JPH05345915A - Production of thin web wide flange shape excellent in workability and reduced in yield ratio - Google Patents

Production of thin web wide flange shape excellent in workability and reduced in yield ratio

Info

Publication number
JPH05345915A
JPH05345915A JP11869191A JP11869191A JPH05345915A JP H05345915 A JPH05345915 A JP H05345915A JP 11869191 A JP11869191 A JP 11869191A JP 11869191 A JP11869191 A JP 11869191A JP H05345915 A JPH05345915 A JP H05345915A
Authority
JP
Japan
Prior art keywords
flange
less
web
cooling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11869191A
Other languages
Japanese (ja)
Other versions
JP2533250B2 (en
Inventor
Koji Takeshima
竹島康志
Koichi Yamamoto
山本広一
Masao Kurokawa
黒川征男
Teruyuki Wakatsuki
若月輝行
Akira Inagaki
彰 稲垣
Hiroyuki Hasegawa
博行 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11869191A priority Critical patent/JP2533250B2/en
Publication of JPH05345915A publication Critical patent/JPH05345915A/en
Application granted granted Critical
Publication of JP2533250B2 publication Critical patent/JP2533250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To easily obtain a thin web wide flange shape excellent in workability, improved in earthquake resistance, and reduced in yield ratio by performing temp. control at cooling and recuperation, with high precision, in the intermediate rolling step of a steel containing respectively specified amounts of C, Si, Mn, Ti, Al, and Nb. CONSTITUTION:A steel having a composition which consists of, by weight, 0.04-0.2% C, 0.01-0.5% Si, 0.3-1.8% Mn, <=0.02% Ti, <=0.06% Al, <=0.02% Nb, and the balance Fe and where the carbon equivalent represented by the prescribed expression is regulated to <=0.4% is hot-rolled. At this time, in the intermediate rolling step before finish rolling, rolling is done while repeating a stage where cooling is performed until the surface layer temp. at the side face of a flange becomes <=700 deg.C and a stage where the cooling is stopped and recuperation is performed until the surface layer temp. becomes >=700 deg.C. The lower limit of the finishing temp. of the above finish rolling is regulated to >=750 deg.C, and the flange just after finish rolling is forcedly cooled. Further, by performing, e.g. the acceleration of ferrite transformation and the acceleration of the refining of untransformed austenite, the structure in the surface layer part can be refined and hardenability can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】フランジ厚に対しウェブ厚が薄い
薄肉ウェブH形鋼を熱間圧延によって製造する際に、ウ
ェブ波を防止するとともに、強制冷却によって生じるフ
ランジ冷却面の硬度上昇を抑制すると同時に降伏強度の
異常上昇を抑制することにより、ドリル穿孔等の加工性
に優れ、耐震性能を高めた低降伏比薄肉ウェブH形鋼の
製造方法に関するものである。
[Industrial application] When a thin web H-section steel having a web thickness smaller than the flange thickness is manufactured by hot rolling, it is possible to prevent web waves and suppress the increase in hardness of the flange cooling surface caused by forced cooling. At the same time, the present invention relates to a method for producing a low-yield-ratio thin-walled web H-section steel which is excellent in workability such as drilling and has improved seismic performance by suppressing an abnormal increase in yield strength.

【0002】[0002]

【従来の技術】単位長さ当りの重量に対して断面係数が
大きく、経済性の優れた薄肉ウェブH形鋼は、従来は溶
接によるビルドアップH形鋼が主流であったが、近時は
圧延による各種の製造手段が提案されるようになった。
即ち、圧延による薄肉ウェブH形鋼の製造方法で最も重
要な課題はウェブ波の発生をいかに抑制するかであった
が、近時に至り各種の実用的な対策が提案されている。
2. Description of the Related Art As a thin web H-section steel having a large section modulus relative to the weight per unit length and being excellent in economical efficiency, a build-up H-section steel by welding has been the mainstream in the past. Various manufacturing means by rolling have been proposed.
That is, the most important issue in the method for producing a thin web H-section steel by rolling was how to suppress the generation of web waves, but recently, various practical measures have been proposed.

【0003】薄肉ウェブH形鋼のウェブ波とは周知のと
おり、フランジとウェブの冷却過程における温度差に起
因する残留応力によって、ウェブの座屈限界を超える内
部圧縮応力がウェブに発生し、これがウェブに波状の形
状不良として現れるものである。
As is well known as a web wave of a thin web H-section steel, an internal compressive stress exceeding the buckling limit of the web is generated in the web due to residual stress caused by a temperature difference in the cooling process of the flange and the web. It appears as a wavy shape defect on the web.

【0004】ウェブ波の無い薄肉ウェブH形鋼を経済的
に製造する技術として、本願出願人らは先に特開平1−
205028号公報の技術を提供した。この提案の要旨
は熱間仕上げ圧延直後のH形鋼のフランジを強制冷却
し、ウェブ波を防止する薄肉ウェブH形鋼の製造方法で
あり、強制冷却中にウェブ波が発生しない水冷時間の上
限もしくは水冷直後のフランジとウェブの温度差の下限
と、強制冷却後常温に至るまでのウェブの熱応力がウェ
ブの座屈応力以下となる水冷時間の下限もしくは水冷直
後のフランジとウェブの温度差の上限をH形鋼のサイズ
および冷却水量密度毎に予め定めておき、この上下限範
囲内でフランジの強制冷却を行い、水冷終了時のフラン
ジのウェブの温度差が一定範囲内になるようにする手段
である。
As a technique for economically producing a thin web H-section steel without web waves, the applicants of the present invention have previously disclosed Japanese Unexamined Patent Publication No.
The technology of Japanese Patent No. 205028 is provided. The gist of this proposal is a method for producing a thin web H-section steel in which the flange of H-section steel immediately after hot finish rolling is forcibly cooled to prevent web waves, and the upper limit of the water cooling time during which web waves do not occur during forced cooling. Alternatively, the lower limit of the temperature difference between the flange and the web immediately after water cooling and the lower limit of the water cooling time at which the thermal stress of the web after forced cooling to normal temperature is less than the buckling stress of the web or the temperature difference between the flange and the web immediately after water cooling. The upper limit is set in advance for each size of H-section steel and the cooling water amount density, and the flange is forcibly cooled within this upper and lower limit range so that the temperature difference of the flange web at the end of water cooling falls within a certain range. It is a means.

【0005】しかしながら前記強制冷却によりフランジ
に焼きが入り、フランジ表面硬度が過度に上昇する場合
があることがわかった。表面硬度が高くなりすぎると、
孔明け等の加工が困難になり、好ましくない。
However, it has been found that the forced cooling may cause the flange to be hardened and the surface hardness of the flange to be excessively increased. If the surface hardness becomes too high,
Processing such as drilling becomes difficult, which is not preferable.

【0006】また昨今、建築業界では新しい耐震設計法
の導入により鋼材の特性に低降伏比{通常:TR=(降
伏強度/引張強度)×100(%)}化を具備するよう
に要求している。従って、建築業界の要求に満足しうる
薄肉ウェブH形鋼を製造するためには、ウェブ波の防止
は言うに及ばずフランジ表面の硬度上昇抑制ならびに低
降伏比化を満足する新規な製造技術が必要となる。
In recent years, the construction industry has introduced a new seismic design method and demanded that the properties of steel materials have a low yield ratio {normal: TR = (yield strength / tensile strength) × 100 (%)}. There is. Therefore, in order to manufacture a thin web H-section steel that can meet the requirements of the building industry, not only the prevention of web waves but also a new manufacturing technique satisfying the suppression of the hardness increase of the flange surface and the reduction of the yield ratio is required. Will be needed.

【0007】ところで硬度上昇を抑制する方法として
は、特開昭59−182916号公報の鋼板での硬度不
均一抑制方法がある。しかしながら、例えばH形鋼の場
合、一般的に断面形状が複雑で各部位の板厚が異なる場
合が多いことから圧延時の鋼材温度が各部位によって異
なる。また形鋼では圧延材の長さが長く、また同一圧延
機によるリバース圧延が一般的であるために、圧延の際
に一度だけ強制冷却を行っても圧延中に復熱してしまう
時間が充分にある。従って、前記特開昭59−1829
16号公報の技術を形鋼の熱間圧延工程へ適用すること
は不可能である。また特開平2−19422号公報で
は、高強度形鋼を製造するために、圧延後の鋼材に強制
冷却を行うプロセスにおける冷却面の硬度上昇抑制方法
を示している。しかしながら、この方法はむしろ強度上
昇を目的とした技術であり、そのプロセスにおいて冷却
面の硬度上昇抑制をいかにして達成するかを提案するも
のであり、降伏強度あるいは降伏比の制御については言
及されていない。
By the way, as a method for suppressing the increase in hardness, there is a method for suppressing uneven hardness in a steel sheet disclosed in Japanese Patent Laid-Open No. 182916/1984. However, in the case of H-section steel, for example, the cross-sectional shape is generally complicated and the plate thickness of each part is often different, so the steel material temperature during rolling differs depending on each part. Also, in the case of shaped steel, the length of rolled material is long, and reverse rolling by the same rolling mill is common, so even if forced cooling is performed only once during rolling, there is sufficient time to reheat during rolling. is there. Therefore, the above-mentioned JP-A-59-1829 is used.
It is impossible to apply the technology of Japanese Patent No. 16 to the hot rolling process of shaped steel. Further, Japanese Patent Laid-Open No. 19422/1990 discloses a method for suppressing an increase in hardness of a cooling surface in a process of forcibly cooling a steel material after rolling in order to manufacture a high-strength shaped steel. However, this method is rather a technique aimed at increasing the strength, and proposes how to suppress the increase in hardness of the cooling surface in the process, and control of the yield strength or the yield ratio is mentioned. Not not.

【0008】[0008]

【発明が解決しようとする課題】フランジを強制冷却す
る熱間圧延法によって薄肉ウェブH形鋼を製造する際
に、ウェブ波の防止と同時にフランジ表面の硬度上昇な
らびに降伏強度の異常上昇を抑制することにより、ドリ
ル穿孔等の加工性に優れた低降伏比薄肉ウェブH形鋼の
製造方法を提供するものである。
When a thin web H-section steel is manufactured by the hot rolling method for forcibly cooling the flange, it prevents web waves and suppresses an increase in hardness of the flange surface and an abnormal increase in yield strength. This provides a method for producing a low-yield ratio thin web H-section steel having excellent workability such as drilling.

【0009】[0009]

【課題を解決するための手段】薄肉ウェブH形鋼の冷却
中に発生するウェブ波は、基本的には上記の冷却手段に
よって防止可能であるが、水冷開始時のフランジの温度
が高く、水冷時間が長い場合にはフランジ外側面に焼き
が入り、硬度が著しく高くなり所定の材質を満足するこ
とができないことがわかった。第2表鋼番3−1がその
例であるが、ウェブ波は防止できてもフランジ表面の硬
度が著しく上昇して強度が上昇し、伸び不足となる場合
があることがわかる。これは図3(a)に示すように、
フランジ外側面の表層部がベイナイト組織となっている
ことに起因する。
The web wave generated during the cooling of the thin web H-section steel can be basically prevented by the above-mentioned cooling means, but the temperature of the flange at the start of water cooling is high and the water cooling is not possible. It was found that when the time was long, the outer surface of the flange was burned and the hardness was significantly increased, so that the predetermined material could not be satisfied. Table 2 Steel No. 3-1 is an example, but it can be seen that even if the web wave can be prevented, the hardness of the flange surface is significantly increased and the strength is increased, resulting in insufficient elongation. This is as shown in FIG.
This is due to the bainite structure on the outer surface of the flange outer surface.

【0010】フランジ外側面の硬度の目標としては、特
に決められた値は無いが、ビッカース硬さHv(10)
≦200とした。これは厚鋼板のTMCP(Thermo Mec
hanical Control Process )鋼を参考にするとともに、
鋼材加工業界の情報をも基にして決定したものである。
There is no specific value for the hardness of the outer surface of the flange, but the Vickers hardness Hv (10)
≦ 200. This is a thick steel plate TMCP (Thermo Mec
hanical Control Process) With reference to steel,
It was decided based on information from the steel processing industry.

【0011】本発明者らは、種々の検討を行い、ウェブ
波を防止するための前記仕上げ圧延直後の強制冷却に先
立って、フランジ外側面の表層部熱間組織を微細化して
おくことにより、仕上げ圧延後の冷却によって焼きが入
りにくくなることを知見した。本法によれば、生産性を
低下させることなく、フランジ水冷面の焼き入れ硬化現
象を防止することができる。しかしながら、焼き入れ性
の低減を重視し、圧延中の過剰な水冷によりフランジの
圧延温度を過度に低下させる低温圧延を行うと、熱間組
織を過度に微細化することになり、硬度上昇抑制は達成
できるものの、今度は過度の細粒化による降伏強度上昇
効果が顕著となり、降伏比が極端に上昇することがわか
った。なお、降伏比の上限値の目標は現在明確に規定さ
れていないが、昨今の高層建築物向け鋼材に求められる
実績より、80%以下とした。
The inventors of the present invention have conducted various studies and, prior to the forced cooling immediately after the finish rolling for preventing web waves, by refining the surface layer portion hot structure on the outer surface of the flange, It was found that quenching becomes difficult by cooling after finish rolling. According to this method, the quench hardening phenomenon of the flange water-cooled surface can be prevented without lowering the productivity. However, emphasizing the reduction of hardenability, when performing low-temperature rolling that excessively lowers the rolling temperature of the flange by excessive water cooling during rolling, the hot structure will be excessively refined, and the increase in hardness will not be suppressed. Although it could be achieved, it was found that the yield strength increasing effect due to excessive grain refinement became remarkable and the yield ratio increased extremely. Although the target of the upper limit value of the yield ratio is not clearly defined at present, it has been set to 80% or less based on the recent demand for steel materials for high-rise buildings.

【0012】例えば第2表鋼番3−4に示すように、ウ
ェブ波およびフランジ表面の硬度上昇は抑制するもの
の、降伏比が上昇し、目標値80%を大きく超えてしま
う場合がある。これは図3(b)に示すように、フラン
ジ外側面の表層部が極めて微細なフェライト、パーライ
ト組織となっており、また圧延加工時に導入された歪が
残存していると思われる温間加工組織も存在することに
起因する。この組織を走査型電子顕微鏡で観察したとこ
ろ、図3(c)に示すように2〜3μm径の亜粒界が観
察され、低温圧延が行われたことを裏付ける。
For example, as shown in Table 2 Steel No. 3-4, although the increase in hardness of the web wave and the surface of the flange is suppressed, the yield ratio may increase and the target value may exceed 80%. As shown in FIG. 3 (b), this is because the surface layer on the outer surface of the flange has an extremely fine ferrite and pearlite structure, and the strain introduced during rolling seems to remain warm-worked. Due to the existence of an organization. When this structure was observed with a scanning electron microscope, subgrain boundaries with a diameter of 2 to 3 μm were observed as shown in FIG. 3C, which confirms that low-temperature rolling was performed.

【0013】本発明者らは、さらに検討を重ねた結果、
低降伏比化は熱間組織を適度に微細化することで実現で
きることを知見した。即ち、仕上げ圧延温度の下限を規
制し、所定のフランジ表層部厚さを微細な熱間組織に制
御する必要があること、およびTiN、AlNを形成し
組織微細化効果を有するTi、Alの添加量の規制、な
らびにオーステナイト相の未再結晶温度を高めるNb添
加量の規制が有効であることを知見した。
As a result of further studies, the present inventors have found that
We have found that a low yield ratio can be achieved by appropriately refining the hot structure. That is, it is necessary to regulate the lower limit of the finish rolling temperature to control the predetermined flange surface layer thickness to a fine hot structure, and to add Ti and Al that form TiN and AlN and have a structure refinement effect. It was found that the regulation of the amount and the regulation of the Nb addition amount that raises the non-recrystallization temperature of the austenite phase are effective.

【0014】以上の知見に基づき課題を解決したもので
あり、その要旨とするところは下記のとおりである。
The problem is solved based on the above knowledge, and the gist thereof is as follows.

【0015】熱間仕上げ圧延直後のH形鋼のフランジを
強制冷却する際に、強制冷却中にウェブ波が発生しない
水冷直後のフランジとウェブの温度差の下限と、強制冷
却後常温に至るまでのウェブの熱応力がウェブの座屈応
力以下となる水冷直後のフランジとウェブの温度差の上
限とをH形鋼のサイズおよび冷却水量密度毎に予め求め
ておき、前記温度差の上・下限内でフランジを強制冷却
する薄肉ウェブH形鋼の製造方法において、重量%で C :0.04〜0.20% Si:0.01〜0.50% Mn:0.3 〜1.80% Ti:0.02% 以下 Al:0.060%以下 Nb:0.02% 以下とし、 必要に応じて Mo:0.3%以下 V :0.2%以下 Cr:0.7%以下 Cu:1.0%以下 Ni:1.0%以下 B :0.003%以下 Ca:0.001〜0.005% の1種または2種以上を含有し、かつ、炭素当量Ce
q.(=C+Si/24+Mn/6+Ni/40+Cr
/5+Mo/4+V/14)(%)が0.40%以下で
あり、残部がFeおよび不可避的不純物からなる鋼を熱
間圧延に供し、前記仕上げ圧延前の中間圧延段階でフラ
ンジ外側面を強制冷却し、フランジ外側面の表層部温度
を一回以上700℃以下まで冷却する水冷工程と、冷却
を停止しフランジ外側面の表層部温度を700℃超まで
復熱させる復熱工程とを繰り返しながら圧延を行い、前
記仕上げ圧延終了温度の下限を750℃以上にし、仕上
げ圧延直後のフランジ強制冷却を行うことを特徴とする
薄肉ウェブH形鋼の製造方法。
When the flange of the H-section steel immediately after hot finish rolling is forcibly cooled, the lower limit of the temperature difference between the flange and the web immediately after water cooling at which the web wave does not occur during the forced cooling and after reaching the room temperature after forced cooling The upper limit of the temperature difference between the flange and the web immediately after water cooling, at which the thermal stress of the web becomes less than the buckling stress of the web, is obtained in advance for each size of the H-section steel and the cooling water amount density, and the upper and lower limits of the temperature difference. In the method for producing a thin web H-section steel in which the flange is forcibly cooled inside, C: 0.04 to 0.20% Si: 0.01 to 0.50% Mn: 0.3 to 1.80% by weight%. Ti: 0.02% or less Al: 0.060% or less Nb: 0.02% or less, if necessary Mo: 0.3% or less V: 0.2% or less Cr: 0.7% or less Cu: 1.0% or less Ni: 1.0% or less B: 0.003 % Or less Ca: 0.001 to 0.005% of 1 type or 2 or more types, and carbon equivalent Ce
q. (= C + Si / 24 + Mn / 6 + Ni / 40 + Cr
/ 5 + Mo / 4 + V / 14) (%) is 0.40% or less, and the balance is Fe and steel inevitable impurities are subjected to hot rolling, and the flange outer surface is forced at the intermediate rolling stage before the finish rolling. While repeating the water cooling process of cooling and cooling the surface layer temperature of the flange outer surface once to 700 ° C or less, and the recuperation process of stopping the cooling and reheating the surface layer temperature of the flange outer surface to more than 700 ° C. A method for producing a thin web H-section steel, which comprises performing rolling, setting the lower limit of the finish rolling finish temperature to 750 ° C. or higher, and performing forced flange cooling immediately after finish rolling.

【0016】[0016]

【作用】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0017】図1は本発明法の中間圧延段階における圧
延状況を時間の経過とH形鋼の温度変化との関係で示し
たものである。図2はその設備配置例であり、中間圧延
機1の前後面には水冷装置2aを配置し、次工程の仕上
げ圧延機3の後面には冷却ウェブ波を防止するための水
冷装置2bを配置している。図1においてフランジ部の
平均温度は漸次低下していくのに対して、フランジ表層
部温度は冷却・復熱を交互に繰り返すため鋸歯状となっ
ている。このように冷却・復熱を交互に行いつつ圧延す
ることによって、フランジ外側面の表層部はフェライト
変態の促進、未変態オーステナイトの微細化促進などに
より組織を微細化し焼き入れ性の低減を達成できるもの
である。
FIG. 1 shows the rolling condition in the intermediate rolling stage of the method of the present invention in relation to the passage of time and the temperature change of the H-section steel. FIG. 2 is an example of the equipment arrangement, in which water cooling devices 2a are arranged on the front and rear surfaces of the intermediate rolling mill 1, and a water cooling device 2b for preventing cooling web waves is arranged on the rear surface of the finish rolling mill 3 in the next process. is doing. In FIG. 1, the average temperature of the flange portion gradually decreases, while the surface temperature of the flange portion has a sawtooth shape because cooling and recuperation are repeated alternately. By rolling while alternately performing cooling and recuperation, it is possible to reduce the hardenability by refining the structure of the surface layer portion of the flange outer surface by promoting ferrite transformation and refining untransformed austenite. It is a thing.

【0018】さて、降伏比を低くするには、降伏強度
(以下、σy )を低くし、歪硬化指数を大きくすること
ができればよい。しかし歪硬化指数を制御することは一
般の構造用鋼では極めて困難であり、σy を低くする方
法を見い出すことが有効であるとの結論に至った。
In order to lower the yield ratio, it is sufficient to lower the yield strength (hereinafter, σ y ) and increase the strain hardening index. However, it has been concluded that it is extremely difficult to control the strain hardening index in general structural steel, and it is effective to find a method of lowering σ y .

【0019】σy は、式(1)で示される。Σ y is expressed by equation (1).

【0020】 σy =σo +σd +k・d-1/2 式(1) σo :固溶強化、析出強化 σd :転位の導入による加工強化 d :結晶粒径 即ち、フェライトとパーライト分率が一定であれば、フ
ェライト中の固溶炭素量とその粒径によって支配され、
さらに低温圧延により温間加工などを受ける場合には、
転位の導入により亜粒界が形成されるために一層強い影
響をうける。
Σ y = σ o + σ d + k · d −1/2 formula (1) σ o : solid solution strengthening, precipitation strengthening σ d : work strengthening by introducing dislocations d: crystal grain size, that is, ferrite and pearlite components If the ratio is constant, it is dominated by the amount of solute carbon in ferrite and its grain size,
Furthermore, when undergoing warm working by low temperature rolling,
Subgrain boundaries are formed by the introduction of dislocations, which is further affected.

【0021】従って低降伏比化には、特にフェライト粒
径を過度に小さくしないような成分系の選定ならびに圧
延条件・冷却条件などの制御が重要となる。
Therefore, in order to reduce the yield ratio, it is important to select a component system that does not excessively reduce the ferrite grain size and control the rolling conditions and cooling conditions.

【0022】即ち、本発明にかかる薄肉ウェブH形鋼は
降伏比が低く、耐震性に優れているが、これは成分系の
選定および中間圧延段階での加工および水冷条件の適正
な制御を実現することにより、ミクロ組織が比較的大き
なフェライトから成ることによるのである。
That is, the thin web H-section steel according to the present invention has a low yield ratio and is excellent in earthquake resistance, which realizes proper control of component system selection, processing in the intermediate rolling stage and water cooling conditions. By doing so, the microstructure is composed of a relatively large ferrite.

【0023】本発明において仕上げ温度の下限を規制し
たのはこのためであり、中間圧延段階でのフランジ外側
面の冷却を強化したために仕上げ温度が750℃より低
くなった場合には、図3(b)に示した極細粒および温
間加工組織が顕著に現出し、降伏比が上昇することがわ
かったため、その下限値を750℃とした。
It is for this reason that the lower limit of the finishing temperature is regulated in the present invention. When the finishing temperature becomes lower than 750 ° C. due to the enhanced cooling of the outer surface of the flange in the intermediate rolling stage, as shown in FIG. It was found that the ultrafine grains and the warm-worked structure shown in b) remarkably appeared and the yield ratio increased, so the lower limit value was set to 750 ° C.

【0024】一方、該仕上げ温度を確保できた場合は、
図4に示すように、加工組織のほとんど無いほぼ正常な
細粒組織となり、硬度上昇を抑制した低降伏比薄肉ウェ
ブH形鋼を得ることができる。
On the other hand, when the finishing temperature can be secured,
As shown in FIG. 4, an H-shaped steel having a low yield ratio and a thin web having a substantially normal fine-grained structure having almost no processed structure and suppressing an increase in hardness can be obtained.

【0025】次に本発明形鋼の基本成分範囲の限定理由
について述べる。
Next, the reasons for limiting the basic composition range of the shaped steel of the present invention will be described.

【0026】まず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.04%未満では構造用鋼
として必要な強度が得られず、また、0.20%を超え
る過剰の添加は、母材靭性、溶接割れ性、溶接熱影響部
(以下HAZと称す)靭性などを著しく低下させるの
で、上限を0.20%とした。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.04%, the strength required as a structural steel cannot be obtained, and if it exceeds 0.20%, it is excessive. The addition markedly lowers the base material toughness, weld crackability, weld heat affected zone (hereinafter referred to as HAZ) toughness, etc., so the upper limit was made 0.20%.

【0027】次に、Siは母材の強度確保、溶鋼の予備
脱酸などに必要であるが、0.50%を超えるとHAZ
組織内に硬化組織の島状マルテンサイトを生成し、溶接
継手部靭性を著しく低下させる。また、0.01%未満
では母材靭性が劣化するためSi含有量をこの範囲に限
定した。
Next, Si is necessary for securing the strength of the base metal and pre-deoxidizing molten steel, but if it exceeds 0.50%, HAZ
It forms island martensite with a hardened structure in the structure, and significantly reduces the toughness of the welded joint. Further, if less than 0.01%, the toughness of the base material deteriorates, so the Si content is limited to this range.

【0028】Mnは母材の強度、靭性の確保には0.3
%以上の添加が必要であるが、溶接部の靭性、割れ性な
どの許容できる範囲で上限を1.8%とした。
Mn is 0.3 in order to secure the strength and toughness of the base material.
% Or more is required, but the upper limit was set to 1.8% within the allowable range of the toughness and crackability of the welded portion.

【0029】TiはNを固定しTiNとなって微細析出
し、鋼片加熱時のオーステナイト粒を微細化し、圧延組
織の微細化に有効な元素であり、添加量の増加にともな
い細粒化を促進し、さらには炭化物生成による靭性低下
を招くため、上限を0.02%とした。
Ti is an element effective for refining the austenite grains during heating of the billet and finely converting the austenite grains by fixing N and finely converting it to TiN. Therefore, the upper limit is set to 0.02% because it accelerates and further causes toughness reduction due to carbide formation.

【0030】Alは強力な脱酸元素として鋼精練時の脱
酸に有効ではあるが、Nを固定してAlNとなり結晶粒
の微細化効果を示す合金元素であり、0.060%より
多いとHAZ靭性を著しく劣化させるため、上限を0.
060%とした。
Although Al is a powerful deoxidizing element and is effective for deoxidizing during steel refining, it is an alloying element which fixes N to become AlN and has a grain refining effect, and when it is more than 0.060%. Since the HAZ toughness is significantly deteriorated, the upper limit is set to 0.
It was set to 060%.

【0031】Nbは微細な炭窒化物を形成し、オーステ
ナイト相の未再結晶温度を上昇させ、該未再結晶温度域
での圧延により圧延組織の微細化を可能ならしめる母材
の強靭化に有効な元素であり、さらに過剰の添加は、靭
性及び硬化性の観点から有害となるため0.02%以下
とした。
Nb forms fine carbonitrides, raises the non-recrystallization temperature of the austenite phase, and improves the toughness of the base material which makes it possible to refine the rolling structure by rolling in the non-recrystallization temperature range. Since it is an effective element, and excessive addition is harmful from the viewpoint of toughness and hardenability, the content was made 0.02% or less.

【0032】不可避不純物として含有するP,Sはその
量について特に限定しないが凝固偏析による溶接割れ、
靭性の低下を生じるので、極力低減すべきであり、望ま
しくはP,S量はそれぞれ0.02%,0.02%以下
である。
The amounts of P and S contained as inevitable impurities are not particularly limited, but weld cracks due to solidification segregation,
Since the toughness is reduced, it should be reduced as much as possible, and the P and S contents are preferably 0.02% and 0.02% or less, respectively.

【0033】以上が本発明鋼の基本成分であるが、母材
強度の上昇あるいは母材の靭性向上の目的等で、必要に
応じて、Mo,V,Cr,Cu,Ni,BおよびCaの
1種または2種以上を含有することができる。
The above are the basic components of the steel of the present invention. However, for the purpose of increasing the strength of the base metal or improving the toughness of the base metal, Mo, V, Cr, Cu, Ni, B and Ca may be added as necessary. It may contain one kind or two or more kinds.

【0034】まず、Moは母材強度の確保に有効な元素
であるが、高価であるため0.3%以下に制限した。
First, Mo is an element effective for securing the strength of the base material, but since it is expensive, it is limited to 0.3% or less.

【0035】VはVNとして細粒化、析出強化による高
強度化のために重要であるが、0.2%を超えると析出
量が過剰になり母材靭性が低下するため0.2%以下に
限定した。
V is important as VN for fine graining and high strength by precipitation strengthening, but if it exceeds 0.2%, the amount of precipitation becomes excessive and the toughness of the base material decreases, so V is 0.2% or less. Limited to.

【0036】Crは焼き入れ性の向上により、母材の強
化に有効であるが、過剰の添加は靭性および硬化性の観
点から有害となるため、上限を0.7%とした。
Cr is effective for strengthening the base material due to improvement in hardenability, but excessive addition is harmful from the viewpoint of toughness and hardenability, so the upper limit was made 0.7%.

【0037】Cuは母材の強化、耐候性に有効な元素で
あるが、溶接割れ性、熱間加工割れなどを考慮して、上
限を1.0%とした。
Cu is an element effective for strengthening the base material and weathering resistance, but the upper limit is set to 1.0% in consideration of weld crackability, hot work cracking and the like.

【0038】Niは母材の強靭性を高める極めて有効な
元素であるが、1.0%を超す添加は合金コストを増加
させ経済的でないので上限を1.0%とした。
Ni is an extremely effective element for enhancing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%.

【0039】さらに、Bは、焼き入れ性不足を補う必要
がある場合に0.003%以下の微量で十分に焼き入れ
性が確保できる有能な元素であるが、過剰に添加した場
合は、粒界脆化の原因となるので上限を0.003%と
した。
Further, B is an effective element capable of ensuring sufficient hardenability with a trace amount of 0.003% or less when it is necessary to compensate for the insufficient hardenability, but when added excessively, Since it causes grain boundary embrittlement, the upper limit was made 0.003%.

【0040】Caは、強力な脱酸元素であり、さらに不
純物のSと結びついてSの害を防ぐものであるが、その
量が多すぎると靭性ならびに溶接性を悪化させるため、
その範囲を0.001〜0.005%とした。
[0040] Ca is a strong deoxidizing element, and further binds to the impurity S to prevent the damage of S. However, if its amount is too large, it deteriorates the toughness and weldability.
The range was made 0.001 to 0.005%.

【0041】但し、これらの元素は、上記含有量範囲に
おいて、以下に定義される炭素当量Ceq.が所定量以
下になるように含有させる必要がある。すなわち、炭素
当量Ceq.(%)は、Ceq.=C+Si/24+M
n/6+Ni/40+Cr/5+Mo/4+V/14と
定義され、Ceq.が0.40%を越えると、適正な圧
延条件および水冷条件で製造しても、靭性の低下ならび
に降伏強度および引張強度の著しい増加を招くため好ま
しくない。したがって、Ceq.は0.40%以下とす
る。
However, these elements have the carbon equivalent Ceq. Need to be contained so that the amount is not more than a predetermined amount. That is, carbon equivalent Ceq. (%) Is Ceq. = C + Si / 24 + M
n / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14, and Ceq. Is more than 0.40%, it is not preferable because the toughness is lowered and the yield strength and the tensile strength are significantly increased even if the steel is manufactured under appropriate rolling conditions and water cooling conditions. Therefore, Ceq. Is 0.40% or less.

【0042】なお、本発明において冷却の復熱の境界温
度とした700℃は、厳密には鋼材成分によって異なる
が、引張強度40〜50kg/mm2 クラスの圧延H形
鋼では該温度を実操業の基準値として管理すれば本発明
の目的は十分に達成されることを各種試験で確認した結
果定めたものである。
In the present invention, 700 ° C., which is the boundary temperature for recuperation of cooling, strictly varies depending on the steel material composition, but in the rolled H-section steel having a tensile strength of 40 to 50 kg / mm 2 class, this temperature is actually operated. It has been determined as a result of various tests that the object of the present invention can be sufficiently achieved if it is controlled as the reference value of.

【0043】[0043]

【実施例】第1表に示す化学成分を有する鋼につき、第
2表に示す圧延条件および冷却条件で薄肉ウェブH形鋼
を製造した。得られた機械的性質、フランジ水冷面の硬
度およびウェブ波の発生有無を第2表に併記する。
EXAMPLE A thin web H-section steel was produced under the rolling conditions and cooling conditions shown in Table 2 for steels having the chemical compositions shown in Table 1. Table 2 also shows the obtained mechanical properties, the hardness of the flange water-cooled surface, and the occurrence of web waves.

【0044】第1表において、鋼1〜鋼8は本発明範囲
内の化学成分を有する鋼である。一方、鋼9〜鋼11は
本発明範囲外の化学成分を有する鋼であり、鋼9はNb
添加量が多く、鋼10はNbおよびTiが共に多く、鋼
11は炭素当量Ceq.が高い例である。
In Table 1, Steel 1 to Steel 8 are steels having chemical compositions within the scope of the present invention. On the other hand, Steels 9 to 11 are steels having chemical compositions outside the scope of the present invention, and Steel 9 is Nb.
Steel 10 has a large amount of Nb and Ti, and Steel 11 has a carbon equivalent Ceq. Is a high example.

【0045】また、第2表において、鋼番2−1、2−
2は、第1表の鋼2に対して異なった製造条件を適用し
たことを示すものであり、鋼番3−1、3−2等につい
ても同様である。
In Table 2, steel numbers 2-1 and 2-
2 shows that different manufacturing conditions were applied to steel 2 in Table 1, and the same applies to steel numbers 3-1 and 3-2.

【0046】第2表より明らかなように、本発明鋼1、
2−1、3−2、3−3、3−5、4、5、6、7−
1、8−1は、いずれも適正な化学成分でかつ適切な圧
延ならびに冷却条件下で製造したものであり、降伏比は
目標値80%以下を安定して満足しており、フランジ表
面硬度も目標値Hv(10)200以下を満足し、しか
もウェブ波の無い健全な薄肉ウェブH形鋼が得られた。
As is clear from Table 2, the steels of the present invention 1,
2-1, 3-2, 3-3, 3-5, 4, 5, 6, 7-
Nos. 1 and 8-1 were produced with appropriate chemical components and under appropriate rolling and cooling conditions, and the yield ratio was stably satisfying the target value of 80% or less, and the flange surface hardness was also A sound thin web H-section steel satisfying the target value Hv (10) of 200 or less and having no web wave was obtained.

【0047】一方、比較鋼2−2、比較鋼3−4および
比較鋼7−2は中間圧延段階でフランジ表面が700℃
以下になる水冷回数が比較的多く、仕上げ温度が低くな
ったために、組織の微細化あるいは亜粒界が生成した結
果、降伏比が高く目標値80%を越えている。
On the other hand, in Comparative Steel 2-2, Comparative Steel 3-4 and Comparative Steel 7-2, the flange surface was 700 ° C. in the intermediate rolling stage.
Since the number of times of water cooling becomes relatively large below and the finishing temperature became low, the structure was refined or sub-grain boundaries were generated, and as a result, the yield ratio was high and exceeded the target value of 80%.

【0048】比較鋼3−1は中間圧延段階でフランジ水
冷を行わなかったため、圧延後の水冷によりフランジ外
側面に焼きが入り、硬度が著しく上昇して、目標値Hv
(10)200を越えている。この鋼はこの硬度上昇に
よりドリル穿孔等の加工性が極めて悪化している。
Since the comparative steel 3-1 was not subjected to flange water cooling in the intermediate rolling stage, the outer surface of the flange was quenched due to water cooling after rolling, and the hardness was remarkably increased to the target value Hv.
(10) It exceeds 200. This steel has extremely deteriorated workability such as drilling due to this increase in hardness.

【0049】比較鋼8−2は中間圧延段階でフランジ表
面が700℃以下になる水冷回数が0回のため、圧延後
の水冷によりフランジ外側面に焼きが入り、硬度が著し
く上昇して、目標値Hv(10)200を越えている。
In Comparative Steel 8-2, the number of times of water cooling at which the surface of the flange was 700 ° C. or less in the intermediate rolling stage was 0, so the outer surface of the flange was quenched by water cooling after rolling, and the hardness was remarkably increased. The value exceeds Hv (10) 200.

【0050】また比較鋼9はNb添加量が多いため、細
粒化が過度となり降伏比が高く、目標値80%を越えて
いる。比較鋼10はNbおよびTiが共に過多のため
に、降伏比が高い。鋼11は炭素当量Ceq.が高いた
めに強度が高く、伸びが著しく低下している。
Further, since the comparative steel 9 contains a large amount of Nb, the grain refinement becomes excessive and the yield ratio is high, exceeding the target value of 80%. Comparative steel 10 has a high yield ratio because both Nb and Ti are excessive. Steel 11 has a carbon equivalent of Ceq. Is high, the strength is high and the elongation is remarkably reduced.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】従来の薄肉ウェブH形鋼製造法では、仕
上げ圧延後の冷却によってフランジ表面の硬度上昇や強
度の異常上昇等が避けられなかったが、本発明法によれ
ばウェブ波発生の防止は勿論、中間圧延段階の冷却と復
熱の温度制御を精度良く行うことによって、フランジ表
面の硬度上昇抑制ならびに低降伏比化を達成できる。ま
たTi,Nb等の高価な合金元素の添加が不要あるいは
削減できるので、ドリル穿孔等の加工性に優れ、かつ耐
震性能を高めた低降伏比薄肉ウェブH形鋼を極めて経済
的に製造できる。
In the conventional thin web H-section steel manufacturing method, the increase in hardness and the abnormal increase in strength of the flange surface cannot be avoided due to the cooling after the finish rolling. Not only the prevention but also the cooling in the intermediate rolling stage and the temperature control of the recuperation are accurately performed, so that the hardness increase of the flange surface can be suppressed and the yield ratio can be reduced. Further, since the addition of expensive alloying elements such as Ti and Nb is unnecessary or can be reduced, it is possible to extremely economically manufacture a low yield ratio thin web H-section steel which has excellent workability such as drilling and drilling and has improved seismic performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における圧延材の温度変化を示すグラ
フ。
FIG. 1 is a graph showing a temperature change of a rolled material according to the present invention.

【図2】本発明法を実施する装置配置例の説明略図。FIG. 2 is an explanatory schematic diagram of an example of device arrangement for carrying out the method of the present invention.

【図3】(a),(b)および(c)は従来法(比較
法)で製造した場合のフランジ表層部断面の金属組織の
光学顕微鏡写真および電子顕微鏡写真を表す図。
3 (a), (b) and (c) are diagrams showing an optical microscope photograph and an electron microscope photograph of a metal structure of a flange surface layer section cross-section when manufactured by a conventional method (comparative method).

【図4】本発明法で製造した場合の金属組織のフランジ
表層部断面の光学顕微鏡写真を表す図。
FIG. 4 is a view showing an optical microscope photograph of a flange surface layer section of a metal structure produced by the method of the present invention.

【符号の説明】[Explanation of symbols]

1…中間圧延機 2a…中間圧延機前後面の水
冷装置 3…仕上圧延機 2b…仕上圧延機後面の冷却
装置
DESCRIPTION OF SYMBOLS 1 ... Intermediate rolling mill 2a ... Water-cooling device for front and rear surfaces of intermediate rolling mill 3 ... Finishing rolling mill 2b ... Cooling device for rear surface of finishing rolling mill

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年6月5日[Submission date] June 5, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】また昨今、建築業界では新しい耐震設計法
の導入により鋼材の特性に低降伏比{通常:R=(降
伏強度/引張強度)×100(%)}化を具備するよう
に要求している。従って、建築業界の要求に満足しうる
薄肉ウェブH形鋼を製造するためには、ウェブ波の防止
は言うに及ばずフランジ表面の硬度上昇抑制ならびに低
降伏比化を満足する新規な製造技術が必要となる。
In recent years, the construction industry has introduced a new seismic design method to require that the properties of steel materials have a low yield ratio {usually: Y R = (yield strength / tensile strength) × 100 (%)}. ing. Therefore, in order to manufacture a thin web H-section steel that can meet the requirements of the building industry, not only the prevention of web waves but also a new manufacturing technique satisfying the suppression of the hardness increase of the flange surface and the reduction of the yield ratio is required. Will be needed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若月輝行 堺市築港八幡町1番地 新日本製鐵株式会 社堺製鐵所内 (72)発明者 稲垣 彰 堺市築港八幡町1番地 新日本製鐵株式会 社堺製鐵所内 (72)発明者 長谷川 博行 堺市築港八幡町1番地 新日本製鐵株式会 社堺製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruyuki Wakatsuki No. 1 Tsukiko Yawata-cho, Sakai City New Nippon Steel Co., Ltd. Inside the Sakai Works (72) Inventor Akira Inagaki No. 1 Tsukiko Hachiman-cho, Sakai City New Japan (72) Hiroyuki Hasegawa, Inventor Hiroyuki Hasegawa, No. 1 Tsukiko Hachiman-cho, Sakai City Nippon Steel Stock Corporation, Sakai Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間仕上げ圧延直後のH形鋼のフランジ
を強制冷却する際に、強制冷却中にウェブ波が発生しな
い水冷直後のフランジとウェブの温度差の下限と、強制
冷却後常温に至るまでのウェブの熱応力がウェブの座屈
応力以下となる水冷直後のフランジとウェブの温度差の
上限とをH形鋼のサイズおよび冷却水量密度毎に予め求
めておき、前記温度差の上・下限内でフランジを強制冷
却する薄肉ウェブH形鋼の製造方法において、重量%で C :0.04〜0.20% Si:0.01〜0.50% Mn:0.3〜1.80% Ti:0.02% 以下 Al:0.060%以下 Mb:0.02% 以下とし、かつ炭素当量Ceq.
(=C+Si/24+Mn/6+Ni/40+Cr/5
+Mo/4+V/14)(%)が0.40%以下であ
り、残部がFeおよび不可避的不純物からなる鋼を熱間
圧延に供し、前記仕上げ圧延前の中間圧延段階でフラン
ジ外側面を強制冷却し、フランジ外側面の表層部温度を
一回以上700℃以下まで冷却する水冷工程と、冷却を
停止しフランジ外側面の表層部温度を700℃超まで復
熱させる復熱工程とを繰り返しながら圧延を行い、前記
仕上げ圧延終了温度の下限を750℃以上にし、仕上げ
圧延直後のフランジ強制冷却を行うことを特徴とする、
加工性に優れた低降伏比薄肉ウェブ形鋼の製造方法。
1. When the flange of H-section steel immediately after hot finish rolling is forcibly cooled, the lower limit of the temperature difference between the flange and the web immediately after water cooling in which no web wave is generated during the forced cooling and the room temperature after forced cooling. The upper limit of the temperature difference between the flange and the web immediately after water cooling, in which the thermal stress of the web until reaching the buckling stress of the web is equal to or less than the buckling stress of the web, is obtained in advance for each size of H-section steel and the density of cooling water, and the temperature difference above -In the manufacturing method of the thin web H-section steel in which the flange is forcibly cooled within the lower limit, C: 0.04 to 0.20% Si: 0.01 to 0.50% Mn: 0.3 to 1. 80% Ti: 0.02% or less Al: 0.060% or less Mb: 0.02% or less, and carbon equivalent Ceq.
(= C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5
+ Mo / 4 + V / 14) (%) is 0.40% or less and the balance is Fe and unavoidable impurities, and the steel is subjected to hot rolling, and the outer surface of the flange is forcibly cooled in the intermediate rolling stage before the finish rolling. Then, rolling is repeated while repeating a water cooling step of cooling the surface layer temperature of the outer surface of the flange once to 700 ° C or less and a recuperation step of stopping cooling and reheating the surface layer temperature of the outer surface of the flange to more than 700 ° C. The lower limit of the finish rolling finish temperature is 750 ° C. or higher, and the flange is forcibly cooled immediately after the finish rolling.
A method for producing a thin web section steel having a low yield ratio and excellent workability.
【請求項2】 請求項1の記載の鋼成分に必要に応じて Mo:0.3%以下 V :0.2%以下 Cr:0.7%以下 Cu 1.0%以下 Ni:1.0%以下 B :0.003%以下 Ca:0.001〜0.005% の1種または2種以上を添加したことを特徴とする、加
工性に優れた低降伏比薄肉ウェブH形鋼の製造方法。
2. The steel composition according to claim 1, if necessary Mo: 0.3% or less V: 0.2% or less Cr: 0.7% or less Cu 1.0% or less Ni: 1.0 % Or less B: 0.003% or less Ca: 0.001 to 0.005% Addition of one or more kinds of low yield ratio thin wall web H-section steel excellent in workability Method.
JP11869191A 1991-05-23 1991-05-23 Method for manufacturing thin web H-section steel with low yield ratio and excellent workability Expired - Lifetime JP2533250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11869191A JP2533250B2 (en) 1991-05-23 1991-05-23 Method for manufacturing thin web H-section steel with low yield ratio and excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11869191A JP2533250B2 (en) 1991-05-23 1991-05-23 Method for manufacturing thin web H-section steel with low yield ratio and excellent workability

Publications (2)

Publication Number Publication Date
JPH05345915A true JPH05345915A (en) 1993-12-27
JP2533250B2 JP2533250B2 (en) 1996-09-11

Family

ID=14742787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11869191A Expired - Lifetime JP2533250B2 (en) 1991-05-23 1991-05-23 Method for manufacturing thin web H-section steel with low yield ratio and excellent workability

Country Status (1)

Country Link
JP (1) JP2533250B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609556A2 (en) * 1993-02-04 1994-08-10 Nippon Steel Corporation Method for producing low carbon-equivalent rolled steel shapes by controlled rolling
JP2021154366A (en) * 2020-03-27 2021-10-07 Jfeスチール株式会社 Method of manufacturing h-section steel
CN114369764A (en) * 2022-01-17 2022-04-19 马鞍山钢铁股份有限公司 High-performance thick hot-rolled H-shaped steel with yield strength of 460MPa and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609556A2 (en) * 1993-02-04 1994-08-10 Nippon Steel Corporation Method for producing low carbon-equivalent rolled steel shapes by controlled rolling
EP0609556A3 (en) * 1993-02-04 1996-09-04 Nippon Steel Corp Method for producing low carbon-equivalent rolled steel shapes by controlled rolling.
US5738739A (en) * 1993-02-04 1998-04-14 Nippon Steel Corporation Method for producing low carbon equivalent rolled steel shapes by controlled rolling
JP2021154366A (en) * 2020-03-27 2021-10-07 Jfeスチール株式会社 Method of manufacturing h-section steel
CN114369764A (en) * 2022-01-17 2022-04-19 马鞍山钢铁股份有限公司 High-performance thick hot-rolled H-shaped steel with yield strength of 460MPa and production method thereof

Also Published As

Publication number Publication date
JP2533250B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP2003321727A (en) Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JPH0794687B2 (en) Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
JP2001073069A (en) High productivity and high strength rolled wide flange shape and its production
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JP2533250B2 (en) Method for manufacturing thin web H-section steel with low yield ratio and excellent workability
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
KR100330432B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JPH1088230A (en) Production of high tensile strength steel material excellent in toughness
JPH08209240A (en) Production of steel plate for line pipe excellent in co2 corrosion resistance and low temperature toughness
JPH05271756A (en) Manufacture of thick steel plate for welded structure excellent in toughness at low temperature
JPH08283899A (en) Steel plate reduced in anisotropy and having high toughness and high tensile strength and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

EXPY Cancellation because of completion of term