JPH0766576A - Heat transmission acceleration surface structure - Google Patents
Heat transmission acceleration surface structureInfo
- Publication number
- JPH0766576A JPH0766576A JP21251293A JP21251293A JPH0766576A JP H0766576 A JPH0766576 A JP H0766576A JP 21251293 A JP21251293 A JP 21251293A JP 21251293 A JP21251293 A JP 21251293A JP H0766576 A JPH0766576 A JP H0766576A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- integrated circuit
- flow path
- refrigerant
- heat conduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、LSI、ダイオード、
IGBT、サイリスタ等の電子機器の素子から発生する
熱を冷却する場合の集積回路の熱伝達促進面構造に係る
ものである。BACKGROUND OF THE INVENTION The present invention relates to an LSI, a diode,
The present invention relates to a heat transfer promotion surface structure of an integrated circuit when cooling heat generated from an element of an electronic device such as an IGBT and a thyristor.
【0002】[0002]
【従来の技術】集積回路素子の冷却に、ベローズと冷水
流路を用いた方法は、従来にも行なわれている。例え
ば、アスメ ヒ−ト トランスファ ディビジョン ボ
リュ−ム119、ヒ−ト トランスファ イン ハイ
エネルギ−/ハイ ヒ−トフラックス アプリケ−ショ
ンズ 12/89の第25頁から第32頁の「フロ−ボ
イリング イン ア カ−ブド チャンネル」(Gu、
Chow and Beam、“Flow Boili
ng in a Curved Channel”、A
SME Heat Transfer Divisi
o、Vol.119、Heat Transfer i
n High Energy/HighHeat Fl
ux Applications、12/89、pp.
25−32)には、冷水流路と素子の間の熱伝導素子の
接触面に接触熱抵抗を低減するためのHeガスや熱伝導
グリスを用いているが、接触熱抵抗は1cm2の素子に対
して0.2℃/W以上であることが記載されている。2. Description of the Related Art A method using a bellows and a cold water flow path for cooling an integrated circuit element has been conventionally performed. For example, Asme Heat Transfer Division Volume 119 and Heat Transfer High
Energy / High Heat Flux Applications 12/89, pages 25-32, "Flo-boiling in-covered channel" (Gu,
Chow and Beam, “Flow Boili
ng in a Curved Channel ”, A
SME Heat Transfer Divisi
o, Vol. 119, Heat Transfer i
n High Energy / High Heat Fl
ux Applications, 12/89, pp.
25-32) uses He gas or heat conductive grease to reduce the contact thermal resistance on the contact surface of the heat conductive element between the cold water flow path and the element, but the contact thermal resistance is 1 cm 2 It is described that the temperature is 0.2 ° C./W or more.
【0003】[0003]
【発明が解決しようとする課題】電子機器、特にコンピ
ュータでは、計算速度を向上させるために信号伝送時間
を短縮すること及び、個々の素子の温度のばらつきを最
小にすることが必要であるが、上記従来技術では、この
点が十分に配慮されていないものであった。。In electronic devices, especially computers, it is necessary to shorten the signal transmission time in order to improve the calculation speed, and to minimize the temperature variations of individual elements. In the above-mentioned prior art, this point has not been sufficiently taken into consideration. .
【0004】本発明の目的は、高熱流束で発熱する素子
を高効率で冷却することが可能でありコンピュータの高
速化できる集積回路の熱伝達促進面構造を提供すること
にある。An object of the present invention is to provide a heat transfer promoting surface structure of an integrated circuit which can cool an element which generates a high heat flux with high efficiency and can speed up a computer.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明の熱伝達促進面構造は、集積回路素子を冷却
するために冷却媒体の流路構造として、冷却媒体をその
外部に沿って導くために、端部に複数の対になった小さ
い曲率を有し、また熱伝達面に対して対になった入口と
出口を有する流路構造、前記流路構造体と狭い間隔で設
置されている集積回路素子に固定された熱伝達面を有す
ることを特徴とするものである。熱又、前記伝熱面が沸
騰熱伝達面構造であるものである。又、前記熱伝達面構
造が複数個備えたものであって、冷媒を各熱伝達面構造
に直列あるいは並列に流す流路構造体を有するものであ
る。又、前記冷却媒体を外部の二次流体によって冷却す
る構造体を有するものである。又、前記熱伝達面が伝熱
面を拡大したフィンを設けられているものである。In order to achieve the above object, the heat transfer promotion surface structure of the present invention has a cooling medium as a flow path structure of a cooling medium for cooling an integrated circuit element, the cooling medium being provided along the outside thereof. Flow path structure having a plurality of pairs of small curvatures at the end portion and having a pair of inlets and outlets with respect to the heat transfer surface in order to guide It has a heat transfer surface fixed to the integrated circuit element. The heat transfer surface has a boiling heat transfer surface structure. Further, the heat transfer surface structure is provided in plural, and the flow path structure has a flow passage structure in which the refrigerant flows in series or in parallel to each heat transfer surface structure. Further, it has a structure for cooling the cooling medium by an external secondary fluid. Further, the heat transfer surface is provided with fins having an enlarged heat transfer surface.
【0006】[0006]
【作用】対流伝熱あるいは沸騰伝熱により集積回路素子
を冷却する場合、平滑面に対して10倍近い面積拡大率
をもち、圧力損失を低減するために非常に短い流路を用
いた方法が有効である。上記した構成としているので、
集積回路素子上に、伝熱面積を増加させるような細かい
溝付き面上を遠心力を作用させるために三次元的に流れ
なおかつ流路長を短くするような伝熱促進面を集積回路
素子上に形成する。また、流路に垂直あるいは平行か、
流れ方向に垂直な遠心力を応用することにより熱伝達率
を向上させることができる。これらの効果をもつような
流路を、集積回路素子上に形成し、冷却性能を向上させ
る。When an integrated circuit element is cooled by convective heat transfer or boiling heat transfer, a method using a very short flow path to reduce pressure loss has an area expansion rate of about 10 times that of a smooth surface. It is valid. With the above configuration,
On the integrated circuit element, a heat transfer promoting surface that three-dimensionally flows on the surface with fine grooves that increases the heat transfer area to cause centrifugal force to act and shortens the flow path length is provided on the integrated circuit element. To form. Also, whether vertical or parallel to the flow path,
The heat transfer coefficient can be improved by applying centrifugal force perpendicular to the flow direction. A flow path having these effects is formed on the integrated circuit element to improve the cooling performance.
【0007】[0007]
【実施例】本発明の一実施例を図1から図13により説
明する。図1は集積回路素子を冷却する系を示す斜視
図、図2は熱交換部を示す斜視図、図3は伝熱促進構造
体を反対側から見た下面図、図4は伝熱促進構造体及び
溝付面の側面図、図5は伝熱促進構造体の上面図、図6
は伝熱促進構造体の下面図、図7は伝熱促進構造体の側
面図、図8は伝熱促進構造体と流路構造体の側面図、図
9は伝熱促進構造体と流路構造体の側面図、図10は伝
熱促進構造体と流路構造体の上面図、図11は多数の集
積回路素子を冷却するための流路構造体の斜視上面図、
図12は流路構造体へ冷媒を供給する構造体の斜視下面
図、図13は図11で示される冷却構造体の全体を示す
断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 is a perspective view showing a system for cooling integrated circuit elements, FIG. 2 is a perspective view showing a heat exchange section, FIG. 3 is a bottom view of a heat transfer promotion structure seen from the opposite side, and FIG. 4 is a heat transfer promotion structure. 6 is a side view of the body and the grooved surface, FIG. 5 is a top view of the heat transfer promoting structure, and FIG.
Is a bottom view of the heat transfer promoting structure, FIG. 7 is a side view of the heat transfer promoting structure, FIG. 8 is a side view of the heat transfer promoting structure and the flow path structure, and FIG. 9 is a heat transfer promoting structure and the flow path. FIG. 10 is a side view of the structure, FIG. 10 is a top view of the heat transfer promotion structure and the flow path structure, and FIG. 11 is a perspective top view of the flow path structure for cooling a large number of integrated circuit elements.
12 is a perspective bottom view of a structure that supplies a coolant to the flow path structure, and FIG. 13 is a cross-sectional view showing the entire cooling structure shown in FIG.
【0008】図1に示すように、全体の熱伝達促進面構
造10は、次のように構成される。冷媒である流体は、
入口流路26より仕切板24とガイド板22から構成さ
れている流路構造体20に入り、さらに伝熱促進構造体
40を経て、溝付き伝熱面80の入口部42より出口部
44を経る間に集積回路素子からの熱が伝達され、冷媒
出口流路28から冷媒は流出する。冷媒は、前記溝部8
0に沿ってわずかの距離を遠心力を受けつつ三次元的に
流れるのみなので、圧力損失が少なくてすむ利点があ
る。As shown in FIG. 1, the entire heat transfer promotion surface structure 10 is constructed as follows. The fluid that is the refrigerant is
From the inlet flow path 26, the flow path structure 20 composed of the partition plate 24 and the guide plate 22 enters the flow path structure 20, further through the heat transfer promoting structure 40, and from the inlet part 42 of the grooved heat transfer surface 80 to the outlet part 44. In the meantime, heat from the integrated circuit element is transferred, and the refrigerant flows out from the refrigerant outlet passage 28. The coolant is the groove 8
Since it only flows three-dimensionally while receiving a centrifugal force along a small distance along 0, there is an advantage that the pressure loss can be small.
【0009】詳細を示した図2から分かるように、伝熱
促進の構造体40の上面50と、前記流路構造体20の
下面30が合うようになっている。冷媒(流体)は、入
口部42から入り、溝付面のエッジ84により分流して
溝付き面の曲率部82の溝付面80に沿って底面56と
のクリヤランスを流れる。冷媒の入口及び出口流路は、
傾斜した壁面46と、流路壁面54によって仕切られて
いる。As can be seen from FIG. 2 showing the details, the upper surface 50 of the heat transfer promoting structure 40 and the lower surface 30 of the flow path structure 20 are adapted to be aligned with each other. The refrigerant (fluid) enters from the inlet portion 42, is branched by the edge 84 of the grooved surface, and flows along the grooved surface 80 of the curved portion 82 of the grooved surface and the clearance with the bottom surface 56. The refrigerant inlet and outlet flow paths are
It is partitioned by the inclined wall surface 46 and the flow path wall surface 54.
【0010】図2の伝熱促進構造体40を反対側から見
た図3(集積回路素子側が図3の上部側になる)、伝熱
促進構造体40を横から見た図4、伝熱促進構造体40
を上部から見た図5、伝熱促進構造体40を底部から見
た図6、伝熱促進構造体40を側面から見た図7、伝熱
促進構造体40と流路構造体20(入口流路26、出口
流路28等から構成)を組立てた状態で側面から見た図
8及び図9、これらを上部(集積回路素子と反対側)か
ら見た図10、多数の集積回路素子を冷却する場合の流
路構造体20(入口流路26、出口流路28等から構
成)の斜め上面から見た図11から分かるように、流路
構造体へ冷媒を供給するヘッダ構造体62でヘッダ入口
部64とヘッダ出口部66が交互に形成されている。こ
の図では、素子側は上部側に位置する。FIG. 3 is a view of the heat transfer promotion structure 40 of FIG. 2 from the opposite side (the integrated circuit element side is the upper side of FIG. 3), FIG. 4 is a view of the heat transfer promotion structure 40 from the side, Facilitating structure 40
5 viewed from the top, FIG. 6 viewed from the bottom of the heat transfer promotion structure 40, FIG. 7 viewed from the side of the heat transfer promotion structure 40, the heat transfer promotion structure 40 and the flow path structure 20 (inlet). 8 and 9 viewed from the side in a state where the flow path 26, the outlet flow path 28, etc. are assembled), FIG. 10 viewed from above (the side opposite to the integrated circuit element), and a number of integrated circuit elements are shown. As can be seen from FIG. 11 when viewed obliquely from above of the flow channel structure 20 (comprising the inlet flow channel 26, the outlet flow channel 28, etc.) for cooling, the header structure 62 for supplying the refrigerant to the flow channel structure is used. Header inlet portions 64 and header outlet portions 66 are formed alternately. In this figure, the element side is located on the upper side.
【0011】図13に、多数のチップが搭載されたモジ
ュール74が実装された状態を示す。ヘッダ構造体62
の下面70からモジュール筐体部60に接していて、モ
ジュール74のピン列76により、モジューとモジュー
が接続される。ヘッダ構造体の外面72は、通常の冷却
水等の二次系の冷却システムにより冷却される。FIG. 13 shows a state in which a module 74 having a large number of chips is mounted. Header structure 62
The module 70 is in contact with the module casing 60 from the lower surface 70 thereof, and the modules are connected by the pin row 76 of the module 74. The outer surface 72 of the header structure is cooled by a secondary cooling system such as ordinary cooling water.
【0012】図14は、伝熱促進構造体40の他の実施
例で、溝部の曲率部82にフィン86を付けたものであ
る。FIG. 14 shows another embodiment of the heat transfer promoting structure 40 in which the fin 86 is attached to the curved portion 82 of the groove.
【0013】[0013]
【発明の効果】集積回路素子に固定された溝付き面上
に、伝熱を促進するために遠心力を付加した冷媒を三次
元的に流すことにより、高い発熱密度、すなわち高い熱
流束を生じるような集積回路素子を冷却することがで
き、コンピュータの高速化に効果がある。The heat generation density, that is, the high heat flux is generated by three-dimensionally flowing the refrigerant to which centrifugal force is added to accelerate the heat transfer on the grooved surface fixed to the integrated circuit device. Such integrated circuit elements can be cooled, which is effective in increasing the speed of the computer.
【0014】[0014]
【図1】本発明の一実施例である集積回路素子を冷却す
る系を示す斜視図である。FIG. 1 is a perspective view showing a system for cooling an integrated circuit device which is an embodiment of the present invention.
【図2】本実施例の熱交換部を示す斜視図である。FIG. 2 is a perspective view showing a heat exchange section of the present embodiment.
【図3】本実施例の伝熱促進構造体を反対側から見た下
面図である。FIG. 3 is a bottom view of the heat transfer promotion structure of the present embodiment as seen from the opposite side.
【図4】本実施例の伝熱促進構造体及び溝付面の側面図
である。FIG. 4 is a side view of the heat transfer promoting structure and the grooved surface of the present embodiment.
【図5】本実施例の伝熱促進構造体の上面図である。FIG. 5 is a top view of the heat transfer promotion structure of the present embodiment.
【図6】本実施例の伝熱促進構造体の下面図である。FIG. 6 is a bottom view of the heat transfer promotion structure of the present embodiment.
【図7】本実施例の伝熱促進構造体の側面図である。FIG. 7 is a side view of the heat transfer promotion structure of the present embodiment.
【図8】本実施例の伝熱促進構造体と流路構造体の側面
図である。FIG. 8 is a side view of the heat transfer promotion structure and the flow path structure of the present embodiment.
【図9】本実施例の伝熱促進構造体と流路構造体の側面
図である。FIG. 9 is a side view of the heat transfer promotion structure and the flow path structure of the present embodiment.
【図10】本実施例の伝熱促進構造体と流路構造体の上
面図である。FIG. 10 is a top view of a heat transfer promotion structure and a flow path structure of the present embodiment.
【図11】本実施例で、多数の集積回路素子を冷却する
ための流路構造体の斜視上面図である。FIG. 11 is a perspective top view of a flow path structure for cooling a large number of integrated circuit devices in this embodiment.
【図12】本実施例の流路構造体へ冷媒を供給する構造
体の斜視下面図である。FIG. 12 is a perspective bottom view of a structure that supplies a coolant to the flow path structure of the present embodiment.
【図13】図11で示される冷却構造体の全体を示す断
面図である。13 is a cross-sectional view showing the entire cooling structure shown in FIG.
【図14】本発明の他の実施例で、熱伝達促進面構造の
部分斜視図である。FIG. 14 is a partial perspective view of a heat transfer promotion surface structure according to another embodiment of the present invention.
10…熱伝達促進面構造、20…流路構造体、22…ガ
イド板、24…仕切板、26…入口流路、28…出口流
路、30…流路構造体の下面、32…流路構造体の上
面、40…伝熱促進構造体、42…溝付き伝熱面の入口
部、44…溝付き伝熱面の出口部、46…傾斜した壁
面、48…伝熱促進構造体の上部の溝、50…伝熱促進
構造体の上面、52…伝熱促進構造体の側面、54…流
路壁面、56…伝熱促進構造体の曲率を有する下面、6
0…流路構造体のハウジング、62…ヘッダ構造体、6
4…ヘッダ入口流路、66…ヘッダ出口流路、68…ヘ
ッダ部流路、70…ヘッダ構造体の下面、72…ヘッダ
構造体の上面、74…モジュール、76…ピン列、80
…溝付き伝熱面、82…溝付き面の曲率部、84…溝付
き面のシャープエッジ、86…フィン。DESCRIPTION OF SYMBOLS 10 ... Heat transfer promotion surface structure, 20 ... Flow path structure, 22 ... Guide plate, 24 ... Partition plate, 26 ... Inlet flow path, 28 ... Exit flow path, 30 ... Lower surface of flow path structure, 32 ... Flow path Top surface of structure, 40 ... Heat transfer promoting structure, 42 ... Entrance part of grooved heat transfer surface, 44 ... Exit part of grooved heat transfer surface, 46 ... Inclined wall surface, 48 ... Upper part of heat transfer promotion structure Grooves, 50 ... the upper surface of the heat transfer promoting structure, 52 ... the side surface of the heat transfer promoting structure, 54 ... the flow path wall surface, 56 ... the lower surface having the curvature of the heat transfer promoting structure, 6
0 ... Housing of flow path structure, 62 ... Header structure, 6
4 ... Header inlet channel, 66 ... Header outlet channel, 68 ... Header section channel, 70 ... Header structure lower surface, 72 ... Header structure upper surface, 74 ... Module, 76 ... Pin row, 80
... Heat transfer surface with groove, 82 ... Curvature portion of grooved surface, 84 ... Sharp edge of grooved surface, 86 ... Fin.
Claims (5)
流路構造として、冷却媒体をその外部に沿って導くため
に、端部に複数の対になった小さい曲率を有し、また熱
伝達面に対して対になった入口と出口を有する流路構
造、前記流路構造体と狭い間隔で設置されている集積回
路素子に固定された熱伝達面を有することを特徴とする
熱伝達促進面構造。1. A cooling medium flow path structure for cooling an integrated circuit device, which has a plurality of pairs of small curvatures at its end for guiding the cooling medium along the outside thereof, A heat transfer structure having a flow path structure having an inlet and an outlet paired with the transfer surface, and a heat transfer surface fixed to an integrated circuit element installed at a narrow interval from the flow path structure. Promotional surface structure.
項1に記載の熱伝達促進面構造。2. The heat transfer promotion surface structure according to claim 1, wherein the heat transfer surface is a boiling heat transfer surface structure.
って、冷媒を各熱伝達面構造に直列あるいは並列に流す
流路構造体を有する請求項1に記載の熱伝達促進面構
造。3. The heat transfer promotion surface structure according to claim 1, wherein the heat transfer surface structure includes a plurality of heat transfer surface structures, and a flow passage structure is provided for flowing a refrigerant in series or in parallel to each heat transfer surface structure. .
却する構造体を有する請求項1に記載の熱伝達促進面構
造。4. The heat transfer promotion surface structure according to claim 1, further comprising a structure for cooling the cooling medium by an external secondary fluid.
設けられている請求項1に記載の熱伝達促進面構造。5. The heat transfer promotion surface structure according to claim 1, wherein the heat transfer surface is provided with fins having an enlarged heat transfer surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21251293A JPH0766576A (en) | 1993-08-27 | 1993-08-27 | Heat transmission acceleration surface structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21251293A JPH0766576A (en) | 1993-08-27 | 1993-08-27 | Heat transmission acceleration surface structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0766576A true JPH0766576A (en) | 1995-03-10 |
Family
ID=16623905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21251293A Pending JPH0766576A (en) | 1993-08-27 | 1993-08-27 | Heat transmission acceleration surface structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766576A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105202844A (en) * | 2015-10-20 | 2015-12-30 | 中国电子科技集团公司第四十四研究所 | High-efficiency water cooling tank |
-
1993
- 1993-08-27 JP JP21251293A patent/JPH0766576A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105202844A (en) * | 2015-10-20 | 2015-12-30 | 中国电子科技集团公司第四十四研究所 | High-efficiency water cooling tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5304845A (en) | Apparatus for an air impingement heat sink using secondary flow generators | |
US6557354B1 (en) | Thermoelectric-enhanced heat exchanger | |
US4296455A (en) | Slotted heat sinks for high powered air cooled modules | |
US7212403B2 (en) | Apparatus and method for cooling electronics and computer components with managed and prioritized directional air flow heat rejection | |
US5592363A (en) | Electronic apparatus | |
US7568518B2 (en) | Heat sink | |
US20080023176A1 (en) | Heat dissipation device | |
US20060289146A1 (en) | Thermal module incorporating heat pipe | |
JP2006295178A (en) | Heatsink apparatus for electronic device | |
KR20120017029A (en) | Grid heat sink | |
JP2006287017A (en) | Cooling jacket | |
KR102296543B1 (en) | Liquid-cooled heat sink | |
US20050082035A1 (en) | Heat dissipating apparatus | |
TWI815494B (en) | Two phase cold plate | |
CN215956917U (en) | Liquid cooling heat radiator | |
US20090178788A1 (en) | Semiconductor cooling structure | |
JPH0273697A (en) | Heat radiating fin | |
JP2007102803A (en) | Electronic apparatus unit | |
JPH0766576A (en) | Heat transmission acceleration surface structure | |
JP2008300447A (en) | Heat radiation device | |
CN214477403U (en) | Heat radiator | |
CN212061096U (en) | Water-cooling heat dissipation device and expansion card assembly | |
JP2007027340A (en) | Cooling device for electronic equipment | |
CN113376761B (en) | Optical module heat dissipation device and optical module | |
JPH05308111A (en) | Boiling type cooling device |