JPH0766123A - Formation of microcrystal silicon - Google Patents

Formation of microcrystal silicon

Info

Publication number
JPH0766123A
JPH0766123A JP21134493A JP21134493A JPH0766123A JP H0766123 A JPH0766123 A JP H0766123A JP 21134493 A JP21134493 A JP 21134493A JP 21134493 A JP21134493 A JP 21134493A JP H0766123 A JPH0766123 A JP H0766123A
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
amorphous
substrate
microcrystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21134493A
Other languages
Japanese (ja)
Other versions
JP3224312B2 (en
Inventor
Shiro Sato
史郎 佐藤
Yoshiyuki Hirano
喜之 平野
Katsuyuki Goto
克幸 後藤
Norifumi Egami
典文 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP21134493A priority Critical patent/JP3224312B2/en
Publication of JPH0766123A publication Critical patent/JPH0766123A/en
Application granted granted Critical
Publication of JP3224312B2 publication Critical patent/JP3224312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To eliminate the need of high voltage ion acceleration step by introducing microcrystals selectively into an arbitrary region within an amorphous film while sustaining an amorphous silicon at a low temperature close to room temperature thereby protecting a substrate against softening and the device structure against fracture due to high temperature of the amorphous silicon. CONSTITUTION:An amorphous silicon film 2 is formed on a substrate 1 made of glass or silicon and then it is irradiated with a high luminance X-ray 3 thus forming microcrystals 4 selectively in a desired region thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は従来の非晶質シリコンに
はない新しい機能を付加するため非晶質シリコン中に微
結晶を導入したり、液晶ディスプレイ駆動用薄膜トラン
ジスタ(TFT:Thin Film Transister)に用いる多結晶薄
膜シリコンをガラス等の基板上に作成するときなどに使
用される微結晶シリコン形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention introduces microcrystals into amorphous silicon in order to add a new function that conventional amorphous silicon does not have, and a thin film transistor (TFT) for driving a liquid crystal display. The present invention relates to a method for forming microcrystalline silicon used when, for example, polycrystalline thin film silicon used for is formed on a substrate such as glass.

【0002】[発明の概要]本発明はガラス等の絶縁物
基板上に多結晶薄膜半導体を作成する技術や非晶質と微
結晶との混在した半導体材料の作成技術において、ま
ず、CVD(ChemicalVapor Deposition )などにより
基板上に低温で非晶質半導体膜を堆積し、この後この非
晶質半導体膜にX線を照射することにより、低温で、か
つ高速で前記非晶質半導体膜内に微結晶を形成するもの
である。
SUMMARY OF THE INVENTION In the present invention, in a technique for producing a polycrystalline thin film semiconductor on an insulating substrate such as glass or a technique for producing a semiconductor material in which amorphous and microcrystalline are mixed, first, CVD (Chemical Vapor) is used. Deposition) deposits an amorphous semiconductor film on the substrate at a low temperature, and then irradiates the amorphous semiconductor film with X-rays, so that the amorphous semiconductor film is finely divided into the amorphous semiconductor film at a low temperature and at a high speed. It forms crystals.

【0003】[0003]

【従来の技術】ナノサイズの微結晶シリコンは、量子サ
イズ効果を示す可能性があると注目されているが、非晶
質シリコンにこれら微粒子を導入すると、光学バンドギ
ャップなど、光学的にはほとんど非晶質シリコンの性質
を示しながら、結晶に近い高速の電子移動度を示す特異
な物性を持つことが知られ、将来の新材料として期待さ
れている。
2. Description of the Related Art Nano-sized microcrystalline silicon has been attracting attention as having the possibility of exhibiting a quantum size effect. However, when these fine particles are introduced into amorphous silicon, optical bandgap and other optical properties are almost eliminated. It is known to have the unique physical properties of showing high-speed electron mobility close to that of crystals while exhibiting the properties of amorphous silicon, and is expected as a new material in the future.

【0004】通常、このような微結晶混在型の非晶質シ
リコンは電子サイクロトロン共鳴プラズマCVD法にお
いて、ある堆積条件の下で作製される。また最近、通常
のCVD法と水素ラジカルアニールを組み合わせた方法
も試みられている。
Usually, such microcrystalline mixed type amorphous silicon is produced under a certain deposition condition in the electron cyclotron resonance plasma CVD method. Recently, a method combining a normal CVD method and hydrogen radical annealing has been attempted.

【0005】しかし、これらの各方法では、基板上で選
択的領域での微結晶の導入ができないばかりか、プラズ
マによって非晶質膜の堆積と、微結晶の導入とを同時に
行なうため、非晶質の性能と微結晶の性能とをそれぞれ
個別に制御することが難しい。
However, in each of these methods, not only is it impossible to introduce microcrystals in a selective region on the substrate, but also deposition of an amorphous film and introduction of microcrystals are simultaneously performed by plasma, and therefore, amorphous is formed. It is difficult to control the quality performance and the crystallite performance separately.

【0006】一方、ガラス等の低融点基板上に多結晶シ
リコン薄膜を作製する場合には、次に述べるような方法
が採られている。
On the other hand, when a polycrystalline silicon thin film is formed on a low melting point substrate such as glass, the following method is adopted.

【0007】まず、シランガス(SiH4 )等を原料に
してプラズマCVD法などによって基板上に非晶質シリ
コンを堆積した後、300〜400℃の温度でアニール
して前記非晶質シリコンに含まれる多量の水素を脱離さ
せる。
First, amorphous silicon is deposited on a substrate by plasma CVD or the like using silane gas (SiH 4 ) or the like as a raw material, and then annealed at a temperature of 300 to 400 ° C. to be contained in the amorphous silicon. Desorb a large amount of hydrogen.

【0008】次いで、500〜600℃の温度で再度、
アニールして前記非晶質膜を多結晶化させる。
Then, again at a temperature of 500 to 600 ° C.,
Annealing is performed to polycrystallize the amorphous film.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した技
術で使用されるアニールの方法として、電気炉によるア
ニールのみならず、レーザ照射によるアニールなども行
われるが、根本的にはこのような熱エネルギーによる結
晶化では、500〜600℃の温度を使用するため、基
板となるガラスなどが軟化したり、既に作製されている
デバイス構造が破壊するという問題がある。
By the way, as an annealing method used in the above-mentioned technique, not only annealing by an electric furnace but also annealing by laser irradiation is carried out. Since crystallization by means of using a temperature of 500 to 600 ° C., there is a problem that the glass or the like which becomes the substrate is softened or the device structure already manufactured is destroyed.

【0010】そこで、このような問題を解決するため、
前もって非晶質シリコンに高濃度でシリコンや不純物の
イオンを注入し、これによって非晶質膜の結晶化を低温
で行なう方法も試みられているが、非晶質膜が厚いと
き、高電圧によるイオンの加速が必要になるという欠点
がある。
Therefore, in order to solve such a problem,
A method has been attempted in which high-concentration ions of silicon or impurities are implanted into amorphous silicon in advance to crystallize the amorphous film at a low temperature. However, when the amorphous film is thick, high voltage is applied. There is a drawback that acceleration of ions is required.

【0011】本発明は上記の事情に鑑み、非晶質シリコ
ンを室温近くの低温にしながら、非晶質膜内の任意の領
域に、選択的に微結晶を導入することができ、これによ
って非晶質シリコンを高温にすることによって生じる基
板の軟化やデバイス構造の破壊を防止でき、また高電圧
によるイオンの加速処理を不要とする微結晶シリコン形
成方法を提供することを目的としている。
In view of the above circumstances, the present invention can selectively introduce microcrystals into an arbitrary region in an amorphous film while keeping the amorphous silicon at a low temperature near room temperature. It is an object of the present invention to provide a method for forming microcrystalline silicon that can prevent the softening of the substrate and the destruction of the device structure that occur when the crystalline silicon is heated to a high temperature, and that does not require the acceleration treatment of ions by a high voltage.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、非晶質シリコン膜にエネルギーを与えて
前記非晶質シリコン膜内に微結晶を形成する微結晶シリ
コン形成方法において、前記非晶質シリコン膜にX線ビ
ームを照射することにより、前記非晶質シリコン膜の所
望領域内に選択的に微結晶を形成することを特徴として
いる。
In order to achieve the above object, the present invention provides a microcrystalline silicon forming method for applying energy to an amorphous silicon film to form microcrystals in the amorphous silicon film. By irradiating the amorphous silicon film with an X-ray beam, microcrystals are selectively formed in a desired region of the amorphous silicon film.

【0013】[0013]

【作用】上記の構成において、非晶質シリコン膜にX線
ビームを照射することにより、前記非晶質シリコン膜の
所望領域内に選択的に微結晶が形成され、これによって
非晶質シリコンを室温近くの低温に保持しながら、非晶
質膜内の任意の領域に、選択的に微結晶を導入し、非晶
質シリコンを高温にすることによって生じる基板の軟化
やデバイス構造の破壊が防止され、また高電圧によるイ
オンの加速処理が不要となる。
In the above structure, by irradiating the amorphous silicon film with an X-ray beam, microcrystals are selectively formed in a desired region of the amorphous silicon film, and the amorphous silicon film is thereby protected. Prevents softening of the substrate and destruction of the device structure caused by raising the temperature of amorphous silicon by selectively introducing microcrystals into an arbitrary region of the amorphous film while maintaining it at a low temperature near room temperature. In addition, the acceleration processing of the ions by the high voltage becomes unnecessary.

【0014】[0014]

【実施例】以下、図面を参照しながら、本発明による微
結晶シリコン形成方法の一実施例について詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the microcrystalline silicon forming method according to the present invention will be described in detail below with reference to the drawings.

【0015】本実施例による微結晶シリコン形成方法で
は、まず、図1に示す如くガラスやシリコン結晶などの
材料を平板状に形成した基板1を用意し、この基板1上
に非晶質シリコン膜2を堆積させる。
In the method for forming microcrystalline silicon according to this embodiment, first, as shown in FIG. 1, a substrate 1 on which a material such as glass or silicon crystal is formed in a flat plate shape is prepared, and an amorphous silicon film is formed on the substrate 1. 2 is deposited.

【0016】この後、高輝度X線3によって前記非晶質
シリコン膜2を選択的に照射してこの非晶質シリコン膜
2の所望領域内に微結晶4を生成させる。
After that, the amorphous silicon film 2 is selectively irradiated with high-intensity X-rays 3 to form microcrystals 4 in a desired region of the amorphous silicon film 2.

【0017】これによって、シリコン結晶を基板1と
し、堆積時の基板温度を500℃にして電子サイクロト
ロン共鳴プラズマ法で非晶質シリコンの堆積を行なって
非晶質シリコン膜2を形成した後、高輝度X線としてシ
ンクロトロン放射光を用い、微結晶化を行なった。この
とき、照射時における基板温度は50℃程度であった。
Thus, the silicon crystal is used as the substrate 1, the temperature of the substrate at the time of deposition is set to 500 ° C., the amorphous silicon is deposited by the electron cyclotron resonance plasma method, and the amorphous silicon film 2 is formed. Microcrystallization was performed using synchrotron radiation as the luminance X-rays. At this time, the substrate temperature at the time of irradiation was about 50 ° C.

【0018】これによって、照射X線量として、蓄積リ
ング電流と照射時間との積、すなわち約100mAh
(=1×1017光子/cm2 ・s)を使用し、微結晶化
を表わすパラメータとして、レーザーラマン分光スペク
トルにおける521cm-1付近の結晶化ピーク強度を単
結晶のそれで規格化してプロットしたとき、図2に示す
測定結果を得ることができた。
As a result, the irradiation X-ray dose is the product of the storage ring current and the irradiation time, that is, about 100 mAh.
(= 1 × 10 17 photons / cm 2 · s) is used, and the crystallization peak intensity around 521 cm −1 in the laser Raman spectrum is normalized and plotted as that of a single crystal as a parameter indicating microcrystallization. The measurement results shown in FIG. 2 could be obtained.

【0019】この図から明らかなように、照射X線量が
ある値までは、顕著な結晶化は認められないが、ある値
以上で、ピーク強度が非常に弱いものの、明瞭な結晶化
ピークを確認することができた。さらに、この結晶化ピ
ークは照射時間とともに、ゆるやかに増大するととも
に、高輝度X線の照射で非晶質シリコン膜2中に極めて
僅かの結晶(微結晶4)が形成されるのを確認すること
ができた。
As is clear from this figure, no remarkable crystallization was observed up to a certain value of the irradiation X-ray dose, but a clear crystallization peak was confirmed above a certain value, although the peak intensity was very weak. We were able to. Further, it should be confirmed that this crystallization peak gradually increases with the irradiation time, and that very few crystals (microcrystals 4) are formed in the amorphous silicon film 2 by the irradiation of the high-intensity X-ray. I was able to.

【0020】このように本実施例による微結晶シリコン
形成方法では、非晶質シリコン膜2を室温近くの低温に
した状態で、高輝度Xビーム3を照射して非晶質シリコ
ン膜2の任意の領域に選択的に微結晶4を導入するよう
にしたので、非晶質シリコン膜2を高温にすることによ
って生じる基板1の軟化やデバイス構造の破壊などの不
都合および高電圧によるイオンの加速処理などの不都合
が発生しないようにすることができる。
As described above, in the method of forming microcrystalline silicon according to the present embodiment, the amorphous silicon film 2 is irradiated with the high-intensity X-beam 3 while the amorphous silicon film 2 is kept at a low temperature near room temperature, and the amorphous silicon film 2 is arbitrarily formed. Since the microcrystals 4 are selectively introduced into the region of 1., inconveniences such as the softening of the substrate 1 and the destruction of the device structure caused by raising the temperature of the amorphous silicon film 2 and the ion acceleration treatment due to the high voltage. It is possible to prevent such inconvenience.

【0021】さらに、この実施例においては、次に述べ
る効果を得ることができる。
Further, in this embodiment, the following effects can be obtained.

【0022】まず、回析格子や反射ミラーを用いて非晶
質シリコン膜2に照射するX線ビームを収束させること
により、局所的な領域に選択的に微結晶4を形成するこ
とができるとともに、結晶による干渉効果を利用してX
線ビームを原子尺度のサイズに収束させることができる
ので、ナノスケールの分解能で選択的微結晶化を達成す
ることができる。
First, by converging the X-ray beam with which the amorphous silicon film 2 is irradiated by using a diffraction grating or a reflection mirror, it is possible to selectively form the microcrystals 4 in a local region. , X by using the interference effect of crystals
Since the line beam can be focused to atomic scale size, selective microcrystallization can be achieved with nanoscale resolution.

【0023】また、X線はレーザー光などと異なり、シ
リコンなど半導体材料に対する透過性が高いので、厚膜
非晶質にも微結晶形成を行なうことができるとともに、
電子ビームなどでは、照射に真空が必要であるが、X線
ビームは大気圧下で照射できるので、装置全体を簡素化
することができるとともに、照射処理を簡素化すること
ができる。
Further, unlike laser light and the like, X-rays have high transparency to semiconductor materials such as silicon, so that microcrystals can be formed even in thick film amorphous.
The electron beam and the like require a vacuum for irradiation, but the X-ray beam can be irradiated under atmospheric pressure, so that the entire apparatus can be simplified and the irradiation process can be simplified.

【0024】また、上述した実施例においては、基板1
上の非晶質シリコン膜2内に微結晶4を導入するように
しているが、この技術を応用して基板1上に多結晶薄シ
リコン膜を作製するようにしても良い。
Further, in the above-mentioned embodiment, the substrate 1
Although the microcrystals 4 are introduced into the upper amorphous silicon film 2, this technique may be applied to form a polycrystalline thin silicon film on the substrate 1.

【0025】この場合、ガラス等によって構成される基
板1上に非晶質シリコン膜2を堆積させた後、高輝度X
線3によって前記非晶質シリコン膜2を選択的に照射し
てこの非晶質シリコン膜2の所望領域内に微結晶4を生
成させ、X線照射中もしくは照射後に電気炉などでアニ
ールし、非晶質シリコン膜2内の微結晶粒を種として結
晶化させる。
In this case, after depositing the amorphous silicon film 2 on the substrate 1 made of glass or the like, high brightness X
The amorphous silicon film 2 is selectively irradiated with a line 3 to generate microcrystals 4 in a desired region of the amorphous silicon film 2, and annealed in an electric furnace or the like during or after X-ray irradiation, The amorphous silicon film 2 is crystallized using the fine crystal grains as seeds.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、非
晶質シリコンを室温近くの低温にしながら、非晶質膜内
の任意の領域に、選択的に微結晶を導入することがで
き、これによって非晶質シリコンを高温にすることによ
って生じる基板の軟化が防止され、また高電圧によるイ
オンの加速処理を不要にすることができる。
As described above, according to the present invention, microcrystals can be selectively introduced into an arbitrary region in an amorphous film while keeping the temperature of the amorphous silicon at a low temperature near room temperature. As a result, the softening of the substrate caused by raising the temperature of the amorphous silicon to high temperature can be prevented, and the ion acceleration treatment by a high voltage can be made unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微結晶シリコン形成方法の一実施
例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a method for forming microcrystalline silicon according to the present invention.

【図2】図1に示す微結晶シリコン形成方法の効果を説
明するための表図である。
FIG. 2 is a table for explaining the effect of the microcrystalline silicon forming method shown in FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板などの基板 2 非晶質シリコン膜 3 高輝度X線(X線ビーム) 4 微結晶 1 Substrate such as glass substrate 2 Amorphous silicon film 3 High brightness X-ray (X-ray beam) 4 Microcrystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江上 典文 東京都世田谷区砧一丁目10番11号 日本放 送協会放送技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Norifumi Egami 1-10-11 Kinuta, Setagaya-ku, Tokyo Inside the Japan Broadcasting Corporation Broadcasting Technology Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非晶質シリコン膜にエネルギーを与えて
前記非晶質シリコン膜内に微結晶を形成する微結晶シリ
コン形成方法において、 前記非晶質シリコン膜にX線ビームを照射することによ
り、前記非晶質シリコン膜の所望領域内に選択的に微結
晶を形成する、 ことを特徴とする微結晶シリコン形成方法。
1. A method of forming microcrystalline silicon, wherein energy is applied to an amorphous silicon film to form microcrystals in the amorphous silicon film, wherein the amorphous silicon film is irradiated with an X-ray beam. A method of forming microcrystalline silicon, characterized in that microcrystals are selectively formed in a desired region of the amorphous silicon film.
JP21134493A 1993-08-26 1993-08-26 Method for forming microcrystalline silicon Expired - Fee Related JP3224312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21134493A JP3224312B2 (en) 1993-08-26 1993-08-26 Method for forming microcrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21134493A JP3224312B2 (en) 1993-08-26 1993-08-26 Method for forming microcrystalline silicon

Publications (2)

Publication Number Publication Date
JPH0766123A true JPH0766123A (en) 1995-03-10
JP3224312B2 JP3224312B2 (en) 2001-10-29

Family

ID=16604417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21134493A Expired - Fee Related JP3224312B2 (en) 1993-08-26 1993-08-26 Method for forming microcrystalline silicon

Country Status (1)

Country Link
JP (1) JP3224312B2 (en)

Also Published As

Publication number Publication date
JP3224312B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
KR100285864B1 (en) a method of manufacturing a semiconductor device
TW577174B (en) Method and apparatus for forming a thin semiconductor film, method and apparatus for producing a semiconductor device, and electro-optical apparatus
US6423586B1 (en) Method for crystallizing semiconductor material without exposing it to air
US5970327A (en) Method of fabricating a thin film transistor
WO2002047137A1 (en) Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device
JP2000353666A (en) Semiconductor thin film and manufacture thereof
JP3197036B2 (en) Method for forming crystalline silicon thin film
JP4939037B2 (en) Method for producing silicon thin film
JPH0360026A (en) Manufacture of crystalline silicon film
JP3389448B2 (en) Method for converting a material in an amorphous semiconductor state into a material in a polycrystalline semiconductor state
JP3224312B2 (en) Method for forming microcrystalline silicon
JPH11354444A (en) Manufacture of polycrystalline semiconductor film
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JPH0786603A (en) Manufacture of semiconductor film
KR100326529B1 (en) a method of manufacturing a semiconductor device
JPH0574704A (en) Semiconductor layer forming method
KR100333134B1 (en) Crystallization method of amorphous silicon using electric field and UV
JP2706770B2 (en) Semiconductor substrate manufacturing method
KR100434313B1 (en) crystallization method of amorphous silicon
KR100370114B1 (en) Equipment for crystallization of amorphous silicon
JP3532160B2 (en) Crystalline silicon thin film
JPS6276514A (en) Manufacture of semiconductor device
JP3021250B2 (en) Method for manufacturing semiconductor film
JPH02184594A (en) Production of single crystal thin film
JPH1197692A (en) Polycrystal and liquid crystal display

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees