JPH0413893B2 - - Google Patents
Info
- Publication number
- JPH0413893B2 JPH0413893B2 JP61296781A JP29678186A JPH0413893B2 JP H0413893 B2 JPH0413893 B2 JP H0413893B2 JP 61296781 A JP61296781 A JP 61296781A JP 29678186 A JP29678186 A JP 29678186A JP H0413893 B2 JPH0413893 B2 JP H0413893B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- channel
- pilot
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Landscapes
- Radio Relay Systems (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は小形のアンテナ及び小規模の送受信装
置を用いて通信衛星を介して小形地球局間で狭帯
域信号を行う通信システムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a communication system for transmitting narrowband signals between small earth stations via a communication satellite using small antennas and small-scale transmitting/receiving equipment.
近年、通信衛星の性能向上により、小形アンテ
ナ、小規模の送受信装置を有する小形地球局通信
システムが可能になつてきた。小形地球局の能力
は送信電力、信号帯域幅の双方で限定されてお
り、狭帯域通信とならざるを得ない。しかしなが
ら、狭帯域通信に於ては伝送路に於て数回にわた
つて行われる周波数変換のたびに局部周波数信号
源に起因する位相雑音が相加される。このことに
より、大きな通信品質の劣化を生じ、場合によつ
ては、通信そのものが不可能となる。これらの位
相雑音は超低周波領域に極めて大きなスペクトル
密度を有する低周波雑音である。
In recent years, improvements in the performance of communication satellites have made it possible to create small earth station communication systems that include small antennas and small-scale transmitting and receiving equipment. The capabilities of small earth stations are limited in both transmission power and signal bandwidth, forcing narrowband communications. However, in narrowband communication, phase noise caused by local frequency signal sources is added each time frequency conversion is performed several times in a transmission path. This causes a significant deterioration in communication quality, and in some cases, communication itself becomes impossible. These phase noises are low frequency noises that have an extremely large spectral density in the very low frequency region.
従来、衛星通信に於ては、送信電力の有効利用
の観点から同期検波法が主として用いられてお
り、S/N改善のためキヤリヤ再生回路の帯域幅
を伝送速度の1/100程度に設定するのが普通であ
る。しかし、それでは狭帯域通信の場合にキヤリ
ヤ再生回路の追随特性が低下し、大きな位相ジツ
タやひんぱんな位相スリツプを生じ、正常な通信
が阻害される。 Conventionally, in satellite communications, the synchronous detection method has been mainly used from the viewpoint of effective use of transmission power, and the bandwidth of the carrier regeneration circuit is set to about 1/100 of the transmission speed to improve S/N. is normal. However, in the case of narrowband communication, the follow-up characteristics of the carrier regeneration circuit deteriorate, causing large phase jitter and frequent phase slips, which impede normal communication.
第8図は衛星通信システムの局部信号系を示
す。同図に於て、50は変調器、51はキヤリヤ
発振器、54はアツプコンバータ、55は発振周
波数Uのローカル発振器、56は周波数変換回
路、57は発振周波数Lのローカル発振器、58
はダウンコンバータ、59は発振周波数Dのロー
カル発振器、64は受信IF系である。 FIG. 8 shows the local signal system of the satellite communication system. In the figure, 50 is a modulator, 51 is a carrier oscillator, 54 is an up converter, 55 is a local oscillator with an oscillation frequency U , 56 is a frequency conversion circuit, 57 is a local oscillator with an oscillation frequency L , 58
59 is a local oscillator with an oscillation frequency D , and 64 is a receiving IF system.
送信部に於ては、周波数Cのキヤリヤが送信デ
ータにより変調され、更に周波数Uなる局部信号
によりアツプリンクRF周波数Uに周波数変換さ
れ送出される。衛星上に於ては局部信号Lにより
ダウンリンクへの周波数変換が行われ、更に受信
部に於て、周波数Dにより規定のIF周波数帯に周
波数変換され復調される。 In the transmitter, the carrier of frequency C is modulated by the transmission data, and further frequency-converted to the uplink RF frequency U by a local signal of frequency U , and then sent out. On the satellite, frequency conversion to downlink is performed using local signal L , and further, in the receiving section, frequency conversion is performed using frequency D to a specified IF frequency band and demodulation.
受信信号は上述のすべてのローカル信号源の位
相時音を含む。特に、既存の通信衛星を用いて小
形地球局間の狭帯域通信システムを構築する場
合、位相雑音の圧倒的な部分は、衛星上のローカ
ル発振器で発生する。各地球局の送信信号は、割
り当てられた周波数に正確に信号を送出しなくて
はならないので、極めて高安定の周波数源が用い
られている。ところが、受信部については、装置
規模の上からダウンコンバータのローカル発振周
波数はそれ程高安定のものは期待できない。従つ
て、位相雑音の殆んどは伝送路及び受信装置で発
生するものである。
The received signal includes the phase tones of all the local signal sources mentioned above. In particular, when building a narrowband communication system between small earth stations using existing communication satellites, an overwhelming portion of the phase noise is generated in the local oscillator on the satellite. Since each earth station's transmission signal must accurately transmit a signal on the assigned frequency, an extremely stable frequency source is used. However, in the receiving section, the local oscillation frequency of the down converter cannot be expected to be so highly stable due to the scale of the device. Therefore, most of the phase noise is generated in the transmission path and the receiving device.
このため、位相雑音の大きい伝送路を通して通
信を行う場合、従来はFSK変調を用いている。
FSK変調に於ては、データ0を(0)なる周波数で
送出し、データ1を(1)なる周波数で送出する。 For this reason, FSK modulation is conventionally used when communicating through a transmission path with large phase noise.
In FSK modulation, data 0 is transmitted at a frequency (0) , and data 1 is transmitted at a frequency (1) .
FSK信号の受信回路を第9図に示す。70は
ダウンコンバータ、71はチヤネル周波数シンセ
サイザ、72はデータ0に対応する周波数に同調
した帯域波器、73はデータ1に対応する周波
数に同調した帯域波器、74,75は2乗検波
器、76は振幅比較器、77はクロツク再生回
路、78はデータ識別器である。 Figure 9 shows the FSK signal receiving circuit. 70 is a down converter, 71 is a channel frequency synthesizer, 72 is a band waver tuned to the frequency corresponding to data 0, 73 is a band wave generator tuned to the frequency corresponding to data 1, 74 and 75 are square law detectors, 76 is an amplitude comparator, 77 is a clock recovery circuit, and 78 is a data discriminator.
FSK変調を用いる方法は、位相雑音の大きな
系に於ては有効な方法であるが、2乗検波方式で
あるため、理論的にBER特性は同期検波の場合
に比べて著しく悪い上にFSKの特性上広帯域と
ならざるを得ない。 The method using FSK modulation is effective in systems with large phase noise, but since it is a square law detection method, theoretically the BER characteristics are significantly worse than in the case of synchronous detection, and the FSK modulation Due to its characteristics, it has no choice but to have a wide band.
本発明は上述の欠点を克服し、位相雑音の大き
な伝送系でも高性能の狭帯域通信を行うことので
きる通信方式を実現することを目的とする。 An object of the present invention is to overcome the above-mentioned drawbacks and to realize a communication system that can perform high-performance narrowband communication even in a transmission system with large phase noise.
本発明は、予め定められたパイロツト局が規定
の周波数にてパイロツト信号を送出し、各地球局
に於ては、受信信号をパイロツト周波数に同調し
た狭帯域の帯域通過波器に通す事によりパイロ
ツト信号を再生し、しかも受信すべきチヤネル周
波数信号を発生する周波数シンセサイザと、該周
波数シンセサイザをローカル信号として該ローカ
ル信号に同調した波特性を有する追随型帯域通
過波器とを有し、該追随型帯域通過波器に前
記受信信号を通す事により受信すべきチヤネルの
信号を選択すると共に、上記受信チヤネルの信号
を、前記再生パイロツト信号をローカル信号とし
て低域周波数帯に周波数変換し、更に前記周波数
シンセサイザの出力の一部をローカル信号として
IF周波数帯に周波数変換する事によりチヤネル
に無関係に一定の周波数帯に受信すべきチヤネル
信号を得て復調、再生するようにした狭帯域通信
方式である。
In the present invention, a predetermined pilot station transmits a pilot signal at a specified frequency, and each earth station transmits the pilot signal by passing the received signal through a narrowband bandpass waver tuned to the pilot frequency. A frequency synthesizer that reproduces a signal and generates a channel frequency signal to be received, and a tracking type bandpass waver that uses the frequency synthesizer as a local signal and has wave characteristics tuned to the local signal, The signal of the channel to be received is selected by passing the received signal through a type band-pass transducer, and the signal of the received channel is frequency-converted to a low frequency band using the regenerated pilot signal as a local signal. Part of the frequency synthesizer output as a local signal
This is a narrowband communication method that converts the frequency to the IF frequency band to obtain the channel signal to be received in a fixed frequency band regardless of the channel, and demodulates and reproduces it.
本発明が適用される通信システムを第2図に示
す。91は通信衛星、92はパイロツト局、93
は多数の小形地球局である。
FIG. 2 shows a communication system to which the present invention is applied. 91 is a communication satellite, 92 is a pilot station, 93
is a large number of small earth stations.
第3図に本発明方式による送信信号スペクトル
を示す。 FIG. 3 shows the transmission signal spectrum according to the method of the present invention.
第1図は本発明方式による狭帯域信号受信回路
を示す。これは第8図の受信IF系64に対応す
る部分である。1,2は周波数追随形
(Tracking)帯域波器、3はミキサ、4はパイ
ロツト信号用ローカル発振器、5はチヤネル周波
数シンセサイザ、6は低域波器、7はミキサ、
8は帯域波器、10は復調器である。 FIG. 1 shows a narrowband signal receiving circuit according to the present invention. This is a part corresponding to the reception IF system 64 in FIG. 1 and 2 are frequency tracking type band wave generators, 3 is a mixer, 4 is a local oscillator for pilot signals, 5 is a channel frequency synthesizer, 6 is a low frequency wave generator, 7 is a mixer,
8 is a band wave generator, and 10 is a demodulator.
本発明に用いる周波数追随型帯域波器を第4
図に示す。11,12はミキサ、13はπ/2移
相器、14,15は低域波器、16,17はミ
キサ、18はIF信号合成器である。 The frequency tracking type band wave generator used in the present invention is
As shown in the figure. 11 and 12 are mixers, 13 is a π/2 phase shifter, 14 and 15 are low frequency filters, 16 and 17 are mixers, and 18 is an IF signal synthesizer.
復調器10の基本回路を第5図に示す。101
はキヤリヤ再生回路、102はクロツク再生回
路、103は復調器、104はデータ再生器であ
る。 The basic circuit of demodulator 10 is shown in FIG. 101
1 is a carrier recovery circuit, 102 is a clock recovery circuit, 103 is a demodulator, and 104 is a data recovery circuit.
本発明による通信システムの通信原理を以下に
説明する。まず受信信号は、
パイロツト信号;
υp(t)=cos(ωpt+θj+θpo) (1)
各チヤンネル信号;
υk(t)=cos(ωkt+θj+k+θko)(2)
と表わすことができる。但し、
ωp;パイロツト周波数
θpo;パイロツト信号に加わる伝送路熱雑音
ωk;チヤネルkの周波数(k=1,2,…N)
θko;第kチヤネル信号に加わる熱雑音k
(t);変調位相(0又はπ)
θj;伝送路で生じる位相雑音
である。 The communication principle of the communication system according to the present invention will be explained below. First, the received signal is the pilot signal; υ p (t) = cos (ω p t + θ j + θ po ) (1) Each channel signal; υ k (t) = cos (ω k t + θ j + k + θ ko ) (2) It can be expressed as However, ω p : Pilot frequency θ po : Transmission line thermal noise added to the pilot signal ω k : Frequency of channel k (k=1, 2,...N) θ ko : Thermal noise k (t) added to the k-th channel signal ; Modulation phase (0 or π) θ j ; Phase noise generated in the transmission path.
ここで重要な事実は、位相雑音θjは全チヤネル
に共通であるという事である。 The important fact here is that the phase noise θ j is common to all channels.
第1図を参照して、ローカル発振器4をパイロ
ツト周波数に同調させて帯域波器1出力に於て
式(1)のパイロツト信号を選択抽出する。同様に、
帯域波器2の出力に於て式(2)で表わされる信号
の中受信すべき信号(第kチヤネルとする)を選
択する。ミキサ3に於て乗算の結果、
υ3(t)=cos{(ωk−ωp)t+k
+θko−θpo} (3)
が得られ、位相雑音θjは相殺されてしまう。その
代り、位相熱雑音θpoが加わつてくるが、この項
はパイロツト信号の電力を他チヤネルより大きく
するとか、あるいは帯域波器1の帯域幅を帯域
波器2よりも狭帯域にすることにより、θpoを
θkoよりも遥かに小さい値に抑圧する事が可能で
あり、ミキサ3に於るS/N劣化を無視し得る程
に小さくする事は可能である。 Referring to FIG. 1, the local oscillator 4 is tuned to the pilot frequency, and the pilot signal of equation (1) is selectively extracted at the output of the bandpass generator 1. Similarly,
At the output of the bandpass filter 2, a signal to be received (referred to as the k-th channel) is selected from among the signals expressed by equation (2). As a result of the multiplication in the mixer 3, υ 3 (t)=cos {(ω k −ω p )t+ k +θ ko −θ po } (3) is obtained, and the phase noise θ j is canceled out. Instead, phase thermal noise θpo is added, but this term can be reduced by making the power of the pilot signal larger than that of other channels, or by making the bandwidth of bandpass converter 1 narrower than that of bandpass converter 2. , θ po can be suppressed to a value much smaller than θ ko , and the S/N deterioration in the mixer 3 can be suppressed to a negligible value.
次に、ミキサ7に於て、
υ7(t)=cos{(ωk−ωk′−ωp)t
+k+θko−θpo}+ωk+ωk′−ωp (4)
が得られる。ここで、ωk′はチヤネル周波数シン
セサイザ5の出力周波数であり、ωkに極めて近
い値を持つ。帯域波器8はωpに同調して式(4)
の第一項のみを通過させ、チヤネル周波数とは無
関係に周波数帯ωpに受信すべきチヤネルの信号
が得られる。帯域波器8の出力をIF周波数ωp
で動作する復調器10に入力してデータ及びクロ
ツクを再生し出力する。 Next, in mixer 7, υ 7 (t)=cos {(ω k −ω k ′−ω p )t + k +θ ko −θ po }+ω k +ω k ′−ω p (4) is obtained. It will be done. Here, ω k ' is the output frequency of the channel frequency synthesizer 5, and has a value extremely close to ω k . Bandwidth wave generator 8 is tuned to ω p and formula (4)
By passing only the first term of , the channel signal to be received in the frequency band ω p can be obtained regardless of the channel frequency. The output of the bandpass converter 8 is set to the IF frequency ω p
The data and clock are input to a demodulator 10 which operates at
場合によつては、帯域波器8の出力を第1図
に示す様に、ローカル発振器4の出力の一部を用
いてベースバンド帯(OHz帯)に周波数変換して
同期又は遅延検波法によつて信号再生を行う事が
できる。 In some cases, as shown in Fig. 1, the output of the bandpass generator 8 may be frequency-converted to the baseband band (OHz band) using a part of the output of the local oscillator 4 for synchronization or delay detection. Therefore, signal reproduction can be performed.
以上のように、本発明により伝送路及び受信装
置内で発生する位相雑音を相殺する事ができる。
なお、各地球局の送信部で発生する位相雑音につ
いては、次のようにすれば良い。即ち、パイロツ
ト信号を各地球局が独立に送出すれば良い。この
場合の各チヤネルの送信スペクトルを第6図に、
受信装置を第7図に示す。52はIF信号合成器、
53はパイロツト発振器、55′,59′はチヤネ
ル周波数シンセサイザ、60は帯域波器、61
は狭帯域の帯域波器、62はミキサ、63は低
域波器、10は復調器である。 As described above, according to the present invention, it is possible to cancel out the phase noise generated in the transmission path and the receiving device.
Note that the phase noise generated in the transmitter of each earth station may be handled as follows. That is, it is sufficient if each earth station independently transmits a pilot signal. The transmission spectrum of each channel in this case is shown in Figure 6.
The receiving device is shown in FIG. 52 is an IF signal synthesizer;
53 is a pilot oscillator, 55', 59' are channel frequency synthesizers, 60 is a bandpass generator, 61
is a narrowband wave generator, 62 is a mixer, 63 is a low frequency wave generator, and 10 is a demodulator.
本方式の動作は上述のシステムと基本的には同
じである。各局は割り当てられた周波数帯域内で
変調信号のキヤリヤ周波数から(p−c)だけ異
る周波数位置にパイロツト信号を変調信号に加え
て送出する。受信部に於ては、まずチヤネル周波
数シンセサイザ59′とダウンコンバータ58、
帯域波器60により規定の周波数帯に受信チヤ
ネルの信号を選択出力する。次に、狭帯域の帯域
波器61によりそのチヤネルのパイロツト信号
を抽出し、それを用いてミキサ62によつて周波
数変換を行う事により、(p−c)なる周波数帯
に、送信部、伝送路部、受信装置部で発生する位
相雑音が除去された高安定度の変調信号が得られ
ることにより、通常の同期復調法によつて信号再
生を行う事ができる。本方式では、電力効率及び
帯域幅効率の点で多少の損失はあるが、位相雑音
の大きな伝送路を通じて簡便な装置で超低速通信
を行う場合等には極めて有効である。すなわち、
送信部も含めた全RF信号路で生じる位相雑音を
除去することができるので、超小形局による超低
速通信が可能となり、通信衛星を用いた移動通信
等が可能となる。 The operation of this system is basically the same as the system described above. Each station transmits a pilot signal in addition to the modulated signal at a frequency position that differs by ( p - c ) from the carrier frequency of the modulated signal within the assigned frequency band. In the receiving section, first, a channel frequency synthesizer 59' and a down converter 58,
A bandpass filter 60 selectively outputs the signal of the receiving channel in a specified frequency band. Next, the pilot signal of the channel is extracted by the narrowband wave generator 61, and the frequency is converted by the mixer 62 , so that the transmitting section and the transmission By obtaining a highly stable modulated signal from which phase noise generated in the path section and the receiving device section is removed, signal reproduction can be performed using a normal synchronous demodulation method. Although this method has some loss in terms of power efficiency and bandwidth efficiency, it is extremely effective when performing ultra-low-speed communication with a simple device through a transmission path with large phase noise. That is,
Since the phase noise generated in the entire RF signal path including the transmitter can be removed, it becomes possible to perform ultra-low speed communication using a micro-compact station, and mobile communication using communication satellites becomes possible.
本発明により次の効果が実現できる。 The following effects can be achieved by the present invention.
(1) まず、本発明方式及び受信装置により、伝送
路部及び受信装置内で発生する位相雑音を除去
する事ができ、同期復調法により安定かつ良好
な特性の狭帯域通信が可能である。(1) First, the system and receiver of the present invention can remove phase noise generated in the transmission line and receiver, and the synchronous demodulation method enables narrowband communication with stable and good characteristics.
(2) 従つて、既存の通信衛星を用いて、多数の小
型局間で狭帯域通信を行うシステムを構築する
事が可能となる。(2) Therefore, it is possible to construct a system that performs narrowband communication between many small stations using existing communication satellites.
第1図は本発明方式による受信装置のブロツク
図、第2図は本発明が適用される狭帯域通信シス
テムを説明するための図、第3図は本発明方式の
送信信号スペクトルを示す図、第4図は本発明に
用いる周波数追随型帯域波器のブロツク図、第
5図は本発明に用いる同期復調器の基本構成を示
すブロツク図、第6図は本発明の他の例即ちチヤ
ネル毎のパイロツト信号重畳方式に於る送信信号
スペクトルを示す図、第7図はチヤネル別パイロ
ツト信号重畳方式の通信系を示すブロツク図、第
8図は、衛星通信システムに於る局部信号系を示
し、第9図は従来のFSK変調信号の受信回路を
示す。
図中、1,2は周波数追随型帯域波器、3,
7はミキサ、4はローカル発振器、5はチヤネル
周波数シンセサイザ、6は低域波器、8は帯域
波器、10は復調器。
FIG. 1 is a block diagram of a receiving device according to the present invention, FIG. 2 is a diagram for explaining a narrowband communication system to which the present invention is applied, and FIG. 3 is a diagram showing a transmission signal spectrum according to the present invention. FIG. 4 is a block diagram of a frequency tracking type band waver used in the present invention, FIG. 5 is a block diagram showing the basic configuration of a synchronous demodulator used in the present invention, and FIG. 6 is another example of the present invention, that is, for each channel. FIG. 7 is a block diagram showing the communication system of the channel-by-channel pilot signal superimposition method; FIG. 8 shows the local signal system in the satellite communication system; FIG. 9 shows a conventional FSK modulated signal receiving circuit. In the figure, 1 and 2 are frequency tracking type band wave generators, 3,
7 is a mixer, 4 is a local oscillator, 5 is a channel frequency synthesizer, 6 is a low frequency generator, 8 is a band frequency generator, and 10 is a demodulator.
Claims (1)
帯域通信を行うシステムに於て、予め定められた
パイロツト局が規定の周波数にてパイロツト信号
を送出し、各地球局に於ては、受信信号をパイロ
ツト周波数に同調した狭帯域の帯域通過波器に
通す事によりパイロツト信号を再生し、しかも受
信すべきチヤネル周波数信号を発生する周波数シ
ンセサイザと、該周波数シンセサイザをローカル
信号として該ローカル信号に同調した波特性を
有する追随型帯域通過波器とを有し、該追随型
帯域通過波器に前記受信信号を通す事により受
信すべきチヤネルの信号を選択すると共に、上記
受信チヤネルの信号を前記再生パイロツト信号を
ローカル信号として低域周波数帯に周波数変換
し、更に前記周波数シンセサイザの出力の一部を
ローカル信号としてIF周波数帯に周波数変換す
る事によりチヤネルに無関係に一定の周波数帯に
受信すべきチヤネル信号を得て復調、再生するよ
うにした狭帯域信号通信方式。1. In a system that performs narrowband communication between multiple small earth stations via communication satellites, a predetermined pilot station sends out a pilot signal at a specified frequency, and each earth station transmits a pilot signal at a specified frequency. A frequency synthesizer that regenerates the pilot signal by passing the received signal through a narrowband bandpass waver tuned to the pilot frequency and also generates a channel frequency signal to be received; and a tracking type bandpass transducer having tuned wave characteristics, and by passing the received signal through the tracking type bandpass transducer, the signal of the channel to be received is selected, and the signal of the receiving channel is selected. By converting the frequency of the reproduced pilot signal as a local signal to a low frequency band, and further frequency converting a part of the output of the frequency synthesizer to the IF frequency band as a local signal, the signal can be received in a constant frequency band regardless of the channel. A narrowband signal communication method that obtains, demodulates, and reproduces the desired channel signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29678186A JPS63151123A (en) | 1986-12-15 | 1986-12-15 | Narrow band signal communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29678186A JPS63151123A (en) | 1986-12-15 | 1986-12-15 | Narrow band signal communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63151123A JPS63151123A (en) | 1988-06-23 |
JPH0413893B2 true JPH0413893B2 (en) | 1992-03-11 |
Family
ID=17838050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29678186A Granted JPS63151123A (en) | 1986-12-15 | 1986-12-15 | Narrow band signal communication system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63151123A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3992222B2 (en) * | 2002-02-27 | 2007-10-17 | 独立行政法人情報通信研究機構 | Transmitter, transmission method, receiver, reception method, radio communication apparatus, and radio communication method |
-
1986
- 1986-12-15 JP JP29678186A patent/JPS63151123A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63151123A (en) | 1988-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912722A (en) | Self-synchronous spread spectrum transmitter/receiver | |
US7551666B2 (en) | Wireless communications system and wireless digital receiver for use therein | |
CA2543646A1 (en) | Apparatus and method of on-channel repeater | |
JPH05252559A (en) | Diversity transmission and reception system | |
CA2351271C (en) | Two-way radio communication system and two-way radio communication method | |
JPS5841018B2 (en) | Diversity transmitting and receiving equipment | |
JPH0413893B2 (en) | ||
JP2914446B1 (en) | Channel allocation method, transmission / reception device, and communication system | |
JPH09162842A (en) | Polarization multiplex communication system | |
JP3197581B2 (en) | Spread spectrum receiver, spread spectrum transmitter, and spread spectrum communication system | |
JPH07177054A (en) | Digital radio communication terminal | |
JPS601787B2 (en) | Wireless transmission method | |
JPH0611125B2 (en) | Same frequency relay system | |
JPH02280423A (en) | Transmission power control system using superimposing modulation | |
FI112416B (en) | Method and apparatus for transmitting information by radio | |
JPS6277725A (en) | Same frequency relay system | |
JPH0767090B2 (en) | Harmonic diversity transceiver | |
JP2595751B2 (en) | Wireless transceiver | |
JPH06177855A (en) | Spread spectrum communication equipment | |
JPH11127476A (en) | Radio communication system | |
JP2877197B2 (en) | Non-regenerative relay alarm transmission apparatus and method | |
JPH0955692A (en) | Frequency diversity radio communication method, frequency diversity radio transmitter and frequency diversity ratio receiver, and frequency diversity radio communication equipment | |
JPS6014541A (en) | Communication system of time division multiple access | |
JP2000091939A (en) | Frequency converting device and radio communication system using same | |
JPS5949031A (en) | Frequency control system of slave carrier wave of multi-direction multiplex communication system |