + 1 by 7 is 7. The harmonic signal s 2 (t) at this time is expressed by the following equation. s 2 (t) = cos {2π (K + 1) f i t + φ 2 (t)} (2) Here, since the modulation index is also multiplied, the following is obtained.

【0010】[0010]

【数2】 さて、次に周波数変換してこれらを所要のRF帯にもっ
ていくことになる。いま基本IF周波数信号と高調波信
号の周波数差は fi 〜(K+1)fi =Kfi =Δf
[Equation 2] Now, next, frequency conversion is performed to bring these into the required RF band. Now, the frequency difference between the basic IF frequency signal and the harmonic signal is f i to (K + 1) f i = Kf i = Δf

【0011】となり、RF帯における2周波の差が保た
れていることは言うまでもない。RF帯への周波数変換
を1段で行うとすれば、周波数fc1−fi の局発信号を
用いれば良いから変換された信号s1R(t) は(1)より
次のようになる。 s1R(t) =cos{2π[fi +(fc1−fi )]t+φ1 (t) } =cos{2πfc 1 +φ1 (t) } 一方高調波が変換された信号s2R(t) は式(2)より s2R(t) =cos{2π[(K+1)fi +(fc1−fi )]t+φ
2 (t)} =cos{2π(fc1+Kfi )t+φ2 (t) } =cos{2π(fc1+Δf)t+φ2 (t) } =cos{2πfc2t+φ2 (t) }
It goes without saying that the difference between the two frequencies in the RF band is maintained. If the frequency conversion to the RF band in a single stage, the frequency f c1 signals converted from the station may be used oscillation signal of -f i s 1R (t) is as follows from (1). s 1R (t) = cos { 2π [f i + (f c1 -f i)] t + φ 1 (t)} = cos {2πf c t 1 + φ 1 (t)} signal s 2R of contrast harmonic wave is converted (t) is s 2R (t) = cos {2π [(K + 1) f i + (f c1 −f i )] t + φ from equation (2)
2 (t)} = cos {2π (f c1 + Kf i ) t + φ 2 (t)} = cos {2π (f c1 + Δf) t + φ 2 (t)} = cos {2πf c2 t + φ 2 (t)}

【0012】このように基本IF信号及びその高調波信
号共に所要のRF周波数帯に変換される。次に、これら
1R(t) とs2R(t) を一個のアナテナから送信し、受信
部のアンテナで受信することになる。先に述べたよう
に、RF帯の2周波は空間伝搬路で相関が少なくなるよ
うに設定しているからそれぞれ独立のフェージングを受
ける。受信される基本周波信号1を r1 (t) =R1 cos{2πfc1t+φ1 (t) +θ1 } (3) 受信高調波信号2を r2 (t) =R2 cos{2πfc2t+φ2 (t) +θ2 } (4) と表すことが出来る。ここでR1 とR2 は通常レイリー
分布に従う振幅変動分であり、θ1 とθ2 は0〜2πで
一様に分布する位相変動分である。請求項1のようにこ
れらをIFにおける同一の中心周波数fi に変換した信
号を次のように表す。基本波信号の式(3)より ri1(t) =R1 cos{2πfi t+φ1 (t) +θ1 } (3)′ 高調波信号の式(4)より ri2(t) =R2 cos{2πfi t+φ2 (t) +θ2 } (4)′ と表すと、合成受信波ri (t) は(3)′と(4)′よ
り ri (t) =ri1(t) +ri2(t) =R1 cos{2πfi t+φ1 (t) +θ1 } +R2 cos{2πfi t+φ2 (t) +θ2 } =R・cos{2πfi t+Φ(t) } ここで、受信合成波の振幅Rと位相Φ(t) は以下のよう
になる。
In this way, both the basic IF signal and its harmonic signals are converted into the required RF frequency band. Next, these s 1R (t) and s 2R (t) are transmitted from one anthena and received by the antenna of the receiving section. As described above, since the two frequencies in the RF band are set so that the correlation is small in the spatial propagation path, they are subject to independent fading. The received fundamental frequency signal 1 is r 1 (t) = R 1 cos {2πf c1 t + φ 1 (t) + θ 1 } (3) The received harmonic signal 2 is r 2 (t) = R 2 cos {2πf c2 t + φ 2 (t) + θ 2 } (4) can be expressed. Here, R 1 and R 2 are amplitude fluctuations that normally follow a Rayleigh distribution, and θ 1 and θ 2 are phase fluctuations that are uniformly distributed between 0 and 2π. A signal obtained by converting these to the same center frequency f i in IF as in claim 1 is represented as follows. From equation (3) of the fundamental wave signal, r i1 (t) = R 1 cos {2πf i t + φ 1 (t) + θ 1 } (3) ′ From equation (4) of the harmonic signal r i2 (t) = R 2 cos {2πf i t + φ 2 (t) + θ 2 } (4) ', the combined received wave r i (t) is r i (t) = r i1 (t) from (3)' and (4) '. + R i2 (t) = R 1 cos {2πf i t + φ 1 (t) + θ 1 } + R 2 cos {2πf i t + φ 2 (t) + θ 2 } = R cos {2πf i t + Φ (t)} where received The amplitude R and the phase Φ (t) of the composite wave are as follows.

【0013】[0013]

【数3】 ここで、1ビット平均CNRγを求める。いま、送信ベ
ースバンドのビットレートをfb 、その逆数の1ビット
の周期をTb とするとCNRの定義より
[Equation 3] Here, the 1-bit average CNRγ is obtained. Now, assuming that the bit rate of the transmission baseband is f b and the period of 1 bit of its reciprocal is T b , from the definition of CNR,

【0014】[0014]

【数4】 ここで、伝播路は準定常、即ちビット周期のオーダーで
は定常とする(通常フェージングは数十Hzで、信号速
度はkHzのオーダーであるから成立する)。 R1 、R2 、θ1 、θ2 :const. θ1 −θ2 =Δθとおく、式(5)をγに代入すると
[Equation 4] Here, the propagation path is quasi-stationary, that is, stationary on the order of the bit period (normally established because fading is on the order of tens Hz and signal speed is on the order of kHz). R 1 , R 2 , θ 1 , θ 2 : const. Setting θ 1 −θ 2 = Δθ, substituting equation (5) into γ,

【0015】[0015]

【数5】 準定常の仮定より[Equation 5] From the quasi-stationary assumption

【0016】[0016]

【数6】 第3項は以下のようになる。[Equation 6] The third term is as follows.

【0017】[0017]

【数7】 積分の部分を取り出すと次のようになる。[Equation 7] Taking out the integral part is as follows.

【0018】[0018]

【数8】 ディジタルFM変調は周波数偏移をfdi(i=1は基本
波信号、i=2は高調波信号)とすると
[Equation 8] In digital FM modulation, if the frequency shift is f di (i = 1 is a fundamental wave signal, i = 2 is a harmonic wave signal)

【0019】[0019]

【数9】 のデータ信号により±fdiの周波数変調をすることであ
るから φi (t) =±2πfdit i=1or2 ここで±は上述のようにan のマークあるいはスペース
に対応する。従って、式(7)、(8)はそれぞれ式
(7)′及び(8)′のようになる。
[Equation 9] ± because that the frequency modulation of ± f di φ i (t) = ± 2πf di t i = 1or2 where the data signal corresponds to the mark or space a n as described above. Therefore, the equations (7) and (8) become the equations (7) 'and (8)', respectively.

【0020】[0020]

【数10】 式(7)′から[Equation 10] From equation (7) ′

【0021】[0021]

【数11】 この分子は次のようになる。 sin{2πan (fd1−fd2)Tb } =sin{πan (2fd1/fb −2fd2/fb )} ここで、2fd1/fb は基本波信号の変調指数、2fd2
/fb は高調波信号の変調指数である。これらをm1
びm2 とすると、 sin{2πan (fd1−fd2)Tb }=sin{πan (m1 −m2 )} (9) ここで、先に述べたように変調指数の関係は高調波の逓
倍次数に等しいから1対(K+1)、即ち m2 =m1 ×(K+1) さらに基本波信号の変調指数をそれぞれ請求項1のよう
に、 m1 =偶数/K これを式(9)に入れると sin{2πan (fd1−fd2)Tb } =−sin{πan (偶数/K−(偶数/K)・(K+
1))}=−sin{πan (偶数)}=0 式(7)′、即ち式(7)のcosの積分項は恒に0で
ある。一方、式(8)′からは
[Equation 11] The molecule looks like this: sin {2πa n (f d1 −f d2 ) T b } = sin {π a n (2 f d1 / f b −2 f d2 / f b )} where 2 f d1 / f b is the modulation index of the fundamental wave signal, 2 f d2
/ F b is the modulation index of the harmonic signal. If these are m 1 and m 2 , then sin {2πa n (f d1 −f d2 ) T b } = sin {πa n (m 1 −m 2 )} (9) Here, the modulation is performed as described above. Since the relationship of the exponents is equal to the order of multiplication of the harmonics, one pair (K + 1), that is, m 2 = m 1 × (K + 1), and the modulation index of the fundamental wave signal is as follows: m 1 = even / K If this is put into the equation (9), sin {2πa n (f d1 −f d2 ) T b } = − sin {πa n (even / K− (even / K) · (K +
1))} = − sin {πa n (even number)} = 0 Expression (7) ′, that is, the integral term of cos in Expression (7) is always 0. On the other hand, from equation (8) ′,

【0022】[0022]

【数12】 ここで分子は次のようになる。 cos{2πan (fd1−fd2)Tb }−1 =cos{πan (m1 −m2 )}−1 =cos{πan (偶数)}−1=0[Equation 12] Here the numerator is cos {2πa n (f d1 −f d2 ) T b } −1 = cos {πa n (m 1 −m 2 )} − 1 = cos {πa n (even number)} − 1 = 0

【0023】従って式(8)′、即ち式(8)も恒に0
になる。よって、1ビット平均CNRγにおけるランダ
ム位相Δθを含む第3項は恒に0になりダイバーシティ
効果が実現できる。
Therefore, the equation (8) ', that is, the equation (8) is always 0.
become. Therefore, the third term including the random phase Δθ in the 1-bit average CNRγ is constantly 0, and the diversity effect can be realized.

【0024】図2は請求項2の発明に対応した原理を示
す周波数関係の図で、1と2は前記RF帯の2つの信号
を示し、8はRF2周波の中間の周波数、9は最終的に
変換したい検波IF帯周波数の大きさに相当する周波数
差、10は第1の受信局発信号、11はRF信号1が局
発信号10により変換されたIF信号、12はRF信号
2が局発信号10により変換されたIF信号、13は2
つのIF信号11と12の中間の周波数で第2の局発信
号、14はIF信号11と12が変換された検波のため
のIF信号である。動作は以下の通りである。アンテナ
からのRF受信信号は式(3)と(4)で表されるのは
前と同様である。基本波受信信号1は r1 (t) =R1 cos{2πfc1t+φ1 (t) +θ1 } (3) 高調波受信信号2は r2 (t) =R2 cos{2πfc2t+φ2 (t) +θ2 } (4) 請求項2のように第1の局発周波数は以下のように表さ
れる。 fi1=fc1+Δf/2−fi ここでΔfは前述したようにRF2信号の差周波数であ
る。この第1局発信号により変換された受信信号は以下
のようになる。受信信号1より変換された信号をr1i1
(t) とすると、fi1>fc1であるから r1i1 (t) =R1 cos{2π(fc1+Δf/2−fi )t −[2πfc1t+φ1 (t) +θ1 ]} =R1 cos{2π(Δf/2−fi )t−φ1 (t) −θ1 } (10) ここでは、変調信号φ1 (t) の係数が−になっている。
これは変調駆動信号の±に対応して周波数変調の向きが
FIG. 2 is a diagram of a frequency relationship showing the principle corresponding to the invention of claim 2, 1 and 2 show two signals in the RF band, 8 is an intermediate frequency of the RF2 frequency, and 9 is a final frequency. A frequency difference corresponding to the magnitude of the detection IF band frequency to be converted into 10: a first receiving station-originated signal, 11: an IF signal obtained by converting an RF signal 1 by a station-originated signal 10, 12: an RF signal 2 being a station IF signal converted by the outgoing signal 10, 13 is 2
The second local oscillation signal has an intermediate frequency between the two IF signals 11 and 12, and 14 is an IF signal for detection in which the IF signals 11 and 12 are converted. The operation is as follows. The RF received signal from the antenna is represented by the equations (3) and (4) as before. The fundamental wave reception signal 1 is r 1 (t) = R 1 cos {2πf c1 t + φ 1 (t) + θ 1 } (3) The harmonic reception signal 2 is r 2 (t) = R 2 cos {2πf c2 t + φ 2 ( t) + θ 2 } (4) As in claim 2, the first local oscillation frequency is expressed as follows. f i1 = f c1 + Δf / 2−f i where Δf is the difference frequency of the RF2 signal as described above. The received signal converted by the first local oscillator signal is as follows. The signal converted from the received signal 1 is r 1i1
If (t), then f i1 > f c1 and therefore r 1i1 (t) = R 1 cos {2π (f c1 + Δf / 2−f i ) t − [2πf c1 t + φ 1 (t) + θ 1 ]} = R 1 cos {2π (Δf / 2-f i) t-φ 1 (t) -θ 1} (10) where the coefficients of the modulation signal phi 1 (t) is - has become.
This is because the direction of frequency modulation corresponds to ± of the modulation drive signal.

【0025】[0025]

【数13】 になることを意味している。受信信号2より変換された
信号をr2i1 (t) とすると、fi1<fc2であるから r2i1 (t) =R2 cos{2πfc2t+φ2 (t) +θ2 −2π(fc1+Δf/2−fi )t } =R2 cos{2π(Δf/2+fi )t+φ2 (t) +θ2 } (11)
[Equation 13] Is meant to be. If the signal converted from the received signal 2 is r 2i1 (t), then f i1 <f c2 , so r 2i1 (t) = R 2 cos {2πf c2 t + φ 2 (t) + θ 2 −2π (f c1 + Δf / 2-f i ) t} = R 2 cos {2π (Δf / 2 + f i ) t + φ 2 (t) + θ 2 } (11)

【0026】請求項2にあるように、第2の局発信号は
第1局発で変換されたIF信号であるr1i1 (t) とr
2i1 (t) の中間の周波数であるからこれをfi2とすると fi2={(Δf/2−fi )+(Δf/2+fi )}/2=Δf/2 この周波数によって変換された第2のIF信号はそれぞ
れ次のようになる。基本波信号が変換された信号r1i2
(t) は r1i2 (t) =R1 cos{2πfi2t−[(Δf/2−fi )t−φ1 (t) −θ1 ]} =R1 cos{2πfi t+φ1 (t) +θ1 } 高調波信号が変換された信号r2i2 (t) は r2i2 (t) =R2 cos{2π(Δf/2+fi )t+φ2 (t) +θ2 −2πfi2t} =R2 cos{2πfi t+φ2 (t) +θ2
As described in claim 2, the second local oscillator signal is r 1i1 (t) and r which are IF signals converted by the first local oscillator.
2i1 first this because it is an intermediate frequency (t) is converted by to the f i2 = {(Δf / 2 -f i) + (Δf / 2 + f i)} / 2 = Δf / 2 The frequency and f i2 The two IF signals are as follows. Signal r 1i2 obtained by converting the fundamental wave signal
(t) is r 1i2 (t) = R 1 cos {2πf i2 t-[(Δf / 2−f i ) t−φ 1 (t) −θ 1 ]} = R 1 cos {2πf i t + φ 1 (t ) + θ 1} harmonic signal signal is converted r 2i2 (t) is r 2i2 (t) = R 2 cos {2π (Δf / 2 + f i) t + φ 2 (t) + θ 2 -2πf i2 t} = R 2 cos {2πf i t + φ 2 (t) + θ 2 }

【0027】以上のように信号r1i2 (t) とr2i2 (t)
は中心周波数がfi で全く一致しており、変調指数が先
ほどの条件を満足しているとすれば、両信号を単純に加
算すれば最大比合成と等価なダイバーシティ効果が実現
できる。
As described above, the signals r 1i2 (t) and r 2i2 (t)
Assuming that the center frequencies are completely the same at f i and the modulation index satisfies the above condition, a simple addition of both signals can realize a diversity effect equivalent to maximum ratio combining.

【0028】図3は本発明の送信部の基本構成で、15
は送信ベースバンド信号、16はFSK変調器、17は
逓倍回路、18は選択増幅回路、19は周波数変換と電
力増幅器、20は送信アンテナである。動作は以下の通
りである。ベースバンド信号15により、FSK変調器
16において変調指数(偶数/K)のFSKを行う。つ
ぎに、逓倍回路17で(K+1)逓倍し、選択増幅回路
18で逓倍前の基本信号と逓倍信号のレベルが適当な大
きさになるように増幅する。次いで、周波数変換と電力
増幅器19により所要の局発を用いて目的とするRF帯
に周波数変換し、周波数変換された基本波信号と逓倍波
の変換された高調波信号を送信アンテナ20から送信す
る。
FIG. 3 shows the basic structure of the transmitting section of the present invention.
Is a transmission baseband signal, 16 is an FSK modulator, 17 is a multiplication circuit, 18 is a selective amplification circuit, 19 is a frequency conversion and power amplifier, and 20 is a transmission antenna. The operation is as follows. With the baseband signal 15, the FSK modulator 16 performs FSK with a modulation index (even / K). Next, the multiplication circuit 17 multiplies (K + 1), and the selective amplification circuit 18 amplifies the levels of the basic signal and the multiplication signal before multiplication to have appropriate levels. Next, a frequency conversion and power amplifier 19 frequency-converts into a target RF band by using a required local oscillator, and a frequency-converted fundamental wave signal and a converted harmonic signal of a multiplied wave are transmitted from the transmission antenna 20. .

【0029】図4は請求項2の発明に対応した受信部を
示す回路構成で、21は受信アンテナ、22は第1の受
信局発、23は第1の受信局発22により第1のIFに
周波数変換する周波数変換器、24は第2の受信局発、
25は検波帯域に変換する第2の周波数変換器、26は
FM検波器、27は再生されたベースバンド信号であ
る。
FIG. 4 is a circuit configuration showing a receiving section according to the invention of claim 2, 21 is a receiving antenna, 22 is a first receiving station originating, and 23 is a first receiving station originating 22 and a first IF. A frequency converter for converting the frequency to, 24 is a second receiving station,
Reference numeral 25 is a second frequency converter for converting into a detection band, 26 is an FM detector, and 27 is a regenerated baseband signal.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、搬
送周波数あるいはIF周波数の位相制御と重み付け合成
をすることなく、1つのアンテナからの受信2波をその
まま検波するだけで位相制御合成ダイバーシティ特性同
様の効果を得ることが出来る。
As described above, according to the present invention, phase control combining diversity can be achieved by detecting the two received waves from one antenna as they are without performing phase control and weighted combining of carrier frequencies or IF frequencies. It is possible to obtain the same effect as the characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動作原理の一例を示す送信側スペクト
ル関係図である。
FIG. 1 is a transmission side spectrum relationship diagram showing an example of the operating principle of the present invention.

【図2】本発明の動作原理の一例を示す受信側スペクト
ル関係図である。
FIG. 2 is a reception side spectrum relationship diagram showing an example of the operating principle of the present invention.

【図3】本発明の送信部の一例を示す基本構成説明図で
ある。
FIG. 3 is a basic configuration explanatory diagram showing an example of a transmission unit of the present invention.

【図4】本発明の受信部の一例を示す基本構成説明図で
ある。
FIG. 4 is a basic configuration explanatory diagram showing an example of a receiving unit of the present invention.

【符号の説明】[Explanation of symbols]

1…一方のダイバーシティブランチを構成する信号1
(スペクトル)、2…もう一つのダイバーシティブラン
チを構成する信号2(スペクトル)、3…信号1と信号
2の差周波数である周波数間隔、4…周波数間隔3を分
周した間隔の周波数である周波数間隔、5…IF基本信
号、6…2逓倍信号、7…逓倍高調波信号、8…RF2
周波の中間の周波数、9…最終的に変換したい検波IF
帯周波数の大きさに相当する周波数差、10…第1の受
信局発信号、11…RF信号1が局発信号10により変
換されたIF信号、12…RF信号2が局発信号10に
より変換されたIF信号、13…第2の受信局発信号、
14…検波のためのIF信号、15…送信ベースバンド
信号、16…FSK変調器、17…逓倍回路、18…選
択増幅回路、19…周波数変換と電力増幅器、20…送
信アンテナ、21…受信アンテナ、22…第1の受信局
発、23…周波数変換器、24…第2の受信局発、25
…検波帯域に変換する第2の周波数変換器、26…FM
検波器、27…再生されたベースバンド信号。
1 ... Signal 1 that constitutes one diversity branch
(Spectrum), 2 ... signal 2 (spectrum) that constitutes another diversity branch, 3 ... frequency interval that is the difference frequency between signal 1 and signal 4, ... frequency that is the frequency of an interval obtained by dividing frequency interval 3 Interval, 5 ... IF basic signal, 6 ... 2 multiplied signal, 7 ... multiplied harmonic signal, 8 ... RF2
Intermediate frequency, 9 ... Detection IF to be finally converted
Frequency difference corresponding to the magnitude of band frequency, 10 ... First receiving station-originated signal, 11 ... IF signal obtained by converting RF signal 1 by station-originated signal 10, 12 ... RF signal 2 by station-generated signal 10. IF signal, 13 ... second receiving station originating signal,
14 ... IF signal for detection, 15 ... Transmission baseband signal, 16 ... FSK modulator, 17 ... Multiplication circuit, 18 ... Selective amplification circuit, 19 ... Frequency conversion and power amplifier, 20 ... Transmission antenna, 21 ... Reception antenna , 22 ... First receiving station originating, 23 ... Frequency converter, 24 ... Second receiving station originating, 25
... Second frequency converter for converting to detection band, 26 ... FM
Detector, 27 ... Regenerated baseband signal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディジタルFM信号を送受信するシステ
ムにおいて、空間伝搬路の使用周波数帯域で相関が低く
なるような関係にある2つの信号の差周波数Δfの整数
分の1の周波数信号fi fi=Δf/K を基本IF信号として、任意の偶数を上記整数で割った
値を変調指数とするディジタルFM変調を行い、これを
上記整数より1だけ大きい整数逓倍して増幅した信号と
上記基本IF変調信号とを、該使用周波数帯における2
信号に周波数変換して送信する送信部と、これら2つの
信号を1個のアンテナから受信し、IF帯の同一の中心
周波数信号に変換して復調する受信部からなる高調波ダ
イバーシティ送受信機。
1. In a system for transmitting and receiving a digital FM signal, an integer of a difference frequency Δf of two signals having a relationship such that the correlation is low in a frequency band used in a spatial propagation path.
The first frequency signal fi fi = Δf / K of K fraction as a basic IF signal, any even number performs digital FM modulation to the modulation index value divided by the integer which only one from the integer integer greater multiplication The amplified signal and the basic IF modulated signal in the used frequency band.
A harmonic diversity transmitter / receiver including a transmission unit that frequency-converts a signal and transmits the signal, and a reception unit that receives these two signals from one antenna, converts the signals to the same center frequency signal in the IF band, and demodulates.
【請求項2】 請求項1記載の高調波ダイバーシティ送
受信機において、受信2信号周波数の中間の周波数よ
り、最終的に検波を行うIF周波数分だけ低い周波数の
信号を第1の受信局発信号として周波数変換し、次に上
記2信号が変換されたIF帯の2つの信号の中間の周波
数の信号を第2の局発信号としてもう一度周波数変換し
て同一のIF周波数に変換する受信部を用いる事を特徴
とする高調波ダイバーシティ送受信機。
2. The harmonic diversity transmitter / receiver according to claim 1, wherein a signal having a frequency lower than an intermediate frequency of the received two signal frequencies by an IF frequency for finally detecting is used as a first receiving station originating signal. Using a receiving unit that performs frequency conversion, and then frequency-converts the signal of the intermediate frequency between the two signals in the IF band, which has been converted from the above two signals, as the second local oscillator signal and converts it to the same IF frequency. A harmonic diversity transmitter / receiver.
JP4248245A 1992-09-17 1992-09-17 Harmonic diversity transceiver Expired - Lifetime JPH0767090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248245A JPH0767090B2 (en) 1992-09-17 1992-09-17 Harmonic diversity transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248245A JPH0767090B2 (en) 1992-09-17 1992-09-17 Harmonic diversity transceiver

Publications (2)

Publication Number Publication Date
JPH06224803A JPH06224803A (en) 1994-08-12
JPH0767090B2 true JPH0767090B2 (en) 1995-07-19

Family

ID=17175315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248245A Expired - Lifetime JPH0767090B2 (en) 1992-09-17 1992-09-17 Harmonic diversity transceiver

Country Status (1)

Country Link
JP (1) JPH0767090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513192B1 (en) * 2002-09-30 2005-09-08 유티스타콤코리아 유한회사 Apparatus for Tx local of BTS Transceiver
KR102434001B1 (en) 2017-11-15 2022-08-19 현대자동차주식회사 Antenna apparatus, control method of antenna apparatus, vehicle comprising the antenna apparatus

Also Published As

Publication number Publication date
JPH06224803A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
US4628517A (en) Digital radio system
JPH0690225A (en) Diversity radio receiver
JPS6242537B2 (en)
JP2006042201A (en) Distance measurement system, distance measuring method and communication equipment
US4223405A (en) Multitransmitter digital signaling system
US8868013B2 (en) Apparatus and method for transmitting/receiving signal
JPH0767090B2 (en) Harmonic diversity transceiver
JP2914446B1 (en) Channel allocation method, transmission / reception device, and communication system
JPH09162842A (en) Polarization multiplex communication system
JPS601787B2 (en) Wireless transmission method
RU2222027C1 (en) Device to determine coordinates of mobile objects, predominantly, collector vehicles
JPH0611125B2 (en) Same frequency relay system
JPH05316072A (en) Spread spectrum communication equipment
JPH05259934A (en) Transmitting/receiving device
JPH0413893B2 (en)
RU2019042C1 (en) Method of reception and transmission of additional information over system of a m radio broadcasting
JPH05268188A (en) Multiplex radio modulator-demodulator
JPH05344031A (en) Radio system
US1688872A (en) Duplex wave signaling system
JPH071868Y2 (en) Space station transceiver
JP2000091939A (en) Frequency converting device and radio communication system using same
JPH08316908A (en) Optical fiber transmitter
JPS58195325A (en) Radio equipment
JP3018453B2 (en) Communication method
JPH0974406A (en) Transmitter