JPH0764680B2 - Substrate for oxide superconductor thin film - Google Patents

Substrate for oxide superconductor thin film

Info

Publication number
JPH0764680B2
JPH0764680B2 JP2064302A JP6430290A JPH0764680B2 JP H0764680 B2 JPH0764680 B2 JP H0764680B2 JP 2064302 A JP2064302 A JP 2064302A JP 6430290 A JP6430290 A JP 6430290A JP H0764680 B2 JPH0764680 B2 JP H0764680B2
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
axis
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2064302A
Other languages
Japanese (ja)
Other versions
JPH03265599A (en
Inventor
信太郎 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2064302A priority Critical patent/JPH0764680B2/en
Publication of JPH03265599A publication Critical patent/JPH03265599A/en
Publication of JPH0764680B2 publication Critical patent/JPH0764680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超伝導体薄膜を形成するための基板に
関し、特にYBa2Cu3Oxに代表される酸化物高温超伝導体
の斜方晶a軸配向エピタキシャル単結晶膜あるいは斜方
晶b軸配向エピタキシャル単結晶膜を得る為の基板に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a substrate for forming an oxide superconductor thin film, and particularly to a high temperature oxide superconductor represented by YBa 2 Cu 3 O x . The present invention relates to a substrate for obtaining an orthorhombic a-axis oriented epitaxial single crystal film or an orthorhombic b-axis oriented epitaxial single crystal film.

[従来の技術] 超伝導転移温度(Tc)が液体窒素温度77Kを越す酸化物
超伝導体YBa2Cu3Ox(Tc>90K)が発見されて以来、エレ
クトロニクス応用に向けてこのような超伝導体の薄膜形
成に関する研究開発が活発となっている。これまで薄膜
形成に用いられた基板結晶としてはコランダム構造のAl
2O3(格子定数a=4.78Å,c=12.95Å),NaCl構造のNgO
(a=4.215Å),Y安定化ZrO2(a=3.64Å,c=5.27
Å),スピネル構造のMgAl2O4(a=8.08Å),ペロウ
スカイト構造のSrTiO4(a=3.91Å),ダイヤモンド構
造のSi(a=5.43Å),擬イルメナイト構造のLiNbO
3(a=5.148Å,c=12Å)など多岐にわたっている。ま
た薄膜形成法もスパッタ法,真空共蒸着法,レーザ蒸着
法,有機金属熱分解法などで行なわれている。この中で
も基板としてSrTiO3とMgOが汎く用いられている。現在
では成膜法に依らず基板温度が約650℃以上で高Tcの超
伝導体の薄膜が得られている。しかしながらその薄膜は
多結晶配向膜であったりもし、また単結晶性薄膜であっ
ても基板表面に垂直にYBa2Cu3Oxのc軸が向いている、
いわゆるc軸配向膜である。一方、酸化物超伝導体のエ
レクトロニクス応用を考えるとc軸配向膜以外のa軸配
向あるいはb軸配向膜の必要性も期待されている。最近
になって成膜時の基板温度を約590℃以下にすると、基
板SrTiO3上にa軸配向軸が出来るとの報告(H.Asano et
al.Japanese Journal Applied Physics.,Vol.28,No.6
(1989),L981)がある。
[Prior Art] Since the discovery of oxide superconductor YBa 2 Cu 3 O x (Tc> 90K) whose superconducting transition temperature (Tc) exceeds liquid nitrogen temperature of 77K, such superconducting materials for electronic applications have been developed. Research and development on thin film formation of conductors have become active. As a substrate crystal that has been used for thin film formation, Al of corundum structure has been used.
2 O 3 (lattice constant a = 4.78Å, c = 12.95Å), NgO with NaCl structure
(A = 4.215Å), Y stabilized ZrO 2 (a = 3.64Å, c = 5.27
Å), MgAl 2 O 4 with spinel structure (a = 8.08 Å), SrTiO 4 with perovskite structure (a = 3.91 Å), Si with diamond structure (a = 5.43 Å), LiNbO with pseudo-ilmenite structure
3 (a = 5.148Å, c = 12Å), etc. The thin film forming method is also performed by a sputtering method, a vacuum co-evaporation method, a laser vapor deposition method, a metal organic thermal decomposition method, or the like. Among them, SrTiO 3 and MgO are generally used as substrates. Currently, superconducting thin films with a high Tc are obtained at a substrate temperature of about 650 ° C or higher, regardless of the film formation method. However, the thin film may be a polycrystalline oriented film, and even if it is a single crystalline thin film, the c-axis of YBa 2 Cu 3 O x is perpendicular to the substrate surface.
This is a so-called c-axis alignment film. On the other hand, considering the application of oxide superconductors to electronics, the need for a-axis oriented or b-axis oriented films other than c-axis oriented films is also expected. Recently, it has been reported that when the substrate temperature during film formation is set to about 590 ° C or lower, an a-axis orientation axis is formed on the substrate SrTiO 3 (H. Asano et.
al.Japanese Journal Applied Physics., Vol.28, No.6
(1989), L981).

[発明が解決しようとする課題] しかし、基板SrTiO3の結晶性は極めて悪く、かつ大口径
比が難かしい。又、比誘電率は室温で200〜300,77Kで数
1000と大きく、将来デバイスには不適な基板材料であ
る。他方、基板SrTiO3の面を(110)面にすることでa
軸配向膜の形成が論議されているが、この場合も上記欠
点は除けない。さらに、格子定数の不整合|asub−ao|/
(asub+ao)×0.5(ただし、asubおよびaoはそれぞれ
基板および成長薄膜の格子定数)は0.77%で、いわゆる
ヘテロエピタキシーの格子整合である0.1〜0.5%に比べ
大きい事から、界面の結晶性はよくない。
[Problems to be Solved by the Invention] However, the crystallinity of the substrate SrTiO 3 is extremely poor and the large aperture ratio is difficult. The relative permittivity is 200 to 300,77K at room temperature.
It is as large as 1000, and is a substrate material unsuitable for future devices. On the other hand, by making the surface of the substrate SrTiO 3 a (110) surface, a
The formation of an axial alignment film has been discussed, but the above-mentioned drawbacks cannot be excluded in this case as well. In addition, lattice constant mismatch | a sub −a o | /
(A sub + a o ) × 0.5 (where a sub and a o are the lattice constants of the substrate and the grown thin film, respectively) is 0.77%, which is larger than the so-called heteroepitaxial lattice matching of 0.1 to 0.5%. Has poor crystallinity.

本発明の目的はYBa2Cu3Ox超伝導体のa軸配向及び軸配
向のエピタキシャル膜を得る為の結晶性のよい基板を提
供することにある。
An object of the present invention is to provide a substrate having good crystallinity for obtaining an a-axis oriented and an axially oriented epitaxial film of a YBa 2 Cu 3 O x superconductor.

[課題を解決するための手段] このような目的を達成するために、本発明は、酸化物高
温超伝導体の斜方晶a軸配向エピタキシャル単結晶膜を
形成するための基板であって、化学式REVO3またはRECrO
3(RE:希上類元素)からなる単結晶であることを特徴と
する。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a substrate for forming an orthorhombic a-axis oriented epitaxial single crystal film of an oxide high temperature superconductor, Formula REVO 3 or RECrO
It is characterized by being a single crystal composed of 3 (RE: rare earth element).

さらに、本発明は酸化物高温超伝導体の斜方晶b軸配向
膜を形成するための基板であって、化学式LaC0O3からな
る単結晶であることを特徴とする。
Furthermore, the present invention is a substrate for forming an orthorhombic b-axis oriented film of an oxide high temperature superconductor, which is characterized by being a single crystal having a chemical formula of LaC 0 O 3 .

[作 用] まず本発明に至った材料選択の指針を以下に述べる。[Operation] First, a guideline for material selection that has led to the present invention will be described below.

高品質なエペタキシャル薄膜を得るには、基板結晶と薄
膜結晶との間で格子定数の整合性,熱膨張係数の整
合性,結晶構造の類似性,の3要素が重要であること
に本発明者は注目した。超伝導転移温度が90Kである酸
化物超伝導体YBa2Cu3Oxの格子定数は室温においては斜
方晶系でa0=3.82Å,b0=3.884Å,C0=11.684Å(値は
報告者によって±0.002Åの違いがある)、熱膨張係数
は各軸方向におおよそ8〜11×10-6/K,結晶構造は酸素
欠損型ペロウスカイト構造である。格子定数のa0,b0
温度変化を第1図に示す。この測定結晶はJ.D.Jorgense
nら(Physical Review B,Vol.36,No.7(1987),3608〜3
616)のものであるが、ここで注目することは温度が上
昇するにつれて斜方晶系から正方晶系に相転移をし、そ
の相転移温度は酸素の量によって約600℃〜700℃の間で
あることである。aTは正方晶a軸の格子定数である。従
来デバイスにとって基板温度をより低くくして成膜する
低温成膜が不可欠であり、その際良質なエピタキシャル
単結晶膜の成長には成膜温度で格子整合をとる事が必要
となる。
In order to obtain a high-quality epitaxial thin film, the three factors of the lattice constant matching, the thermal expansion coefficient matching, and the crystal structure similarity between the substrate crystal and the thin film crystal are important. Paid attention. At room temperature, the lattice constant of the oxide superconductor YBa 2 Cu 3 O x with a superconducting transition temperature of 90 K is orthorhombic and is a 0 = 3.82Å, b 0 = 3.884Å, C 0 = 11.684Å (value Has a difference of ± 0.002Å depending on the reporter), the coefficient of thermal expansion is approximately 8 to 11 × 10 -6 / K in each axial direction, and the crystal structure is an oxygen-deficient perovskite structure. FIG. 1 shows temperature changes of lattice constants a 0 and b 0 . This measurement crystal is JDJorgense
n et al. (Physical Review B, Vol. 36, No. 7 (1987), 3608-3
616), but it should be noted here that as the temperature rises, it undergoes a phase transition from the orthorhombic system to the tetragonal system, and the phase transition temperature is between about 600 ℃ and 700 ℃ depending on the amount of oxygen. Is to be. a T is the lattice constant of the tetragonal a-axis. For conventional devices, low-temperature film formation in which the substrate temperature is made lower is indispensable. At that time, in order to grow a good-quality epitaxial single crystal film, it is necessary to obtain lattice matching at the film formation temperature.

本発明は、YBa2Cu3Oxのa軸配向膜を得るには温度約550
℃以下で、b軸配向膜を得るには温度約450℃以下で、
各々格子整合と熱膨張係数整合がとれ、かつ結晶構造が
類似な基板を提示するものである。
The present invention provides a YBa 2 Cu 3 O x a-axis oriented film at a temperature of about 550.
In order to obtain a b-axis oriented film at a temperature of about 450 ° C or lower,
Each of the substrates presents a lattice matching and a thermal expansion coefficient matching and a crystal structure similar to each other.

[実施例] 以下に実施例によって本発明を詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to Examples.

ヘテロエピタキシャル成長の為の前記3要素の中で結晶
構造類似の化合物として酸素八面体をユニットとしたGd
FeO3構造をもつ複合酸化物ABO3を選定した。これは前述
した酸化物超伝導体がCuを中心とした酸素八面体構造を
もつことからである。上記複合酸化物の熱膨張係数は6
〜11×10-6/Kの範囲内にある事が古くから整理されてい
るので、前記3要素の熱膨張係数の整合条件を満足する
ことになる。この2つの要素に限定される複合酸化物の
中から酸化物超伝導体のa0軸長に整合(不整合比0.5%
以下:|asub−ao|/(asub+ao)×0.5)する化合物,及
びb0軸に整合する化合物を厳選した結果を表1に示す。
表1にはABO3以外で格子整合性のよいABO4化合物も示し
てある。
Among the above three elements for heteroepitaxial growth, Gd containing oxygen octahedron as a unit as a compound similar in crystal structure
A complex oxide ABO 3 with FeO 3 structure was selected. This is because the above-mentioned oxide superconductor has an oxygen octahedral structure centered on Cu. The thermal expansion coefficient of the above composite oxide is 6
Since it has been arranged for a long time that it is within the range of up to 11 × 10 −6 / K, the matching condition of the thermal expansion coefficient of the three elements is satisfied. Matched to the a 0 axis length of the oxide superconductor from the complex oxides limited to these two elements (mismatch ratio 0.5%
Below: Table 1 shows the results of careful selection of compounds that: | a sub −a o | / (a sub + a o ) × 0.5) and compounds that match the b 0 axis.
In addition to ABO 3, Table 1 also shows ABO 4 compounds with good lattice matching.

この中で、LaC0O3はap=5.436,α=60゜48′の菱面体
であるが、擬菱面体構造とするとar=7.64Å,α=90
゜42′で擬正方晶a=ar/2=3.82Åとほぼ同じとなる。
他方REVO3及びRECrO3(RE:La,Ce,Rr,Nd,Sm)はほぼ立方
晶であるとされており、酸化物超伝導体YBa2Cu3OxのC0
軸とは表のように0.67%以下の不整合となる。またSr2T
iO4,Sr2IrO4,LaSrMnO4,LaSrGaO4は正方晶である為にYBa
2Cu3Oxのa0,b0軸とはほぼ整合するが、c0軸とは不整合
性が大きい欠点はある。
Among them, LaC 0 O 3 is a rhombohedron with a p = 5.436, α p = 60 ° 48 ′, but if it has a pseudo-rhombohedral structure, a r = 7.64Å, α r = 90
At 42 ', it is almost the same as pseudo-tetragonal a = a r / 2 = 3.82Å.
On the other hand, REVO 3 and RECrO 3 (RE: La, Ce, Rr, Nd, Sm) are said to be almost cubic, and the oxide superconductor YBa 2 Cu 3 O x has a C 0
As shown in the table, there is a mismatch of less than 0.67% with the axis. Also Sr 2 T
iO 4 , Sr 2 IrO 4 , LaSrMnO 4 and LaSrGaO 4 are YBa because they are tetragonal.
2 Cu 3 O x is almost aligned with the a 0 and b 0 axes, but has a drawback that it is largely inconsistent with the c 0 axis.

実施例1 LaC0O3の(110)結晶基板上に約400℃の温度でYBa2Cu3O
x膜をレーザ蒸着で成膜した結果、基板面に垂直にYBa2C
u3Oxのb0軸が配向したb軸配向膜がX線回析により確認
された。
Example 1 On a LaC 0 O 3 (110) crystal substrate at a temperature of about 400 ° C. YBa 2 Cu 3 O
As a result of forming the x film by laser vapor deposition, YBa 2 C
A b-axis oriented film in which the b 0 axis of u 3 O x was oriented was confirmed by X-ray diffraction.

実施例2 REVO3及びRECrO3の(110)結晶基板上にレーザ蒸着によ
りYBa2Cu3Oxを基板温度約500℃で成膜した結果、基板面
に垂直にa0軸が配向したa軸配向膜がx線回析により確
認された。
Example 2 YBa 2 Cu 3 O x was deposited on a (110) crystal substrate of REVO 3 and RECrO 3 by laser deposition at a substrate temperature of about 500 ° C., and as a result, a 0 axis was oriented perpendicular to the substrate surface. The alignment film was confirmed by x-ray diffraction.

いずれの実施例においても、熱膨張係数がほぼ同じであ
る(8〜10×10-6/K)ことから成長したYBa2Cu3Ox膜は
エピタキシャル関係にあることはX線回回折により確認
できた。
It was confirmed by X-ray diffraction that the grown YBa 2 Cu 3 O x films were in an epitaxial relationship because the coefficients of thermal expansion were almost the same (8 to 10 × 10 −6 / K) in all the examples. did it.

実施例3 ABO4の一つSr2TiO4の(001)面基板上に同じく400〜500
℃で成膜したが、膜はc軸配向エピタキシャル膜であ
り、a又はb配向膜は得られなかった。
Example 3 One of ABO 4 Sr 2 TiO 4 on the (001) plane substrate was also 400-500.
The film was formed at 0 ° C., but the film was a c-axis oriented epitaxial film, and an a or b oriented film could not be obtained.

以上に詳述したように、エピタキシャル成長3要素を基
に超伝導体YBa2Cu3Oxに適する基板結晶を提示,確認し
たが、YBa2Cu3Oxの代りに希土類元素を置き換えた超伝
導体の格子定数はa0=3.799〜3.854Å,b0=3.874〜3.91
4Åまで元素によって変わっているので本発明の基板結
晶は必ずしも最適ではないが、本発明に至った材料選定
の3原則に従えば各酸化物超伝導体に最適の基板が選定
でき、それらは化学式REVO3,RECrO3およびLaC0O3で限定
されてくる事は明らかである。
As described above in detail, we have presented and confirmed a substrate crystal suitable for the superconductor YBa 2 Cu 3 O x based on the three elements of epitaxial growth. However, superconductivity in which a rare earth element is replaced in place of YBa 2 Cu 3 O x The lattice constant of the body is a 0 = 3.799 to 3.854Å, b 0 = 3.874 to 3.91
The substrate crystal of the present invention is not necessarily optimum because it changes depending on the element up to 4Å, but the optimum substrate for each oxide superconductor can be selected according to the three principles of material selection that led to the present invention. It is clear that it is limited by REVO 3 , RECrO 3 and LaC 0 O 3 .

[発明の効果] 以上説明したように本発明によれば、REC0O3,REVO3,REC
rO3を基板にすることで成膜時の温度における格子整合
が、膜となる超伝導体のa0軸あるいはb0軸と0.5%以下
であることから、これ迄得られなかったa軸配向及びb
軸配向のエピタキシャル膜が得られる利点がある。
[Effects of the Invention] As described above, according to the present invention, REC 0 O 3 , REVO 3 , REC
By using rO 3 as a substrate, the lattice matching at the temperature during film formation is 0.5% or less with the a 0 axis or b 0 axis of the superconductor to be the film. And b
There is an advantage that an axially oriented epitaxial film can be obtained.

YBa2Cu3Oxの格子定数温度化と、LaC0O3,REVO3(RE=Pr,
Nd,Sm),RECrO3(RE=Ce,Pr,Nd)の格子定数温度変化を
第1図に併せて示したが、成膜時の温度における格子定
数の差が極めて小さい(0.2%前後)ことが理解でき、
この基板材料の選定で極めて良質なエピタキシャルYBa2
Cu3Oxのa又はb軸配向膜が得られることになる。
The lattice constant temperature of YBa 2 Cu 3 O x and LaC 0 O 3 , REVO 3 (RE = Pr,
Nd, Sm), RECrO 3 (RE = Ce, Pr, Nd) lattice temperature changes are also shown in Fig. 1, but the difference in lattice constant at the temperature during film formation is extremely small (around 0.2%). Understand that
By selecting this substrate material, extremely good epitaxial YBa 2
A Cu 3 O x a- or b-axis oriented film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は格子定数の温度変化を示す特性図である。 FIG. 1 is a characteristic diagram showing changes in lattice constant with temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化物高温超伝導体の斜方晶a軸配向エピ
タキシャル単結晶膜を形成するための基板であって、化
学式REVO3またはRECrO3(RE:希上類元素)からなる単結
晶であることを特徴とする酸化物超伝導体薄膜用基板。
1. A substrate for forming an orthorhombic a-axis oriented epitaxial single crystal film of an oxide high temperature superconductor, the single crystal having a chemical formula of REVO 3 or RECrO 3 (RE: a rare earth element). A substrate for an oxide superconductor thin film, characterized in that
【請求項2】酸化物高温超伝導体の斜方晶b軸配向膜を
形成するための基板であって、化学式LaC0O3からなる単
結晶であることを特徴とする酸化物超伝導体薄膜用基
板。
2. A substrate for forming an orthorhombic b-axis oriented film of an oxide high temperature superconductor, which is a single crystal having a chemical formula of LaC 0 O 3. Substrate for thin film.
JP2064302A 1990-03-16 1990-03-16 Substrate for oxide superconductor thin film Expired - Fee Related JPH0764680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2064302A JPH0764680B2 (en) 1990-03-16 1990-03-16 Substrate for oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064302A JPH0764680B2 (en) 1990-03-16 1990-03-16 Substrate for oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH03265599A JPH03265599A (en) 1991-11-26
JPH0764680B2 true JPH0764680B2 (en) 1995-07-12

Family

ID=13254321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064302A Expired - Fee Related JPH0764680B2 (en) 1990-03-16 1990-03-16 Substrate for oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH0764680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572386B2 (en) * 2005-03-30 2010-11-04 独立行政法人産業技術総合研究所 Fabrication method of high quality Bi-based oxide superconducting thin film

Also Published As

Publication number Publication date
JPH03265599A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
US4962086A (en) High Tc superconductor - gallate crystal structures
US5310707A (en) Substrate material for the preparation of oxide superconductors
JP2567460B2 (en) Superconducting thin film and its manufacturing method
US5691279A (en) C-axis oriented high temperature superconductors deposited onto new compositions of garnet
US5358927A (en) Growth of a,b-axis oriented pervoskite thin films
US5162294A (en) Buffer layer for copper oxide based superconductor growth on sapphire
EP0406126B2 (en) Substrate having a superconductor layer
US5428005A (en) Superconducting thin film of compound oxide and a process of preparing the same
US5110790A (en) Superconducting thin films on potassium tantalate substrates
US5418215A (en) C-axis oriented high temperature superconductors deposited onto single crystals of gadolinium gallium garnet and method of making the same
JPH03259576A (en) Josephson junction
CN1312332C (en) Oxide high-temperature superconductor and its production method
JPH0764680B2 (en) Substrate for oxide superconductor thin film
Tarascon et al. Preparation, structure and properties of the high Tc Bi-based and Y-based cuprates
JP2533649B2 (en) Substrate material for superconductor thin film
EP0366510B2 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
Wasa et al. Superconducting Y‐Ba‐Cu‐O and Er‐Ba‐Cu‐O thin films prepared by sputtering deposition
US5188906A (en) Substrates suitable for deposition of superconducting thin films
JP3045705B2 (en) Oxide-based superconducting material, method for producing the same, and apparatus using the same
JP3604939B2 (en) Oxide superconductor and manufacturing method thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JP2781331B2 (en) Manufacturing method of thin film superconductor
EP0535676B1 (en) Bi-Sr-Ca-Cu-O system superconducting thin film
Norton Epitaxial growth of superconducting cuprate thin films
JP2004207482A (en) Oxide superconductive thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees