JPS63151123A - Narrow band signal communication system - Google Patents

Narrow band signal communication system

Info

Publication number
JPS63151123A
JPS63151123A JP29678186A JP29678186A JPS63151123A JP S63151123 A JPS63151123 A JP S63151123A JP 29678186 A JP29678186 A JP 29678186A JP 29678186 A JP29678186 A JP 29678186A JP S63151123 A JPS63151123 A JP S63151123A
Authority
JP
Japan
Prior art keywords
signal
frequency
channel
band
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29678186A
Other languages
Japanese (ja)
Other versions
JPH0413893B2 (en
Inventor
Osamu Ichiyoshi
市吉 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29678186A priority Critical patent/JPS63151123A/en
Publication of JPS63151123A publication Critical patent/JPS63151123A/en
Publication of JPH0413893B2 publication Critical patent/JPH0413893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To attain narrow band communication with high performance even in a transmission system of much phase noise by allowing a reception signal to pass tracking type band-pass filters and converting the frequency of a part of the output of a frequency synthesizer to an intermediate frequency IF frequency band as a local signal. CONSTITUTION:The reception signal is allowed to pass tracking type band pass filters 1 and 2 to select the signal of a channel to be received, and a reproduced pilot signal of the signal of the reception channel has the frequency converted to a low frequency band as the local signal. Further, a part of the output of a frequency synthesizer 5 has the frequency converted to the IF frequency band as the local signal to obtain a channel signal to be received in a certain frequency band independently of channels, and this signal is demodulated and reproduced. Thus, the phase noise generated in a transmission line part and a reception equipment is eliminated, and narrow band communication of stable and satisfactory characteristic is by attained the synchronous demodulation method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小形のアンテナ及び小規模の送受信装置を用い
て通信衛星を介して小形地球局間で狭帯域信号を行う通
信システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a communication system for transmitting narrowband signals between small earth stations via a communication satellite using small antennas and small-scale transmitting/receiving equipment.

〔従来の技術〕[Conventional technology]

近年2通信衛星の性能向上によシ、小形アンテナ、小規
模の送受信装置を有する小形地球局通信システムが可能
になってきた。小形地球局の能力は送信電力、信号帯域
幅の双方で限定されており。
In recent years, improvements in the performance of communication satellites have made it possible to create small earth station communication systems that include small antennas and small-scale transmitting and receiving equipment. The capabilities of small earth stations are limited in terms of both transmission power and signal bandwidth.

狭帯域通信とならざるを得ない。しかしながら。There is no choice but to use narrowband communication. however.

狭帯域通信に於ては伝送路に於て数回にわたって行われ
る周波数変換のたびに局部周波数信号源に起因する位相
雑音が相加される。このことにより。
In narrowband communication, phase noise caused by local frequency signal sources is added each time frequency conversion is performed several times in a transmission path. Due to this.

大きな通信品質の劣化を生じ、場合によっては。In some cases, this may cause a significant deterioration in communication quality.

通信そのものが不可能となる。これらの位相雑音は超低
周波領域に極めて大きなスにクトル密度を有する低周波
雑音である。
Communication itself becomes impossible. These phase noises are low frequency noises that have an extremely large phase density in the very low frequency region.

従来、衛星通信に於ては、送信電力の有効利用の観点か
ら同期検波法が主として用いられており。
Conventionally, in satellite communications, a synchronous detection method has been mainly used from the viewpoint of effective use of transmission power.

い改善のためキャリヤ再生回路の帯域幅を伝送速度の1
/100程度に設定するのが普通である。しかし、それ
では狭帯域通信の場合にキャリヤ再生回路の追随特性が
低下し、大きな位相ジッタやひんばんな位相スリラグを
生じ、正常な通信が阻害される。
To improve the bandwidth of the carrier regeneration circuit,
It is normal to set it to about /100. However, in the case of narrowband communication, the follow-up characteristics of the carrier regeneration circuit deteriorate, causing large phase jitter and severe phase slag, which impedes normal communication.

第8図は衛星通信システムの局部信号系を示す。FIG. 8 shows the local signal system of the satellite communication system.

同図に於て、50は変調器、51はキャリヤ発振器、5
4はアップコンバータ、55は発振周波数fUのローカ
ル発振器、56は周波数変換回路。
In the figure, 50 is a modulator, 51 is a carrier oscillator, and 5
4 is an up converter, 55 is a local oscillator with an oscillation frequency fU, and 56 is a frequency conversion circuit.

57は発振周波数fLのローカル発振器、58はダウン
コンバータ、59は発振周波数fDのローカル発振器、
64は受信IF系である。
57 is a local oscillator with an oscillation frequency fL, 58 is a down converter, 59 is a local oscillator with an oscillation frequency fD,
64 is a receiving IF system.

送信部に於ては8周波数fcのキャリヤが送信データに
より変調され、更に周波数fUなる局部信号によシアツ
ブリンクRF周波数fUに周波数変換され送出される。
In the transmitting section, the carrier of 8 frequencies fc is modulated by the transmission data, and further frequency-converted to the broadcast link RF frequency fU by a local signal of frequency fU, and then sent out.

衛星上に於ては局部信号fLによりダウンリンクへの周
波数変換が行われ、更に受信部に於て1周波数fDによ
シ規定のIF周波数帯だ周波数変換され復調される。
On the satellite, frequency conversion to downlink is performed using the local signal fL, and further, in the receiving section, frequency conversion is performed to a specified IF frequency band using one frequency fD, and demodulation is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

受信信号は上述のすべてのローカル信号源の位相雑音を
含む。特に、既存の通信衛星を用いて小形地球局間の狭
帯域通信システムを構築する場合。
The received signal includes the phase noise of all local signal sources mentioned above. Especially when building a narrowband communication system between small earth stations using existing communication satellites.

位相雑音の圧倒的な部分は、衛星上のローカル発振器で
発生する。各地球局の送信信号は9割シ当てられた周波
数に正確に信号を送出しなくてはならないので、極めて
高安定の周波数源が用いられている。ところが、受信部
については、装置規模の上からダウンコンバータのロー
カル発振周波数はそれ程高安定のものは期待できない。
The overwhelming majority of phase noise is generated by local oscillators onboard the satellite. Since the transmission signal of each earth station must be accurately transmitted on a 90% assigned frequency, an extremely highly stable frequency source is used. However, in the receiving section, the local oscillation frequency of the down converter cannot be expected to be so highly stable due to the scale of the device.

従って。Therefore.

位相雑音の殆んどは伝送路及び受信装置で発生するもの
である。
Most of the phase noise is generated in the transmission path and receiver.

このため1位相雑音の大きい伝送路を通して通信を行う
場合、従来はFSK変調を用いている。
For this reason, FSK modulation is conventionally used when communication is performed through a transmission path with large phase noise.

FSX変調に於ては、データOをf(0)なる周波数で
送出し、データ1をf(1)なる周波数で送出する。
In FSX modulation, data O is transmitted at a frequency f(0), and data 1 is transmitted at a frequency f(1).

FSK信号の受信回路を第9図に示す。70はダウンコ
ンバータ、71はチャネル周波数シンセサイザ、72は
データ0に対応する周波数に同調した帯域濾波器、73
はデータ1に対応する周波数に同調した帯域p波器、7
4.75は2乗検波器。
FIG. 9 shows an FSK signal receiving circuit. 70 is a down converter, 71 is a channel frequency synthesizer, 72 is a bandpass filter tuned to the frequency corresponding to data 0, 73
is a band p-wave generator tuned to the frequency corresponding to data 1, 7
4.75 is a square law detector.

76は振幅比較器、77はクロック再生回路。76 is an amplitude comparator, and 77 is a clock recovery circuit.

78はデータ識別器である。78 is a data identifier.

FSX変調を用いる方法は1位相雑音の大きな系に於て
は有効な方法であるが、2乗検波方式であるため、理論
的K BER特性は同期検波の場合に比べて著しく悪い
上にFSXの特性上広帯域とならざるを得ない。
The method using FSX modulation is an effective method in systems with large single phase noise, but because it is a square law detection method, the theoretical KBER characteristics are significantly worse than in the case of synchronous detection, and the FSX modulation Due to its characteristics, it has no choice but to have a wide band.

本発明は上述の欠点を克服し1位相雑音の大きな伝送系
でも高性能の狭帯域通信を行うことのできる通信方式を
実現することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks and to realize a communication system that can perform high-performance narrowband communication even in a transmission system with large one-phase noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、予め定められたパイロット局が規定の周波数
にて・々イロット信号を送出し、各地球局に於ては、受
信信号をノイロット周波数に同調した狭帯域の帯域通過
p波器に通す事によりノクイロット信号を再生し、しか
も受信すべきチャネル周波数信号を発生する周波数シン
セサイザと、該周波数シンセサイザをローカル信号とし
て該ローカル信号に同調したろ波特性を有する追随型帯
域通過濾波器とを有し、該追随型帯域通過p波器に前記
受信信号を通す事により受信すべきチャネルの信号を選
択すると共に、上記受信チャネルの信号を、前記再生パ
イロット信号をローカル信号として低域周波数帯に周波
数変換し、更に前記周波数シンセサイザの出力の一部を
ローカル信号としてIF周波数帯に周波数変換する事に
よりチャネルに無関係に一定の周波数帯に受信すべきチ
ャネル信号を得て復調、再生するようにした狭帯域通信
方式である。
In the present invention, a predetermined pilot station sends out a neulot signal at a specified frequency, and at each earth station, the received signal is passed through a narrowband bandpass p-wave filter tuned to the neulot frequency. A frequency synthesizer that reproduces a noquilot signal and generates a channel frequency signal to be received, and a tracking bandpass filter that uses the frequency synthesizer as a local signal and has filtering characteristics tuned to the local signal. Then, by passing the received signal through the tracking type bandpass p-wave device, the signal of the channel to be received is selected, and the signal of the received channel is frequency-transmitted into a low frequency band using the regenerated pilot signal as a local signal. By converting a part of the output of the frequency synthesizer into the IF frequency band as a local signal, the channel signal to be received is obtained in a fixed frequency band regardless of the channel, and is demodulated and reproduced. It is a band communication method.

以下赤日 〔実施例〕 本発明が適用される通信システムを第2図に示す。91
は通信衛星、92はパイロット局、93は多数の小形地
球局である。
EMBODIMENT OF THE INVENTION A communication system to which the present invention is applied is shown in FIG. 2. 91
92 is a communication satellite, 92 is a pilot station, and 93 is a large number of small earth stations.

第3図に本発明方式による送信信号スペクトルを示す。FIG. 3 shows the transmission signal spectrum according to the method of the present invention.

第1図は本発明方式による狭帯域信号受信回路を示す。FIG. 1 shows a narrowband signal receiving circuit according to the present invention.

これは第8図の受信IF系64に対応する部分である。This is a part corresponding to the reception IF system 64 in FIG.

1,2は周波数追随形(Tracking)帯域F波器
、3はミキサ、4は/−’イロット信号用ローカル発振
器、5はチャネル周波数シンセサイザ、6は低域F波器
、7はミキサ、8は帯域F波器、10は復調器である。
1 and 2 are frequency tracking band F wave generators, 3 is a mixer, 4 is a local oscillator for the /-' pilot signal, 5 is a channel frequency synthesizer, 6 is a low frequency F wave generator, 7 is a mixer, and 8 is a 10 is a demodulator.

本発明に用いる周波数追随型帯域ν波器を第4図に示す
。11.12はミキサ、13はπ/2移相器、14.1
5は低域p波器、16.17はミキサ、18はIF信号
合成器である。
FIG. 4 shows a frequency tracking type band ν wave device used in the present invention. 11.12 is a mixer, 13 is a π/2 phase shifter, 14.1
5 is a low-pass p-wave generator, 16.17 is a mixer, and 18 is an IF signal synthesizer.

復調器10の基本回路を第5図に示す。101はキャリ
ヤ再生回路、102はクロック再生回路。
The basic circuit of demodulator 10 is shown in FIG. 101 is a carrier recovery circuit, and 102 is a clock recovery circuit.

103は復調器、104はデータ再生器である。103 is a demodulator, and 104 is a data regenerator.

本発明による通信システムの通信原理を以下に説明する
。まず受信信号は。
The communication principle of the communication system according to the present invention will be explained below. First, what is the received signal?

パイロット信号;τ、(t)= cas (ω。t+θ
j+θ。n)  (1)各チャンネル信号;v、c(t
)=ctB(飄t+θj十飄+θkn)(2)と表わす
ことができる。但し。
Pilot signal; τ, (t) = cas (ω.t+θ
j+θ. n) (1) Each channel signal; v, c(t
)=ctB(t+θj+θkn) (2). however.

ω。;パイロット周波数 θ。。;ノ悩ロット信号に加わる伝送路熱雑音ω5 ;
チャネルにの周波数(k=1.2.・・・N)θkn;
第にチャネル信号に加わる熱雑音ψk(t):変調位相
(0又はπ) θ、;伝送路で生じる位相雑音 である。
ω. ;Pilot frequency θ. . ;Transmission line thermal noise ω5 added to the trouble lot signal;
Frequency of channel (k=1.2...N) θkn;
Thermal noise ψk(t) added to the channel signal: modulation phase (0 or π) θ,; phase noise generated in the transmission path.

ここで重要な事実は9位相雑音θユは全チャネルに共通
であるという事である。
The important fact here is that the phase noise θ is common to all channels.

第1図を参照して、ローカル発振器4を・ぞイロット周
波数に同調させて帯域濾波器1出力に於て式(1)のパ
イロット信号を選択抽出する。同様に。
Referring to FIG. 1, the local oscillator 4 is tuned to the pilot frequency, and the pilot signal of equation (1) is selectively extracted at the output of the bandpass filter 1. Similarly.

帯域F波器2の出力に於て式(2)で表わされる信号の
中受信すべき信号(第にチャネルとする)全選択する。
At the output of the band F wave generator 2, all signals (referred to as channels) to be received are selected from among the signals expressed by equation (2).

ミキサ3に於て乗算の結果。Result of multiplication in mixer 3.

v3ft)=ccs ((oh−ω。)t+顔+θkn
−θon’  (3)が得られ2位相雑音θ、は相殺さ
れてしまう。その代シ1位相熱雑音θ。nが加わってく
るが、この項は・母イロット信号の電力を他チャネルよ
シ太きくするとか、あるいは帯域P波器1の帯域幅を帯
域戸波器2よりも狭帯域にすることによシ、θ。。
v3ft)=ccs ((oh-ω.)t+face+θkn
-θon' (3) is obtained, and the two-phase noise θ is canceled out. Instead, 1-phase thermal noise θ. n is added, but this term can be changed by making the power of the main pilot signal thicker than other channels, or by making the bandwidth of the band P-wave device 1 narrower than that of the band-pass wave device 2. , θ. .

をθknよりも遥かに小さい僅に抑圧する事が可能であ
り、ミキサ3に於るS/N劣化を無視し得る程に小さく
する事は可能である。
It is possible to suppress θkn to a very small amount, which is much smaller than θkn, and it is possible to make the S/N deterioration in the mixer 3 so small that it can be ignored.

次に、ミキサ7に於て。Next, at mixer 7.

υ(t) ” cai ((”y−ωl−ω。)を十へ
+θkn−〇on)+1+ωに′−ω。       
    (4)が得られる。ここで、1′はチャネル周
波数シンセサイザ5の出力周波数であシ、飄に極めて近
い値を持つ。帯域p波器8はω に同調して式(4)の
第一〇 項のみを通過させ、チャネル周波数とは無関係に周波数
帯ω に受信すべきチャネルの信号が得られる。帯域P
波器8の出力をIF周波数ω で動作する復調器10に
入力してデータ及びクロックを再生し出力する。
υ(t) ” cai ((”y−ωl−ω.) to 10+θkn−〇on)+1+ωto′−ω.
(4) is obtained. Here, 1' is the output frequency of the channel frequency synthesizer 5, and has a value extremely close to 1'. The band p wave filter 8 is tuned to ω and passes only the 10th term of equation (4), and the signal of the channel to be received is obtained in the frequency band ω regardless of the channel frequency. Band P
The output of the wave converter 8 is input to a demodulator 10 operating at the IF frequency ω to reproduce and output data and a clock.

場合によっては、帯域P波器8の出力を第1図に示す様
に、ローカル発振器4の出力の一部を用いてベースバン
ド帯(OHz帯)に周波数変換して同期又は遅延検波法
によって信号再生を行う事ができる。
In some cases, as shown in FIG. 1, the output of the band P-wave generator 8 may be frequency-converted to the baseband band (OHz band) using a part of the output of the local oscillator 4, and the signal may be converted into a signal using a synchronous or delay detection method. Can be played.

以上のように1本発明により伝送路及び受信装置内で発
生する位相雑音を相殺する事ができる。
As described above, according to the present invention, it is possible to cancel phase noise generated in a transmission path and a receiving device.

なお、各地球局の送信部で発生する位相雑音については
1次のようにすれば良い。即ち、ノクイロット信号を各
地球局が独立に送出すれば良い。この場合の各チャネル
の送信ス4クトルを第6図に。
Note that the phase noise generated in the transmitting section of each earth station may be made to be first-order. That is, it is sufficient if each earth station independently transmits the Nokilot signal. Figure 6 shows the transmission vector of each channel in this case.

受信装置を第7図に示す。52はIF信号合成器。The receiving device is shown in FIG. 52 is an IF signal synthesizer.

53はノぐイロット発振器、 55’ 、 59’はチ
ャネル周波数シンセサイザ、60は帯域泥波器、61は
狭帯域の帯域F波器、62はミキサ、63は低域テ波器
、10は復調器である。
53 is a nogirot oscillator, 55' and 59' are channel frequency synthesizers, 60 is a band wave generator, 61 is a narrow band F wave generator, 62 is a mixer, 63 is a low frequency wave generator, and 10 is a demodulator. It is.

本方式の動作は上述のシステムと基本的には同じである
。各局は割り当てられた周波数帯域内で俊調信号のキャ
リヤ周波数からCf −f )だけ異c る周波数位置に・ぐイロノト信号を変調信号に加えて送
出する。受信部に於ては、まずチャネル周波数シンセサ
イザ59′とダウンコンバータ58.帯域F波器60に
より規定の周波数帯に受信チャイ、ルの信号を選択出力
する。次に、狭帯域の帯域F波器61によりそのチャネ
ルのパイロット信号を抽出し、それを用いてミキサ62
によって周波数変換を行う事により、Cf−f)なる周
波数帯に。
The operation of this system is basically the same as the system described above. Each station sends out a signal in addition to the modulation signal at a frequency position that differs by Cf −f ) from the carrier frequency of the high-speed signal within the assigned frequency band. In the receiving section, first, a channel frequency synthesizer 59' and a down converter 58. A band F wave generator 60 selectively outputs the received signal in a specified frequency band. Next, the narrow band F wave filter 61 extracts the pilot signal of that channel, and the mixer 62 uses it to extract the pilot signal of that channel.
By performing frequency conversion, the frequency band becomes Cf-f).

c 送信部、伝送路部、受信装置部で発生する位相雑音が除
去された高安定度の変調信号が得られることにより1通
常の同期復調法によって信号再生を行う墨ができる。本
方式では、電力効率及び帯域幅効率の点で多少の損失は
あるが2位相雑音の大きな伝送路を通じて簡便な装置で
超低速通信を行う場合等には極めて有効である。すなわ
ち、送信部も含めた全RF信号路で生じる位相雑音を除
去することができるので、超小形局による超低速通信が
可能となり1通信衛星を用いた移動通信等が可能となる
c. By obtaining a highly stable modulated signal from which phase noise generated in the transmitting section, transmission path section, and receiving device section has been removed, it is possible to perform signal reproduction using the normal synchronous demodulation method. Although this method causes some loss in terms of power efficiency and bandwidth efficiency, it is extremely effective when performing ultra-low-speed communication with a simple device through a transmission line with large two-phase noise. In other words, phase noise generated in all RF signal paths including the transmitter can be removed, making it possible to perform extremely low-speed communications using a very small station, and to enable mobile communications using a single communication satellite.

〔発明の効果〕〔Effect of the invention〕

本発明によ9次の効果が実現できる。 According to the present invention, the following effects can be achieved.

(1)  まず1本発明方式及び受信装置により、伝送
路部及び受信装置内で発生する位相雑音を除去する事が
でき、同期復調法により安定かつ良好な特性の狭帯域通
信が可能である。
(1) First, the system and receiver of the present invention can remove phase noise generated in the transmission line and receiver, and the synchronous demodulation method enables stable and good narrowband communication.

(2)従って、既存の通信衛星を用いて、多数の小型局
間で狭帯域通信を行うシステムを構築する事が可能とな
る。
(2) Therefore, it is possible to construct a system that performs narrowband communication between a large number of small stations using existing communication satellites.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式による受信装置のブロック図、第2
図は本発明が適用される狭帯域通信システムを説明する
ための図、第3図は本発明方式の送信信号ス被りトルを
示す図、第4図は本発明に用いる周波数追随型帯域テ波
器のブロック図、第5図は本発明に用いる同期復調器の
基本構成を示すブロック図、第6図は本発明の他の例即
ちチャネル毎の・ぐイロノト信号重畳方式に於る送信信
号スペクトルを示す図、第7図はチャネル別i4イロッ
ト信号重畳方式の通信系を示すブロック図、第8図は、
衛星通信システムに於る局部信号系を示し、第9図は従
来のFSK変調信号の受信回路を示すO 図中、1,2は周波数追随型帯域p波器、3゜7はミキ
サ、4はローカル発振器、5はチャネル周波数シンセサ
イザ、6は低域F波器、8は帯域ヂ彼器、10は復調器
。 第3図 第4図 第5図 第6図
FIG. 1 is a block diagram of a receiving device according to the present invention, and FIG.
The figure is a diagram for explaining a narrowband communication system to which the present invention is applied, Figure 3 is a diagram showing the transmission signal span of the present invention system, and Figure 4 is a diagram for explaining the frequency tracking type band transmission system used in the present invention. FIG. 5 is a block diagram showing the basic configuration of a synchronous demodulator used in the present invention, and FIG. 6 is a block diagram showing the transmission signal spectrum in another example of the present invention, that is, the signal superimposition method for each channel. FIG. 7 is a block diagram showing the communication system of the i4lot signal superimposition method for each channel, and FIG.
This shows a local signal system in a satellite communication system, and Figure 9 shows a conventional FSK modulated signal receiving circuit. A local oscillator, 5 a channel frequency synthesizer, 6 a low frequency F wave generator, 8 a band shifter, and 10 a demodulator. Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、複数の小型地球局の間で通信衛星を介して狭帯域通
信を行うシステムに於て、予め定められたパイロット局
が規定の周波数にてパイロット信号を送出し、各地球局
に於ては、受信信号をパイロット周波数に同調した狭帯
域の帯域通過濾波器に通す事によりパイロット信号を再
生し、しかも受信すべきチャネル周波数信号を発生する
周波数シンセサイザと、該周波数シンセサイザをローカ
ル信号として該ローカル信号に同調した濾波特性を有す
る追随型帯域通過濾波器とを有し、該追随型帯域通過濾
波器に前記受信信号を通す事により受信すべきチャネル
の信号を選択すると共に、上記受信チャネルの信号を前
記再生パイロット信号をローカル信号として低域周波数
帯に周波数変換し、更に前記周波数シンセサイザの出力
の一部をローカル信号としてIF周波数帯に周波数変換
する事によりチャネルに無関係に一定の周波数帯に受信
すべきチャネル信号を得て復調、再生するようにした狭
帯域信号通信方式。
1. In a system that performs narrowband communication between multiple small earth stations via communication satellites, a predetermined pilot station sends out a pilot signal at a specified frequency, and each earth station , a frequency synthesizer that regenerates the pilot signal by passing the received signal through a narrowband bandpass filter tuned to the pilot frequency and also generates a channel frequency signal to be received; and a frequency synthesizer that uses the frequency synthesizer as a local signal to generate the local signal. a tracking type bandpass filter having filtering characteristics tuned to the filter, and selecting the signal of the channel to be received by passing the received signal through the tracking type bandpass filter, and selecting the signal of the receiving channel. The regenerated pilot signal is frequency-converted as a local signal to a low frequency band, and a part of the output of the frequency synthesizer is further frequency-converted as a local signal to an IF frequency band, so that the signal is received in a constant frequency band regardless of the channel. A narrowband signal communication method that obtains, demodulates, and reproduces the desired channel signal.
JP29678186A 1986-12-15 1986-12-15 Narrow band signal communication system Granted JPS63151123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29678186A JPS63151123A (en) 1986-12-15 1986-12-15 Narrow band signal communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29678186A JPS63151123A (en) 1986-12-15 1986-12-15 Narrow band signal communication system

Publications (2)

Publication Number Publication Date
JPS63151123A true JPS63151123A (en) 1988-06-23
JPH0413893B2 JPH0413893B2 (en) 1992-03-11

Family

ID=17838050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29678186A Granted JPS63151123A (en) 1986-12-15 1986-12-15 Narrow band signal communication system

Country Status (1)

Country Link
JP (1) JPS63151123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258655A (en) * 2002-02-27 2003-09-12 Communication Research Laboratory Transmitter and transmission method, receiver and reception method, and radio communication apparatus and radio communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258655A (en) * 2002-02-27 2003-09-12 Communication Research Laboratory Transmitter and transmission method, receiver and reception method, and radio communication apparatus and radio communication method

Also Published As

Publication number Publication date
JPH0413893B2 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
EP0620959B1 (en) Frequency synchronized bidirectional radio system
US4912722A (en) Self-synchronous spread spectrum transmitter/receiver
EP0420230A2 (en) Feed forward spread spectrum signal processor
JPS6248819A (en) Satellite communication system
CA2351271C (en) Two-way radio communication system and two-way radio communication method
JPS63151123A (en) Narrow band signal communication system
JP3197581B2 (en) Spread spectrum receiver, spread spectrum transmitter, and spread spectrum communication system
JPH0554747B2 (en)
JP3287015B2 (en) Auxiliary signal transmission method
JP2915875B2 (en) Asynchronous receiver for FH
US5061999A (en) Multiplex signal processing apparatus
JPS601787B2 (en) Wireless transmission method
US3939407A (en) Plural channel communications system
Shen et al. SSB and DSB Enabled Hybrid Waveforms for the Space-Ground Link System
JPS592458A (en) Spread spectrum communication system
JP2877197B2 (en) Non-regenerative relay alarm transmission apparatus and method
JPS6277725A (en) Same frequency relay system
JPS6338140B2 (en)
FI112416B (en) Method and apparatus for transmitting information by radio
JPH0738467A (en) Transmitter-receiver
JPH11127476A (en) Radio communication system
JP2595751B2 (en) Wireless transceiver
JP2865881B2 (en) Transmission signal reproduction device
JPH0955692A (en) Frequency diversity radio communication method, frequency diversity radio transmitter and frequency diversity ratio receiver, and frequency diversity radio communication equipment
JPH06177855A (en) Spread spectrum communication equipment