JPH0765142B2 - Deformed wire for submarine optical fiber cable - Google Patents

Deformed wire for submarine optical fiber cable

Info

Publication number
JPH0765142B2
JPH0765142B2 JP61041610A JP4161086A JPH0765142B2 JP H0765142 B2 JPH0765142 B2 JP H0765142B2 JP 61041610 A JP61041610 A JP 61041610A JP 4161086 A JP4161086 A JP 4161086A JP H0765142 B2 JPH0765142 B2 JP H0765142B2
Authority
JP
Japan
Prior art keywords
wire
strength
deformed
present
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041610A
Other languages
Japanese (ja)
Other versions
JPS62202051A (en
Inventor
稔彦 高橋
巌之 浅野
六郎 河野
敬 二ノ宮
靖 船木
研一 望月
雅嗣 村尾
和彦 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61041610A priority Critical patent/JPH0765142B2/en
Publication of JPS62202051A publication Critical patent/JPS62202051A/en
Publication of JPH0765142B2 publication Critical patent/JPH0765142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は海底光ファイバーケーブル用異形線に関するも
のである。
The present invention relates to a profiled wire for a submarine optical fiber cable.

(従来の技術) 光フアイバーは、その低損失、細径、大容量、経済性な
どの優れた特性を活して、海底ケーブルに導入すること
が試みられている。第2図は海底ケーブルの断面構造の
一例を示したものである。
(Prior Art) It has been attempted to introduce an optical fiber into a submarine cable by taking advantage of its excellent characteristics such as low loss, small diameter, large capacity, and economical efficiency. FIG. 2 shows an example of the cross-sectional structure of the submarine cable.

この構造において、1は光フアイバーユニツト、2は光
フアイバーユニツトを深海の海水圧(例えば8000mの深
海では800気圧)から保護するために、扇形断面の異形
線11、12、13が3本組合されて、構成されている耐圧
層、3は光フアイバーケーブルのテンシヨンメンバーで
あるピアノ線、4はピアノ線を固定している金属チユー
ブ、5はプラスチツク等で形成されている絶縁層で、光
フアイバーユニツトと耐圧層及び耐圧層と金属チユーブ
の間には、光ケーブルに障害が生じたときに起る水走り
を防止するためのコンパウンドが充填されている。この
構造の特徴は、特公昭59−7361号公報に記載されている
ように、耐圧層2を構成する扇形の異形線にある。
In this structure, 1 is a fiber optic unit, 2 is a fiber optic unit, and in order to protect the fiber optic unit from the sea pressure of the deep sea (for example, 800 atm in the deep sea of 8000 m), three deformed lines 11, 12, 13 with a fan-shaped cross section are combined. A pressure-resistant layer, 3 is a piano wire which is a tension member of an optical fiber cable, 4 is a metal tube for fixing the piano wire, and 5 is an insulating layer made of plastic or the like. Between the unit and the pressure resistant layer, and between the pressure resistant layer and the metal tube, there is filled a compound for preventing water running which occurs when a failure occurs in the optical cable. The feature of this structure is, as described in JP-B-59-7361, a fan-shaped irregular line forming the breakdown voltage layer 2.

一方、海底ケーブルは障害を考慮して、接続凾の最適設
置間隔が定められているが、現在約50〜100kmに接続凾
を設置するのが経済的とされている。しかしながら異形
線用素材である線材の製造について検討してみると、現
用鍛造設備及び加熱炉の能力の制約から大単重化を図つ
てみても、線材の単長は30,000mに限定される。
On the other hand, for submarine cables, the optimal installation interval of the connection cable is set in consideration of obstacles, but it is currently economical to install the connection cable at about 50 to 100 km. However, considering the production of wire rods, which are materials for deformed wires, the single length of the wire rods is limited to 30,000m even if a large unit weight is attempted due to the limitations of the capacity of the current forging equipment and heating furnace.

従つて、長距離の海底ケーブルの耐圧パイプ用素材とし
ての線材には、前記の扇形の異形線をうる冷間加工性
と、長尺化のための溶接性とを同時に満足させることが
望まれる。そこでこのような加工性と溶接性とを同時に
満足させ得るような鋼材としては、例えば特公昭59−22
774号公報ではTi、Bを含有し、Ceq0.55%以下の鋼を制
御圧延して、55Kg f/mm2以上の引張強さを有する溶接性
及び加工性の優れた線材が提案されている。
Therefore, it is desired that the wire material as a pressure resistant pipe material for long-distance submarine cables simultaneously satisfies the cold workability for obtaining the fan-shaped profile wire and the weldability for lengthening. . Therefore, as a steel material capable of satisfying such workability and weldability at the same time, for example, Japanese Patent Publication No. 59-22
Japanese Patent No. 774 proposes a wire rod containing Ti and B and having a Ceq of 0.55% or less by controlled rolling and having a tensile strength of 55 Kg f / mm 2 or more and excellent weldability and workability. .

又特公昭59−29648号公報では、溶接性のすぐれた高強
度鉄筋材が提案されている。しかしながらこれらの鋼材
は、それらを冷間加工して得られる鋼線の強度が低く、
海底ケーブルの耐圧パイプ用の異形線には供し得ない。
Also, Japanese Patent Publication No. 59-29648 discloses a high-strength reinforcing bar material having excellent weldability. However, these steel materials have low strength of steel wire obtained by cold working them,
It cannot be used as a modified wire for pressure-resistant pipes of submarine cables.

(発明が解決しようとする問題点) 本発明は、溶接性及び冷間加工性に優れた長尺高張力鋼
線用の線材を用いて、強度の高い長尺の海底光フアイバ
ー用異形線を提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention uses a wire rod for a long high-strength steel wire excellent in weldability and cold workability to form a long and long deformed wire for a submarine optical fiber. It is intended to be provided.

(問題点を解決するための手段) 本発明は重量%でC0.30〜0.65%、Si1.0%以下、Mn0.2
〜1.5%、Cr1.3%以下でMn+Cr0.3〜1.5%、及びAl0.00
2〜0.1%、Ti0.002〜0.1%、Nb0.001〜0.3%、V0.001〜
0.3%、B0.0005〜0.1%の1種または2種以上を合計0.0
005〜0.3%、残部Fe及び不可避不純物から成ると共に、 を満足し、長さ方向に少くとも1ケ所以上溶接部を有し
かつ、溶接部を含む全長に亙ってフェライト・パーライ
ト組織であって引張り強さが126kg/mm2以上で、断面形
状が略扇形をなし該略扇形が複数本組み合わされて光フ
ァイバーを収容する円形中空断面を構成すべく構成され
かつ、前記円形中空断面の半径方向に延在する面となる
扇形状側面に深さ:0.002〜0.03mmの凹凸からなる梨地表
面を有することを特徴とする海底光ファイバーケーブル
用異形線である。
(Means for Solving Problems) The present invention is C0.30 to 0.65% by weight, Si1.0% or less, and Mn0.2.
~ 1.5%, Cr1.3% or less, Mn + Cr0.3 ~ 1.5%, and Al0.00
2-0.1%, Ti0.002-0.1%, Nb0.001-0.3%, V0.001-
0.3%, B 0.0005 to 0.1%, 1 or 2 or more total 0.0
005-0.3%, balance Fe and inevitable impurities, Satisfying the above conditions, having at least one weld in the length direction, having a ferrite-pearlite structure over the entire length including the weld, and having a tensile strength of 126 kg / mm 2 or more and a cross-sectional shape of Depth: 0.002 on the fan-shaped side surface, which is substantially fan-shaped and is formed by combining a plurality of fan-shaped fans to form a circular hollow section for accommodating an optical fiber, and which is a surface extending in the radial direction of the circular hollow section. A profiled wire for a submarine optical fiber cable, which has a satin finished surface having irregularities of up to 0.03 mm.

以下本発明について詳細に説明する。The present invention will be described in detail below.

(作用) 海底光フアイバー用ケーブルの耐圧パイプは引張強さ12
6Kg f/mm2以上、好ましくは130Kg f/mm2以上を要求され
る。鋼線の強度は素材の強度と冷間加工量によつて決る
が、本発明者らの検討によると、例えば第2図に示した
異形線11〜13を製造するには、冷間加工率を85%以下に
抑えることが、加工割れの発生を抑制する上で必要であ
る。製品強度126Kg f/mm2を85%以下の冷間加工率で得
るためには、素材の線材には70Kg f/mm2以上の引張強さ
が必要である。
(Function) The pressure resistant pipe of the cable for the submarine optical fiber has a tensile strength of 12
6 Kg f / mm 2 or more, preferably 130 Kg f / mm 2 or more is required. The strength of the steel wire is determined by the strength of the material and the cold working amount, but according to the study by the present inventors, for example, in order to manufacture the deformed wires 11 to 13 shown in FIG. Is required to be 85% or less in order to suppress the occurrence of work cracks. In order to obtain a product strength of 126 Kg f / mm 2 with a cold working rate of 85% or less, the wire material must have a tensile strength of 70 Kg f / mm 2 or more.

又上記素材は溶接部の強度、靭性に優れていることが求
められている。一般に溶接性はC量に比例して悪化の傾
向にあるが、引張強さ70Kg f/mm2以上を満たすために、
適量のCと可能な範囲でMnあるいはMnの一部をCrに置換
して添加することが望ましい。
Further, the above materials are required to have excellent strength and toughness at the welded portion. Generally, the weldability tends to deteriorate in proportion to the C content, but in order to satisfy the tensile strength of 70 Kg f / mm 2 or more,
It is desirable to add an appropriate amount of C and replace Mn or a part of Mn with Cr in a possible range.

このように本発明においては強度、溶接性及び加工性を
満足するために、特定の成分元素を添加するものである
が、以下に成分元素の添加範囲を上記のように限定した
理由を説明する。
Thus, in the present invention, in order to satisfy the strength, weldability and workability, a specific component element is added, but the reason for limiting the addition range of the component element as described above will be described below. .

Cは溶接性の点から低い方が望ましいが、0.3%未満で
は70Kg f/mm2以上の強度は得られない。一方、0.65%超
では溶接部の靭性、加工性が劣化するので、0.3%〜0.6
5%とする。
From the viewpoint of weldability, C is preferably low, but if it is less than 0.3%, a strength of 70 Kg f / mm 2 or more cannot be obtained. On the other hand, if it exceeds 0.65%, the toughness and workability of the weld will deteriorate, so 0.3% to 0.6%
5%

Siはその固溶体硬化作用によつて線材を強化するために
添加されるが、1%を超えると靭性を劣化させるので1
%を上限とした。
Si is added to strengthen the wire rod by its solid solution hardening action, but if it exceeds 1%, the toughness deteriorates, so 1
% Was set as the upper limit.

Mnは溶接性への影響が少なく、強度を増加させる元素で
あり、可能な範囲で添加することが望ましい。Mn0.2%
未満ではSを硫化物として固定することが出来ず、また
70Kg f/mm2以上の強度を得ることもできない。一方1.5
%超では線材の焼入性が高くなりすぎて、溶接部に熱処
理後マルテンサイトが発生し、加工性を著しく劣化させ
ることがあるので、0.2%〜1.5%に添加範囲を限定し
た。
Mn is an element that has little effect on weldability and increases strength, and it is desirable to add Mn within a possible range. Mn 0.2%
If it is less than S, S cannot be fixed as a sulfide, and
It is not possible to obtain a strength of 70 Kg f / mm 2 or more. While 1.5
%, The hardenability of the wire becomes too high, and martensite is generated in the welded portion after heat treatment, which may significantly deteriorate the workability, so the addition range was limited to 0.2% to 1.5%.

CrはMnと全く同じ作用を持つ元素で、Mnの一部と置換し
て添加することが出来るがMnとCrの合計量が1.5%を超
えると、溶接部に熱処理後マルテンサイトが発生するの
で、Cr1.3%以下、Mn+Cr1.5%以下に添加量を限定し
た。
Cr is an element that has exactly the same action as Mn, and it can be added by substituting a part of Mn, but if the total amount of Mn and Cr exceeds 1.5%, martensite will occur in the weld after heat treatment, so , Cr 1.3% or less, and Mn + Cr 1.5% or less.

Al、Ti、Nb、V、Bはいずれもオーステナイト粒度の調
整のために1種または2種以上添加されるが、Al0.002
%未満、Ti0.002%未満、Nb0.001%未満、V0.001%未
満、B0.0005%未満で、且つ1種または2種以上の合計
が0.0005%未満では細粒化されないし、Al0.1%超、Ti
0.1%超、Nb0.3%超、V0.3%超、B0.1%超で且つ1種ま
たは2種以上の合計が、0.3%超では細粒化効果が飽和
するばかりでなく、これらの元素の窒化物による脆化作
用が顕著になるので、Al0.002〜0.1%、Ti0.002〜0.1
%、Nb0.001〜0.3%、V0.001〜0.3%、B0.0005〜0.1%
で且つこれらの1種または2種以上の合計を0.0005〜0.
3%に限定した。
Al, Ti, Nb, V, and B are all added in one kind or two or more kinds in order to adjust the austenite grain size.
%, Ti less than 0.002%, Nb less than 0.001%, less than V0.001%, less than B0.0005%, and the total of one or more kinds is less than 0.0005%, the particles are not finely divided, and Al0. Over 1%, Ti
Not less than 0.1%, more than 0.3% of Nb, more than 0.3% of V, more than 0.1% of B and a total of one or more kinds, and if the amount exceeds 0.3%, not only the grain refining effect is saturated, but Since the embrittlement effect due to the elemental nitride becomes significant, Al0.002-0.1%, Ti0.002-0.1%
%, Nb0.001-0.3%, V0.001-0.3%, B0.0005-0.1%
And, the total of one or more of these is 0.0005-0.
Limited to 3%.

P、Sはいずれも不純物としてみられるが、靭性の点か
らそれぞれ0.03%以下にすることが望ましい。またNは
時効脆化を抑制するために0.01%以下に抑えることが望
ましい。
Both P and S are seen as impurities, but from the standpoint of toughness, it is desirable to make each 0.03% or less. Further, N is preferably suppressed to 0.01% or less in order to suppress age embrittlement.

線材の強度は と、線材のオーステナイト域からの冷却速度によつて決
り、Ceqが高いほど、また冷却速度が高いほど強度は増
加するが、本発明者らの検討によると、Ceqが0.57%以
上ないといかに高速で冷却しても、70Kg f/mm2以上の強
度を有するフエライト・パーライト鋼線材は得られない
ことが明らかになつたので、Ceqを0.57%以上に限定し
た。これはCeqが0.57%より低い線材を強度を上げるた
めに、高速冷却すると加工性に致命的なマルテンサイト
が現われるためである。
The strength of the wire According to the cooling rate from the austenite region of the wire, the higher the Ceq and the higher the cooling rate, the more the strength increases. Since it was revealed that a ferrite / pearlite steel wire rod having a strength of 70 Kg f / mm 2 or more could not be obtained even if it was cooled with, the Ceq was limited to 0.57% or more. This is because martensite, which is fatal to workability, appears when high-speed cooling is used to increase the strength of wire rods with Ceq lower than 0.57%.

本発明の異形線用線材は、常法により線材圧延されて調
整冷却された後溶接されて長尺線材とされ、更に溶接部
を熱処理して整粒された微細なフエライト・パーライト
組織とされ、更に冷間伸線または冷間圧延により所要サ
イズとされる。
The deformed wire rod of the present invention is a long wire rod which is rolled and adjusted and cooled by a conventional method and then welded to be a long wire rod. Furthermore, the required size is obtained by cold drawing or cold rolling.

線材の溶接は強加圧アツプセツト方式、TIG方式あるい
はレーザー方式等を用い、格別限定されないが、例えば
強加圧アツプセツト方式は、最初比較的低電流密度(〜
75A/mm2)で通電を開始する。継手が軟化し、初期加圧
力にて変形を受けだすと同時に通電を停止し、いわゆる
強加圧力(〜50Kg/mm2)を加える。あとは加圧力と軟化
部が追出されていつた後の抗力とのバランスで停止する
と良い。
Welding of wire is performed by using a high pressure upset method, TIG method, laser method, or the like, and is not particularly limited. For example, the high pressure upset method is a relatively low current density (~
Start energizing at 75A / mm 2 ). The joint softens and begins to deform under the initial pressing force, and at the same time the current is stopped and a so-called strong pressing force (up to 50 Kg / mm 2 ) is applied. After that, it is better to stop by the balance between the pressing force and the drag force after the softened part is being expelled.

ここで溶接部は衝合部とその近傍の熱影響部は、A1点以
上に加熱された後急冷される。従つて溶接ままでは、溶
接部のビツカース硬度が600以上のマルテンサイト組織
となるので、著しく延性に欠ける。そこで線材から異形
線への加工性を向上させるために、溶接部をオーステナ
イト域に加熱冷却する熱処理によつて、母材と同等の強
度を有するフエライト・パーライト組織にするのがよ
い。
Here, in the welded part, the abutting part and the heat-affected part in the vicinity thereof are heated to A 1 point or more and then rapidly cooled. Therefore, as-welded, the welded part has a martensitic structure with a Vickers hardness of 600 or more, and therefore has a markedly poor ductility. Therefore, in order to improve the workability from the wire rod to the deformed wire, it is preferable to form a ferrite / pearlite structure having the same strength as the base metal by a heat treatment of heating and cooling the welded portion to an austenite region.

即ち、本発明の異形線は、最終リダクシヨンが80%以上
に及ぶダイス引抜と、ロール平圧延とを受けて異形線と
する場合が多いので、冷間加工性が要求される。このた
め本発明の線材の組織は、熱間圧延工程での調整冷却あ
るいは圧延後のパテンテイング処理によつて、全長に亘
つて整粒されたフエライト・パーライト組織にすること
が好ましい。
That is, the deformed wire of the present invention is often formed into a deformed wire by undergoing die drawing in which the final reduction reaches 80% or more and roll flat rolling, so cold workability is required. Therefore, the wire structure of the present invention is preferably a ferrite-perlite structure in which the wire is sized over the entire length by the controlled cooling in the hot rolling process or the patenting treatment after rolling.

光フアイバー用異形線は、例えば7mmφ線材をダイス引
抜して4.3mmとし、ロールで平圧延して2.3mm厚の断面矩
形状線材とする。ついで略扇形にするためダイス引抜を
行い、第2図に示すように内径a3.0mm、外径b6.0mm、厚
みt1.5mmの異形線11〜13をうることができる。
For the deformed wire for optical fiber, for example, a 7 mmφ wire rod is die-drawn to 4.3 mm and flat-rolled with a roll to form a 2.3 mm-thick rectangular wire rod. Then, die drawing is performed to make it substantially fan-shaped, and as shown in FIG. 2, the deformed wires 11 to 13 having an inner diameter of a3.0 mm, an outer diameter of b6.0 mm and a thickness of t1.5 mm can be obtained.

なお、異形線の本数としては、第1図及び第2図で円形
を3本の略扇形に分割した形状のものが示されている
が、これにこだわるものではなく、耐圧層の大きさなど
に応じて、複数本の分割扇形とすることができる。な
お、工業的見地からは2〜10本程度が望ましい。
As for the number of modified lines, the shape in which a circle is divided into three substantially fan-shaped shapes is shown in FIGS. 1 and 2, but the shape of the breakdown voltage layer is not limited to this. According to the above, a plurality of divided fan shapes can be formed. From an industrial point of view, it is desirable that the number is 2 to 10.

第1図には、本発明の異形線を用いて製造された海底光
フアイバーケーブルの耐圧層の構造の一例を示した。図
において11、12、13は断面が扇形の異形線で、異形線13
の部分は一点鎖線で示されている。ここで異形線の外周
面21、内周面22及び側面23には、第1図に斑点により示
したように梨地加工が施されている。以下異形線の表面
が梨地状を有するように限定した理由を述べる。
FIG. 1 shows an example of the structure of the pressure resistant layer of the submarine optical fiber cable manufactured by using the modified wire of the present invention. In the figure, 11, 12, and 13 are modified lines with a fan-shaped cross section.
The part of is indicated by a dashed line. Here, the outer peripheral surface 21, the inner peripheral surface 22 and the side surface 23 of the irregular line are satinized as shown by the spots in FIG. The reason why the surface of the modified line is limited to have a satin finish will be described below.

海底光ケーブルに何らかの原因によつて障害が発生する
と、第2図に示した光フアイバーユニツト1と耐圧層
2、あるいは耐圧層2と金属チユーブ4の間の空隙部分
が走水路となり、水走り現象によつてケーブルの長い区
間で損傷が発生する。そこで、通常、このような空隙部
分には、コンパウンドを充填して水走りを防止するよう
になされている。ここで第1図に示すように、異形線11
〜13の外周面21と内周面22に梨地加工が施されている
と、コンパウンドとの間の摩擦係数が増し、水走り防止
性が向上する。
When a failure occurs in the submarine optical cable for some reason, the gap between the optical fiber unit 1 and the pressure resistant layer 2 or the pressure resistant layer 2 and the metal tube 4 shown in FIG. Therefore, damage occurs in a long section of the cable. Therefore, normally, such voids are filled with a compound to prevent water running. Here, as shown in FIG.
When the outer peripheral surface 21 and the inner peripheral surface 22 of Nos. 13 to 13 are subjected to satin finish, the coefficient of friction with the compound is increased and the water running prevention property is improved.

また、異形線11〜13の側面23が梨地状に加工されている
と、異形線を組み合せて耐圧層を構成したとき、異形線
相互の接合面の密着性が増し、耐圧層の構造安定性が増
す。
Further, if the side surfaces 23 of the deformed wires 11 to 13 are processed to have a satin finish, when the deformed wires are combined to form a pressure resistant layer, the adhesiveness of the joint surface between the deformed wires is increased, and the structural stability of the pressure resistant layer is improved. Will increase.

この梨地は深さ0.002〜0.03mm程度の凹凸で、異形線製
造工程の最終工程のロール表面を梨地加工すること、あ
るいは異形線の表面をシヨツトブラスト加工することな
どによつて付与される。
This satin is uneven with a depth of about 0.002 to 0.03 mm, and is applied by performing a satin finish on the roll surface in the final step of the profile wire manufacturing process, or by subjecting the surface of the profile wire to a shot blast process.

また、この異形線は、Nによる時効が有効に作用する15
0℃以上で、且つ鋼線の軟化が顕著にならない500℃以下
の温度時効することが、耐力の増加に有効である。
In addition, the aging due to N acts effectively on this modified line 15
Aging at a temperature of 0 ° C or higher and 500 ° C or lower at which the softening of the steel wire is not remarkable is effective for increasing the yield strength.

(実施例) 第1表に線材の組成、Ceq、寸法、線材を溶接した手
段、線材を異形線に加工したときの加工性、異形線の強
度、梨地加工の有無、耐圧層を構成する異形線の数及び
異形線とコンパウンドとの間の摩擦係数を、梨地加工さ
れていない異形線と、コンパウンドとの間の摩擦係数と
の比で示した。
(Example) Table 1 shows the composition of the wire rod, Ceq, dimensions, means for welding the wire rod, workability when the wire rod is processed into a deformed wire, strength of the deformed wire, presence / absence of satin finish, and deformation of the pressure resistant layer. The number of lines and the coefficient of friction between the profile line and the compound are given as the ratio of the non-satin textured profile line to the coefficient of friction between the compound.

No.1〜8が本発明例で、他は比較例である。この内本発
明例のNo.1〜6と比較例の比例のNo.9については、圧延
で梨地加工した。またNo.7とNo.8はシヨツトブラストで
梨地加工した。梨地の深さは平均0.01mmであつた。
Nos. 1 to 8 are examples of the present invention, and others are comparative examples. Of these, Nos. 1 to 6 of the present invention example and No. 9 of proportionality of the comparative example were satin finished by rolling. In addition, No. 7 and No. 8 were satin finished with a shot blast. The satin depth was 0.01 mm on average.

No.1は本発明組成を満足し、Ceq0.64%、7.5mmの径で、
強度82Kg f/mm2の線材を強加圧アツプセツト方式で溶接
し、引続き異形線に加工した場合の結果で、断線トラブ
ルもなく加工され、133Kg f/mm2の強度を有する異形線
が得られた。またコンパウンドとの間の摩擦係数も1.7
倍とすぐれている。
No. 1 satisfied the composition of the present invention, Ceq 0.64%, diameter of 7.5 mm,
The result is the case where a wire rod with a strength of 82 Kg f / mm 2 was welded by the high pressure upset method and was subsequently processed into a deformed wire. A deformed wire with a strength of 133 Kg f / mm 2 was obtained without breaking trouble. . The coefficient of friction with the compound is also 1.7.
It is twice as good.

No.2は本発明組成で、且つCeq0.65%、8.7mmの径で73Kg
f/mm2の強度を有する線材を、TIG方式で溶接し、その
後異形線に加工した結果を示すもので、断線中割れを生
ずることもなく、134Kg f/mm2の異形線を得ることがで
きた。コンパウンドとの間の摩擦係数も2倍を超え極め
てすぐれている。
No. 2 is the composition of the present invention, and Ceq 0.65%, 73 kg in diameter of 8.7 mm
This shows the results of welding a wire material with a strength of f / mm 2 by the TIG method and then processing it into a deformed wire.It is possible to obtain a deformed wire of 134 Kg f / mm 2 without causing cracks during disconnection. did it. The coefficient of friction with the compound is more than doubled and is extremely excellent.

No.3は本発明組成を満足し、且つ0.59%のCeqと74Kg f/
mm2の強度を有する8.1mmの線材を、同じく強加圧アツプ
セツト方式で溶接して異形線に加工したときの結果で、
断線事故もなく、130Kg f/mm2の強度を有する異形線が
得られた。コンパウンドの摩擦係数も1.6倍と大きくな
つている。
No. 3 satisfied the composition of the present invention, and had Ceq of 0.59% and 74 Kg f /
A result of welding a 8.1 mm wire rod having a strength of mm 2 into a deformed wire by welding with the same high pressure upset method.
A deformed wire having a strength of 130 Kg f / mm 2 was obtained without breaking accident. The friction coefficient of the compound is also 1.6 times as large.

No.4は同じく本発明組成からなり、且つCeq0.67%、7.0
mmの径で、84Kg f/mm2の強度を有する線材をレーザー方
式で溶接し、異形加工したもので、130Kg f/mm2の異形
線が得られた。コンパウンドとの摩擦係数も1.5倍に達
し良好である。
No. 4 also consists of the composition of the present invention, and Ceq 0.67%, 7.0
A wire having a diameter of mm and a strength of 84 Kg f / mm 2 was welded by a laser method and deformed, and a deformed wire of 130 Kg f / mm 2 was obtained. The friction coefficient with the compound reaches 1.5 times, which is good.

No.5は本発明組成からなり、Ceq0.65%、9.0mmの径で、
76Kg f/mm2の強度の線材をTIG方式で溶接し、異形線に
加工したもので、割れの発生もなく、140Kg f/mm2の強
度を有する異形線が得られた。摩擦係数も1.8倍と非常
に大きい。
No. 5 consists of the composition of the present invention, Ceq 0.65%, diameter of 9.0 mm,
A wire with a strength of 76 Kg f / mm 2 was welded by the TIG method and processed into a deformed wire. A deformed wire with a strength of 140 Kg f / mm 2 was obtained without cracking. The coefficient of friction is also 1.8 times, which is very large.

更にNo.6は本発明組成から成り、且つCeq0.72%、7.6mm
の径で93Kg f/mm2の線材を強加圧アツプセツト方式で溶
接し、その後異形線に加工したもので、途中割れが生ず
ることもなく、150Kg f/mm2の強度の異形線を得ること
ができた。摩擦係数も2倍を超え極めてすぐれている。
Furthermore, No. 6 consists of the composition of the present invention, and Ceq 0.72%, 7.6 mm
This is a wire rod with a diameter of 93 kg f / mm 2 welded by the high pressure upset method and then processed into a deformed wire.It is possible to obtain a deformed wire with a strength of 150 kg f / mm 2 without causing cracks on the way. did it. The coefficient of friction exceeds double and is extremely excellent.

No.7は本発明組成を満たし、且つCeq0.60%で、8.8mmの
径で、86Kg f/mm2の強度の線材をレーザーで溶接し、そ
の後異形線に加工したもので、155Kg f/mm2の異形線が
得られた。コンパウンドとの摩擦係数も2倍に達してい
る。
No. 7 satisfies the composition of the present invention, and has a Ceq of 0.60%, a diameter of 8.8 mm, a wire rod having a strength of 86 Kg f / mm 2 which is laser-welded, and then processed into a deformed wire. A contour line of mm 2 was obtained. The coefficient of friction with the compound has doubled.

またNo.8は本発明組成から成るCeq0.75%、7.5mm、86Kg
f/mm2の強度の線材を強加工アツプセツト方式で溶接
し、異形線に加工した場合で、断線トラブルもなく、14
0Kg f/mm2の異形線が得られた。摩擦係数も1.8倍と高
い。
No. 8 is composed of the composition of the present invention Ceq 0.75%, 7.5mm, 86Kg
When a wire material with a strength of f / mm 2 is welded by the strong processing upset method and processed into a deformed wire, there is no disconnection trouble and 14
A modified line of 0 Kg f / mm 2 was obtained. The coefficient of friction is also 1.8 times higher.

No.9〜18は比較例で、No.9はMnが本発明の下限を下回つ
ているために、線材及び溶接部の強度が低く、126Kg f/
mm2以上の強度の異形線を得ることが出来なかつた例、N
o.10はSiが本発明の上限を上回つたために、加工性が著
しく劣化し、異形線が得られなかつた例、No.11はCが
本発明の下限を下回つているために、線材及び溶接部の
強度が低く、126Kg f/mm2の製品強度に到達せず、且つ
梨地加工が施されていないため摩擦係数も増加しなかつ
た例、No.12と13はそれぞれAlとNbが本発明の上限を超
えているために、多量の窒化物が析出して加工性が劣化
し、異形線が得られなかつた例、No.14は、CとCrが共
に本発明の上限を超えているために、溶接部に熱処理後
マルテンサイトが現われ、加工性が劣化し、異形線を得
ることが出来なかつた例、No.15は、MnとCrは単独では
本発明内にあるが、その合計量が1.5%を超え、またTi
とBも本発明の上限を超えているために、加工性が劣化
し、異形線を得るに至らなかつた例、No.16はC、Mn、C
r単独では本発明内にあるが、Ceqが本発明の下限を下回
つたために、製品強度が126Kg f/mm2に達せず、且つ梨
地加工されていないために、摩擦係数が増加しなかつた
例、No.17はMn、Si、Vがいずれも本発明の上限を超
え、またP、Sも0.03%を超えているために、加工性が
劣化し、異形線が得られなかつた例、No.18はAl、Nb、
Bが夫々単独では本発明内にあるが、その合計量が本発
明の上限を超え、またNも0.0130%も含有されていたた
めに、途中で割れが生じ、異形線を得るに至らなかつた
例である。
No. 9 to 18 are comparative examples, No. 9 is Mn is below the lower limit of the present invention, the strength of the wire and weld is low, 126 Kg f /
Example where it was not possible to obtain a deformed wire with a strength of mm 2 or more, N
o.10 is an example in which Si exceeds the upper limit of the present invention, so that the workability is significantly deteriorated and a deformed line cannot be obtained, and No. 11 is because C is below the lower limit of the present invention. , The wire and weld strength is low, the product strength of 126 Kg f / mm 2 is not reached, and the friction coefficient does not increase because the matte finish is not applied, No. 12 and 13 are respectively Al. Since Nb exceeds the upper limit of the present invention, a large amount of nitride precipitates and workability deteriorates, and a deformed wire cannot be obtained. No. 14 shows that both C and Cr are the upper limits of the present invention. For example, martensite appears in the welded portion after heat treatment, workability deteriorates, and an example in which a deformed wire cannot be obtained, No. 15, Mn and Cr are in the present invention alone. However, the total amount exceeds 1.5%, and Ti
Since B and B also exceed the upper limit of the present invention, the workability is deteriorated, and a modified wire is not obtained. No. 16 is C, Mn, C
r alone is within the present invention, but since Ceq was below the lower limit of the present invention, the product strength did not reach 126 Kg f / mm 2 , and since it was not satin finished, the friction coefficient did not increase and No. 17 is an example in which Mn, Si and V all exceed the upper limits of the present invention, and P and S also exceed 0.03%, so that the workability is deteriorated and a deformed line cannot be obtained. , No.18 is Al, Nb,
Examples in which B alone was within the present invention, but the total amount thereof exceeded the upper limit of the present invention and N was also contained in an amount of 0.0130%, so that cracking occurred in the middle and a deformed line was not obtained. Is.

択一成分に関する実施例を、第1表のNo.19〜23に示
す。
Examples relating to the alternative component are shown in Nos. 19 to 23 of Table 1.

No.19は、本発明の組成からなるCeq:0.62%、8.0mm、75
kg f/mm2の強度の線材を強加圧アップセット方式で溶接
し、異形線に加工したものである。断線トラブルもな
く、134Kg f/mm2の異形線が得られた。摩擦係数も1.4と
高い。No.20は、本発明の組成からなるCeq:0.64%、8.6
mm、80kg f/mm2の強度の線材を強加圧アップセット方式
で溶接し、異形線に加工したものである。145kg f/mm2
の強度を有する摩擦係数の優れた異形線が得られた。N
o.21は、本発明の組成からなるCeq:0.65%、7.8mm、80k
g f/mm2の強度の線材をレーザ溶接した後、異形線に加
工して得られたものである。140kg f/mm2の強度を有す
る摩擦係数の優れた異形線がトラブルを生じることなく
得られた。No.22は、本発明の組成からなるCeq:0.68
%、8.5mm、79kg f/mm2の強度の線材をTIG溶接し、異形
線に加工したものである。140kg f/mm2の強度を有する
摩擦係数の優れた異形線が得られた。No.23は、本発明
の組成からなるCeq:0.70%、8.9mm、88kg f/mm2の強度
の線材を強加圧アップセット方式で溶接し、異形線に加
工したものである。152kg f/mm2の強度を有し、摩擦係
数:2.0の優れた異形線が得られた。
No. 19 is composed of the composition of the present invention, Ceq: 0.62%, 8.0 mm, 75
A wire rod with a strength of kg f / mm 2 is welded by the high pressure upset method and processed into a deformed wire. A deformed wire of 134 Kg f / mm 2 was obtained without disconnection trouble. The coefficient of friction is also high at 1.4. No. 20 is Ceq consisting of the composition of the present invention: 0.64%, 8.6
A wire rod with a strength of mm, 80 kg f / mm 2 is welded by the strong pressure upset method and processed into a deformed wire. 145kg f / mm 2
A deformed line having an excellent coefficient of friction and a strength of 1 was obtained. N
o.21 is Ceq consisting of the composition of the present invention: 0.65%, 7.8 mm, 80 k
It was obtained by laser-welding a wire with a strength of gf / mm 2 and then processing it into a deformed wire. A deformed line with an excellent friction coefficient having a strength of 140 kg f / mm 2 was obtained without causing any trouble. No. 22 is Ceq: 0.68 composed of the composition of the present invention
%, 8.5 mm, 79 kg f / mm 2 strength wire rod was TIG welded and processed into a deformed wire. A contour line with an excellent friction coefficient having a strength of 140 kg f / mm 2 was obtained. No. 23 is a wire having a Ceq: 0.70%, 8.9 mm, and 88 kg f / mm 2 strength of the composition of the present invention, which is welded by a strong pressure upset method and processed into a deformed wire. An excellent deformed wire having a strength of 152 kg f / mm 2 and a friction coefficient of 2.0 was obtained.

(発明の効果) 以上の実施例からも明らかな如く、本発明の異形線は溶
接によつて所望の長尺が得られ、線材製造を大単重にす
る必要がないので、その工業的効果は大きい。
(Effect of the invention) As is apparent from the above examples, the deformed wire of the present invention can obtain a desired long length by welding, and it is not necessary to manufacture the wire rod with a large unit weight, and thus its industrial effect. Is big.

【図面の簡単な説明】[Brief description of drawings]

第1図は梨地加工された表面を有する本発明異形線によ
つて製造された耐圧層の一例を示す斜視図、第2図は海
底光ケーブルの断面図である。 11、12、13……異形線 1……光フアイバーユニツト、2……耐圧層 3……ピアノ線、4……金属チユーブ 5……絶縁層、21……異形線外周面 22……異形線内周面、23……異形線側面
FIG. 1 is a perspective view showing an example of a pressure resistant layer manufactured by the profiled wire of the present invention having a satin finished surface, and FIG. 2 is a sectional view of a submarine optical cable. 11,12,13 …… Shape wire 1 …… Optical fiber unit, 2 …… Pressure resistance layer 3 …… Piano wire, 4 …… Metal tube 5 …… Insulation layer, 21 …… Shape wire outer peripheral surface 22 …… Shape wire Inner peripheral surface, 23 ... Side surface of variant line

フロントページの続き (72)発明者 浅野 巌之 神奈川県相模原市淵野辺5−10−1 新日 本製鐡株式会社第二技術研究所内 (72)発明者 河野 六郎 神奈川県相模原市淵野辺5−10−1 新日 本製鐡株式会社第二技術研究所内 (72)発明者 二ノ宮 敬 愛知県東海市東海町5−3 新日本製鐡株 式会社名古屋製鐡所内 (72)発明者 船木 靖 東京都渋谷区道玄坂1−16−10 日本大洋 海底電線株式会社内 (72)発明者 望月 研一 東京都渋谷区道玄坂1−16−10 日本大洋 海底電線株式会社内 (72)発明者 村尾 雅嗣 大阪府大阪市東区内安藤寺町通1−1−1 浪速製釘株式会社内 (72)発明者 村尾 和彦 大阪府大阪市東区内安藤寺町通1−1−1 浪速製釘株式会社内 (56)参考文献 特開 昭62−107045(JP,A) 特開 昭58−39738(JP,A) 特開 昭55−44591(JP,A) 特開 昭54−79119(JP,A) 特公 昭59−7361(JP,B2) 特公 昭59−29648(JP,B2)Front page continuation (72) Inventor Iwayuki Asano 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Prefecture, Nippon Steel Manufacturing Co., Ltd. 2nd Technical Research Laboratory (72) Rokuro Kohno 5-10 Fuchinobe, Sagamihara City, Kanagawa Prefecture 1 Nihon Nippon Steel Co., Ltd. 2nd Technical Research Laboratory (72) Inventor Kei Ninomiya 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Co., Ltd. Nagoya Steel Co., Ltd. (72) Inventor Yasushi Funaki Shibuya, Tokyo 1-16-10 Dogenzaka Ward, Japan Oceanic Submarine Cable Co., Ltd. (72) Inventor Kenichi Mochizuki 1-16-10 Dogenzaka Shibuya, Tokyo, Japan Oceanic Submarine Cable Co., Ltd. (72) Inventor Masatsugu Murao Higashi Ward, Osaka City, Osaka Prefecture Uchi Ando-deramachi 1-1-1 Naniwa Sei nail Co., Ltd. (72) Inventor Kazuhiko Murao Uchi Ando-dera 1-1-1 Uchi Andakuji nail Co., Ltd. (56) References 62-107045 (JP, A) JP 58-39738 (JP, A) JP 55-44591 (JP, A) JP 54-79119 JP, A) Tokuoyake Akira 59-7361 (JP, B2) Tokuoyake Akira 59-29648 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量比で、C:0.30〜0.65%、Si≦1.0%、M
n:0.2〜1.5%、Cr≦1.3%かつ(Mn+Cr):0.3〜1.5%を
含有しさらに、Al:0.002〜0.1%、Ti:0.002〜0.1%、N
b:0.001〜0.3%、V:0.001〜0.3%、B:0.005〜0.1%の1
種または2種以上を合計量で0.0005〜0.3%含み、残部:
Feおよび不可避的不純物からなるとともに、Ceq=C+1
/5(Mn+Cr)/5≧0.57%を満足し、長さ方向において少
なくとも1箇所の溶接部を有しかつ、溶接部を含む全長
に亙ってフェライト・パーライト組織であって引張り強
さが126kg f/mm2以上で、断面形状が略扇形をなし該略
扇形が複数本組み合わされて光ファイバーを収容する円
形中空断面を構成すべく構成されかつ、前記円形中空断
面の半径方向に延在する面となる扇形状側面に深さ:0.0
02〜0.03mmの凹凸からなる梨地表面を有することを特徴
とする海低光ファイバーケーブル用異形線。
1. By weight ratio, C: 0.30 to 0.65%, Si ≦ 1.0%, M
n: 0.2-1.5%, Cr ≦ 1.3% and (Mn + Cr): 0.3-1.5%, Al: 0.002-0.1%, Ti: 0.002-0.1%, N
b: 0.001 to 0.3%, V: 0.001 to 0.3%, B: 0.005 to 0.1% 1
Includes 0.0005-0.3% in total of two or more species, with the balance:
Consists of Fe and inevitable impurities, and Ceq = C + 1
/ 5 (Mn + Cr) / 5 ≥ 0.57%, has at least one weld in the length direction, and has a ferrite-pearlite structure and a tensile strength of 126 kg over the entire length including the weld. f / mm 2 or more, the cross-sectional shape is substantially fan-shaped, and a plurality of the fan-shaped cross-sections are combined to form a circular hollow section for accommodating an optical fiber, and a surface extending in the radial direction of the circular hollow section. Depth on the side of the fan shape: 0.0
A profiled wire for low-sea optical fiber cables, characterized by having a satin surface with unevenness of 02 to 0.03 mm.
JP61041610A 1986-02-28 1986-02-28 Deformed wire for submarine optical fiber cable Expired - Lifetime JPH0765142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041610A JPH0765142B2 (en) 1986-02-28 1986-02-28 Deformed wire for submarine optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041610A JPH0765142B2 (en) 1986-02-28 1986-02-28 Deformed wire for submarine optical fiber cable

Publications (2)

Publication Number Publication Date
JPS62202051A JPS62202051A (en) 1987-09-05
JPH0765142B2 true JPH0765142B2 (en) 1995-07-12

Family

ID=12613117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041610A Expired - Lifetime JPH0765142B2 (en) 1986-02-28 1986-02-28 Deformed wire for submarine optical fiber cable

Country Status (1)

Country Link
JP (1) JPH0765142B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844443B2 (en) 2002-04-12 2006-11-15 新日本製鐵株式会社 Profile wire for reinforcing submarine optical fiber cable
JP3844442B2 (en) * 2002-04-12 2006-11-15 新日本製鐵株式会社 Profile wire for reinforcing onshore optical fiber cable
JP3888288B2 (en) * 2002-11-15 2007-02-28 住友金属工業株式会社 Steel material to be used after deformed drawing and induction hardening, and method of manufacturing steel member using the same
US9274298B2 (en) 2012-10-04 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Deformed steel wire for protection tube of submarine cable, method for manufacturing same, and pressure-resistant layer
JP7062973B2 (en) * 2018-01-26 2022-05-09 日本製鉄株式会社 Steel for mooring chains and mooring chains

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479119A (en) * 1977-12-08 1979-06-23 Kobe Steel Ltd Manufacture of high strength, high toughness steel wire rod
JPS5922774B2 (en) * 1979-07-09 1984-05-29 新日本製鐵株式会社 Manufacturing method for high-tensile hot-rolled wire rods and steel bars with excellent weldability and workability
JPS5839738A (en) * 1981-09-02 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of high tensile wire rod
JPH0742548B2 (en) * 1985-11-01 1995-05-10 新日本製鐵株式会社 Wire rod for long high-strength steel wire with excellent weldability and cold workability

Also Published As

Publication number Publication date
JPS62202051A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
EP2395122A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
EP2692875A1 (en) Electroseamed steel pipe and process for producing same
JP6914923B2 (en) Laminated fillet arc welded joint and its manufacturing method
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JPH0765142B2 (en) Deformed wire for submarine optical fiber cable
JPH0454728B2 (en)
JPS6145688B2 (en)
WO2020036198A1 (en) Resistance spot-welded member and manufacturing method therefor
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
EP1498505B1 (en) Wire for reinforcing marine optical fiber cable
US5180204A (en) High strength steel pipe for reinforcing door of car
JP2003129175A (en) High strength hot-rolled steel sheet for architectural metallic-fitting superior in workability and galvanizing property
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
KR100384629B1 (en) A high strength wire-rod having superior wire drawability and a method therefor
JP4513311B2 (en) Welded joint with excellent fatigue strength characteristics
JPH0849040A (en) Steel sheet for frictionally joining high tensile strength bolt having ruggedness on surface and its production
JPS62260043A (en) Steel for high strength chain of large diameter having superior toughness at low temperature
JPH0742548B2 (en) Wire rod for long high-strength steel wire with excellent weldability and cold workability
JP3377428B2 (en) ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JP3281097B2 (en) Arc welding of opposing rails
JPS61264159A (en) High-strength hot-rolled steel sheet of 55kgf/mm2 level for direct current butt welding
JP3260199B2 (en) High-strength rail with excellent wear resistance and toughness
US5538044A (en) Welded steel pipe steel and welded steel pipe having good wear
JPH05345915A (en) Production of thin web wide flange shape excellent in workability and reduced in yield ratio

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term