JPH0767058B2 - Surface treatment method for glass medium for ultrasonic delay element - Google Patents

Surface treatment method for glass medium for ultrasonic delay element

Info

Publication number
JPH0767058B2
JPH0767058B2 JP62070184A JP7018487A JPH0767058B2 JP H0767058 B2 JPH0767058 B2 JP H0767058B2 JP 62070184 A JP62070184 A JP 62070184A JP 7018487 A JP7018487 A JP 7018487A JP H0767058 B2 JPH0767058 B2 JP H0767058B2
Authority
JP
Japan
Prior art keywords
delay element
glass medium
ultrasonic delay
surface treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070184A
Other languages
Japanese (ja)
Other versions
JPS63237605A (en
Inventor
健 葛西
温人 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62070184A priority Critical patent/JPH0767058B2/en
Publication of JPS63237605A publication Critical patent/JPS63237605A/en
Publication of JPH0767058B2 publication Critical patent/JPH0767058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波遅延素子用ガラス媒体の表面処理方法
に関する。
The present invention relates to a surface treatment method for a glass medium for an ultrasonic delay element.

[従来の技術] 近年、ビデオテープレコーダやカラーテレビジョン受像
機などの映像機器における小型化や低価格化への動きに
は目覚ましいものがあり、超音波遅延素子はこれらの機
器の小型無調整化を促進するものとして頻用されてい
る。
[Prior Art] In recent years, there has been a remarkable movement toward miniaturization and cost reduction in video equipment such as video tape recorders and color television receivers, and ultrasonic delay elements have made these equipment compact and unadjusted. Often used to promote.

このような超音波遅延素子は、適宜の形状に形成されて
いる超音波遅延媒体に入出力用トランスジューサを配設
することで形成されており、このうちの超音波遅延媒体
については、主に、石英ガラス等、適宜の組成からなる
ガラス材から切り出されて形成されているガラス媒体が
多く用いられている。
Such an ultrasonic delay element is formed by disposing an input / output transducer in an ultrasonic delay medium that is formed in an appropriate shape. Among these, the ultrasonic delay medium is mainly A glass medium formed by cutting out from a glass material having an appropriate composition such as quartz glass is often used.

ところで、このようなガラス媒体を用いて形成される超
音波遅延素子は、これが組み込まれる映像機器セットの
高画質化や高信頼性化を確保するうえから、得られる遅
延時間の経時変化を極力抑制することで、遅延時間の変
動幅をできるだけ少なくしてその無調整化を図ってやる
必要がある。この場合に問題となる経時変化について
は、ガラス媒体の表面に付着している有機質汚れが時の
経過とともにその表面状態を変化させることと無関係で
ないとされており、かかる観点から、ガラス切断時に用
いられる冷却液としての油や蛋白等の有機質汚れをガラ
ス媒体の表面から除去すべく、例えば、イソプロピルア
ルコールやトリクレゾール等の溶剤を用いて洗浄処理を
施したガラス媒体が使用されていた。
By the way, the ultrasonic delay element formed by using such a glass medium suppresses the change of the obtained delay time as much as possible in order to secure high image quality and high reliability of the image equipment set in which the ultrasonic delay element is incorporated. By doing so, it is necessary to reduce the fluctuation range of the delay time as much as possible and eliminate the adjustment. Regarding the change with time which is a problem in this case, it is said that the organic stains adhering to the surface of the glass medium are not related to the change of the surface state thereof with the passage of time. In order to remove organic stains such as oil and protein as a cooling liquid from the surface of the glass medium, for example, a glass medium which has been subjected to a washing treatment with a solvent such as isopropyl alcohol or tricresole has been used.

[発明が解決しようとする問題点] しかし、上記したような溶剤を用いて洗浄しても、ガラ
ス媒体表面から油や蛋白等の有機質汚れを完全に除去す
ることはできなかった。また、使用溶剤自体の有機質物
質もガラス媒体の表面に残存することなどもあって、こ
のような溶剤を用い行なわれる洗浄処理のみでは、有機
質汚れによりもたらされる経時変化を効果的に抑制する
ことに困難があった。
[Problems to be Solved by the Invention] However, even if the above-mentioned solvent is used for cleaning, organic stains such as oil and protein cannot be completely removed from the surface of the glass medium. In addition, since the organic substance of the used solvent itself also remains on the surface of the glass medium, it is possible to effectively suppress the change with time caused by organic stains only by the cleaning treatment performed using such a solvent. There was difficulty.

[発明の目的] 本発明の目的は、従来方法が有していた上記問題点に鑑
み、超音波遅延素子を構成するガラス媒体に対し新規な
乾式洗浄処理を施すことで、遅延時間の経時変化をもた
らす有機質汚れを効果的に除去することができる超音波
遅延素子用ガラス媒体の表面処理方法を提供することに
ある。
[Object of the Invention] In view of the above problems that the conventional method has, an object of the present invention is to subject the glass medium constituting the ultrasonic delay element to a novel dry cleaning treatment to change the delay time with time. It is an object of the present invention to provide a surface treatment method for a glass medium for an ultrasonic delay element, which can effectively remove organic stains that bring about the above.

[問題点を解決するための手段] このような目的を達成するため、本発明は、次のように
して構成されている。
[Means for Solving Problems] In order to achieve such an object, the present invention is configured as follows.

すなわち、本発明は、超音波遅延素子を構成するガラス
媒体の表面に対し波長290nm以下の紫外線とオゾンとを
同時に照射して乾式洗浄を行なうことに構成上の特徴が
ある。
That is, the present invention is structurally characterized in that the surface of the glass medium constituting the ultrasonic delay element is simultaneously irradiated with ultraviolet rays having a wavelength of 290 nm or less and ozone to perform dry cleaning.

[実施例] 以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

超音波遅延素子を構成し、適宜の形状を呈して形成され
る石英ガラス等からなるガラス媒体は、数十ワット程度
の出力を有する紫外線(以下、UVという)とオゾン(以
下、O3という)とを照射することができる適宜の装置内
に光源に対し好適な距離をおいて収容するとともに、そ
の表面に対し、UVとO3とを数分間照射(以下、UV/O3
射という)することで、乾式洗浄処理を施す。
The glass medium made of quartz glass or the like, which constitutes the ultrasonic wave delay element and has an appropriate shape, has an ultraviolet ray (hereinafter referred to as UV) and ozone (hereinafter referred to as O 3 ) having an output of several tens of watts. It is housed in a suitable device capable of irradiating with and at a suitable distance from the light source, and its surface is irradiated with UV and O 3 for several minutes (hereinafter referred to as UV / O 3 irradiation). By doing so, a dry cleaning process is performed.

この場合、照射するUVは、290nm以下の短波長とするこ
とが必要で好ましくはエネルギーがより強力である240n
m以下の短絡長のものであることが洗浄効果を高めるう
えからは望ましい。
In this case, it is necessary to irradiate UV with a short wavelength of 290 nm or less, and it is preferable that the energy is 240 n, which has stronger energy.
A short-circuit length of m or less is desirable in order to enhance the cleaning effect.

次いで、本発明方法による洗浄処理の作用について説明
する。
Next, the operation of the cleaning process according to the method of the present invention will be described.

本発明方法は、UVによりもたらされる有機化合物の化学
結合の切断効果と、O3が有している強力な酸化効果とに
着目して行なわれるものであり、UV/O3照射を行なうこ
とで、有機質汚れを例えば炭酸ガスや水等の揮発性物質
に分解し、これを除去するものである。
The present invention is intended to be performed by paying attention to the cutting effect of the chemical bonds of the organic compounds caused by UV, the strong oxidizing effect of O 3 has, by performing UV / O 3 irradiation The organic dirt is decomposed into volatile substances such as carbon dioxide and water, and the volatile substances are removed.

すなわち、光のエネルギーEは、E=hc/λの式で表わ
される。この式から得られるUVのエネルギー、例えば波
長が253.7nmあるいは184.9nmであるUVのエネルギーは、
結合エネルギーが83.6kcal/molであるC−C結合や、9
8.8kcal/molであるC−H結合より高い解離エネルギー
を有しており、これを対象物であるガラス媒体に照射す
ることにより、C−C結合やC−H結合の結合関係を解
離することができる。
That is, the energy E of light is expressed by the equation E = hc / λ. The UV energy obtained from this equation, for example, the UV energy with a wavelength of 253.7 nm or 184.9 nm is
C-C bonds with a binding energy of 83.6 kcal / mol, 9
It has a higher dissociation energy than the C-H bond of 8.8 kcal / mol, and dissociates the C-C bond or the C-H bond relationship by irradiating the target glass medium with this. You can

一方、波長が240nm以下、例えば184.9nmであるUVは、酸
素分子O2に吸収され、次の反応式によってO3を発生す
る。
On the other hand, UV having a wavelength of 240 nm or less, for example, 184.9 nm is absorbed by oxygen molecule O 2 , and O 3 is generated by the following reaction formula.

O2→O+O O+O2→O3 また、波長が240nm以上であって290nm以下であるUV、例
えば波長が253.7nmであるUVは、酸素分子O2に吸収され
ず、次の反応式のようにしてO3に吸収され、再びO3を発
生する。
O 2 → O + O O + O 2 → O 3 UV having a wavelength of 240 nm or more and 290 nm or less, for example, UV having a wavelength of 253.7 nm is not absorbed by oxygen molecule O 2 and is expressed by the following reaction formula. Te is absorbed O 3, generates O 3 again.

O3→O+O2 O+O2→O3 しかし、波長が290nm超であるUVになると、O3による光
の吸収はなくなり、O3は分解しない。
O 3 → O + O 2 O + O 2 → O 3 However, when UV wavelength is over 290 nm, absorption of light by O 3 is stopped and O 3 is not decomposed.

かくして、O2とO3の分解生成時に生ずる酸素原子は、非
常に強力な酸化効果を発揮し、有機質汚れを炭酸ガスや
水などの揮発性物質に分解し、これを除去することが可
能となる。
Thus, the oxygen atoms generated during the decomposition and formation of O 2 and O 3 exert a very strong oxidizing effect, and decompose organic dirt into volatile substances such as carbon dioxide and water, which can be removed. Become.

なお、ガラス媒体については、UV/O3照射前における洗
浄と、UV/O3照射後における保管についても十分な配慮
を払う必要がある。
Note that the glass medium, and washed before UV / O 3 irradiation, it is necessary to pay also sufficient consideration for storage after UV / O 3 irradiation.

第1図は、本発明方法により処理されたガラス媒体を用
いてなる超音波遅延素子と、未処理品を用いてなる超音
波遅延素子とを、室温が25℃で湿度が35%である雰囲気
中に置き、その遅延時間の経時変化を測定した結果得ら
れたグラフ図である。これによれば、本発明方法による
処理を施したガラス媒体を用いてなる超音波遅延素子の
遅延時間が、いずれの経過時間においても未処理品に比
較してその経時変化の少ないことが確認され、本発明方
法が遅延時間の経時変化を抑制するうえで有効であるこ
とを知ることができた。
FIG. 1 shows an ultrasonic delay element using a glass medium treated by the method of the present invention and an ultrasonic delay element using an untreated product in an atmosphere in which the room temperature is 25 ° C. and the humidity is 35%. It is a graph figure obtained as a result of having put it inside and measuring the change over time of the delay time. According to this, it is confirmed that the delay time of the ultrasonic delay element using the glass medium treated by the method of the present invention is less changed with time at any elapsed time as compared with the untreated product. It was found that the method of the present invention is effective in suppressing the change in delay time with time.

[発明の効果] 以上述べたように本発明方法によれば、超音波遅延素子
用のガラス媒体表面に付着し、遅延時間の経時変化を生
じさせる要因の1つであった有機質汚れを効果的に除去
することができるので、高品位で信頼性の高いガラス媒
体、ひいては、その無調整化をより効果的に促進するこ
とができる超音波遅延素子の製造を可能とすることがで
きる。
[Effects of the Invention] As described above, according to the method of the present invention, it is possible to effectively remove organic stains, which is one of the factors that cause the deterioration of the delay time with time by adhering to the glass medium surface for the ultrasonic delay element. Therefore, it is possible to manufacture a high-quality and highly reliable glass medium, and further, an ultrasonic delay element capable of more effectively promoting the non-adjustment thereof.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法により処理されたガラス媒体を用
いてなる超音波遅延素子と未処理品を用いてなる超音波
遅延素子とにおける得られる遅延時間の経時変化を示す
グラフである。
FIG. 1 is a graph showing changes with time of delay times obtained in an ultrasonic delay element using a glass medium treated by the method of the present invention and an ultrasonic delay element using an untreated product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超音波遅延素子を構成するガラス媒体の表
面に対し波長290nm以下の紫外線とオゾンとを同時に照
射して乾式洗浄を行なうことを特徴とする超音波遅延素
子用ガラス媒体の表面処理方法。
1. Surface treatment of a glass medium for an ultrasonic delay element, characterized in that the surface of a glass medium constituting the ultrasonic delay element is simultaneously irradiated with ultraviolet rays having a wavelength of 290 nm or less and ozone for dry cleaning. Method.
JP62070184A 1987-03-26 1987-03-26 Surface treatment method for glass medium for ultrasonic delay element Expired - Lifetime JPH0767058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070184A JPH0767058B2 (en) 1987-03-26 1987-03-26 Surface treatment method for glass medium for ultrasonic delay element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070184A JPH0767058B2 (en) 1987-03-26 1987-03-26 Surface treatment method for glass medium for ultrasonic delay element

Publications (2)

Publication Number Publication Date
JPS63237605A JPS63237605A (en) 1988-10-04
JPH0767058B2 true JPH0767058B2 (en) 1995-07-19

Family

ID=13424183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070184A Expired - Lifetime JPH0767058B2 (en) 1987-03-26 1987-03-26 Surface treatment method for glass medium for ultrasonic delay element

Country Status (1)

Country Link
JP (1) JPH0767058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626724B1 (en) * 1992-12-14 2000-07-26 Ebara Corporation System for transferring wafer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984342A (en) * 1972-12-19 1974-08-13
JPS58145643A (en) * 1982-02-24 1983-08-30 Sharp Corp Cleaning of indium-tin glass plate
JPS6075327A (en) * 1983-09-30 1985-04-27 Toshiba Corp Ultraviolet ray generating device and material treating device using it

Also Published As

Publication number Publication date
JPS63237605A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
Kläning et al. Laser flash photolysis of HCIO, CIO−, HBrO, and BrO− in aqueous solution. Reactions of Cl‐and Br‐atoms
KR100817693B1 (en) Method for removing a residue from a chamber
US4049515A (en) Laser isotope separation by multiple photon absorption
JP2000294530A (en) Method for cleaning semiconductor substrate and its cleaner
EA005554B1 (en) Method for preparing alkali metal ferrates and novel alkali metal ferrate granules
JPH0767058B2 (en) Surface treatment method for glass medium for ultrasonic delay element
US6143477A (en) Dual wavelength UV lamp reactor and method for cleaning/ashing semiconductor wafers
DE1767458A1 (en) Tobacco irradiation processes and tobacco products made from the process products
JP3034720B2 (en) Surface cleaning method or surface modification method
JPH01226156A (en) Method and apparatus for cleaning substrate
JPH05143981A (en) Method for cleaning substrate
Williams Phosphorescence Spectrum of Anthracene Crystals
Martra et al. FTIR Study of Adsorption and Photodegradation of L-α-alanine on TiO2 Powder
Herve et al. The effect of laser radiations on human ceruloplasmin, absorption, circular dichroism and electron paramagnetic resonance study
DE3540469A1 (en) METHOD FOR PROTECTING POLISHED SILICON SURFACES
JP3265677B2 (en) Method of forming ferroelectric thin film
JP2006095520A (en) Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
Zakharenko Photoinduced heterogeneous processes on chemical phase components of solid tropospheric aerosols
JPH10199846A (en) Ultraviolet treating method
TWI822240B (en) Method for cleaning substrate for blank mask, substrate for blank mask and blank mask comprising the same
Chuang Infrared laser stimulated surface processes
JP2002209571A (en) Infrared light-irradiated wine and apparatus for producing the same
JPH0429220B2 (en)
Faucitano et al. Excitation versus ionic mechanism in the solid state radiolysis of poly (perfluoroethers)
JP3526204B2 (en) UV cleaning equipment