JPH076416B2 - Fuel switching device for gas turbines that uses two types of fuel - Google Patents

Fuel switching device for gas turbines that uses two types of fuel

Info

Publication number
JPH076416B2
JPH076416B2 JP28897686A JP28897686A JPH076416B2 JP H076416 B2 JPH076416 B2 JP H076416B2 JP 28897686 A JP28897686 A JP 28897686A JP 28897686 A JP28897686 A JP 28897686A JP H076416 B2 JPH076416 B2 JP H076416B2
Authority
JP
Japan
Prior art keywords
fuel
flow rate
signal
calorific value
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28897686A
Other languages
Japanese (ja)
Other versions
JPS63143339A (en
Inventor
庸正 西嶋
利次 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28897686A priority Critical patent/JPH076416B2/en
Publication of JPS63143339A publication Critical patent/JPS63143339A/en
Publication of JPH076416B2 publication Critical patent/JPH076416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2種類以上の燃料を使用するガスタービンで負
荷運転中に発熱量の曳動しやすい燃料を使用する場合に
負荷変動を抑制し得るように改良したガスタービンに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention suppresses load fluctuations when a gas turbine that uses two or more types of fuel and uses a fuel whose heat value is easily towed during load operation. It relates to a gas turbine modified to obtain.

〔従来の技術〕[Conventional technology]

ガスタービンは、各種の気体燃料,液体燃料が用いら
れ、次に述べるような場合には2種類の燃料を切り替え
て供給する必要がある。
Various gas fuels and liquid fuels are used in the gas turbine, and it is necessary to switch and supply two kinds of fuels in the following cases.

(i).液体燃料と気体燃料との共用及び混焼(ガスと
軽油等) (ii).異種の気体燃料の共用及び混焼(天然ガスとプ
ロパン等) (iii).高揮発性燃料(ナフサ等)の為の起動用燃料
(軽油等)の必要性による燃料切替 (iv).難着火性燃料(石炭ガス等)の為の起動用燃料
(軽油等)の必要性による燃料切替 このような必要性における燃料切替は、従来技術におい
ては次の如く実施されていた。第2図に従来技術におけ
る制御系統を示す。
(I). Shared use of liquid fuel and gas fuel and mixed combustion (gas and light oil, etc.) (ii). Sharing and co-firing different types of gaseous fuel (natural gas and propane, etc.) (iii). Fuel switching due to the need for starting fuel (light oil, etc.) for highly volatile fuel (naphtha, etc.) (iv). Fuel Switching Due to Necessity of Starting Fuel (Light Oil, etc.) for Flame-retardant Fuel (Coal Gas, etc.) Fuel switching in such a need has been carried out as follows in the prior art. FIG. 2 shows a control system in the prior art.

今、燃料Aで運転していたものを燃料Bに切替える場合
で説明する。
The case of switching from the fuel A to the fuel B will now be described.

切替開始前は燃料流量設定信号2に対応した燃料A7が、
流量制御器5で制御されながら燃焼器10に噴射され、圧
縮機9で昇圧された燃焼空気とともに燃焼され、タービ
ン11に導入されて、熱エネルギを回転エネルギに変換
し、発電機6を駆動し、電力を発生している。この状態
で燃料A7から燃料B8へ切替操作した場合、燃料分配器3
において、時間とともに燃料Bを増加させ、燃料Aを減
少させる信号を発生させる。この信号は、燃料Aと燃料
Bとを制御している制御器5へ与えられ、信号に対応し
た燃料流量となるようになつている。この精度を確保す
る為に燃料A,燃料Bの系統にはそれぞれ流量測定器4を
設けてあり、各実流量信号を比較器12,比較器13にフイ
ードバツク信号として与えている。分配器3では、切替
期間中、燃料Aと燃料Bとの合計流量が燃料流量設定信
号に等しくなるよう、F=FA+FBの関係で制御し続けら
れる。
Before switching, the fuel A7 corresponding to the fuel flow rate setting signal 2
It is injected into the combustor 10 while being controlled by the flow rate controller 5, is burned with the combustion air whose pressure is increased by the compressor 9, and is introduced into the turbine 11 to convert thermal energy into rotational energy and drive the generator 6. , Generating electricity. When switching from fuel A7 to fuel B8 in this state, the fuel distributor 3
At, a signal is generated that causes fuel B to increase and fuel A to decrease over time. This signal is given to the controller 5 which controls the fuel A and the fuel B so that the fuel flow rate corresponds to the signal. In order to ensure this accuracy, a flow rate measuring device 4 is provided in each of the fuel A and fuel B systems, and each actual flow rate signal is given to the comparator 12 and the comparator 13 as a feed back signal. During the switching period, the distributor 3 continues to control the relationship of F = F A + F B so that the total flow rate of the fuel A and the fuel B becomes equal to the fuel flow rate setting signal.

燃料流量設定信号は、切替直前の値が切替期間を通して
同一値として与えられる。
For the fuel flow rate setting signal, the value immediately before switching is given as the same value throughout the switching period.

上記は代表的な切替手順であるが、前述の燃料切替を行
う場合、適用燃料の如何によつて、以下のような特記事
項が必要とされる。
The above is a typical switching procedure, but when performing the above fuel switching, the following special notes are required depending on the applied fuel.

(イ).流量制御器5は、制御弁として図示されている
がその他制御装置にも置き換え得ること。
(I). The flow rate controller 5 is shown as a control valve, but may be replaced with other control devices.

(ロ).フイードバツクの流量信号は、弁ストローク
等、間接的に流量を検知できるものであつても良いこ
と。
(B). The feed back flow rate signal may be one that can indirectly detect the flow rate, such as a valve stroke.

(ハ).燃料分配器の分配率と時間との関係は必ずしも
直線的でなく、F=FA+FBとなるような機器側要求に応
じた関係でさえあれば良いこと。
(C). The relationship between the distribution rate of the fuel distributor and time is not necessarily linear, and only needs to be a relationship according to the equipment requirements such that F = F A + F B.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上に述べた従来技術においては、燃料の切替に関して次
のような必要がある。
In the above-mentioned related art, the following needs are required for fuel switching.

(a).燃料切替制御の基本は、切替の全期間を通し
て、燃料Aによる入熱と燃料Bによる入熱との合計が一
定である必要がある。
(A). The basis of the fuel switching control is that the total of the heat input by the fuel A and the heat input by the fuel B must be constant throughout the entire switching period.

(b).従来技術は基本的には、流量制御であるから、
燃料Aと燃料Bとの流量和を一定としている。これは、
燃料Aと燃料Bの発熱量が既知であり、かつ、発熱量の
変動が生じない場合には問題なく適用できる。しかし、
燃料発熱量の偏差が大きな燃料又は時間的な発熱量変動
を有する燃料を切替える場合には、切替時に負荷変動を
生ずることになる。又、発熱量変動が著しい場合には切
替時に燃焼不安定が生じ、例えば、失火等のトラブルを
起こす危険性がある。
(B). Since the conventional technology is basically flow control,
The sum of the flow rates of the fuel A and the fuel B is constant. this is,
If the calorific values of the fuel A and the fuel B are known and the calorific values do not change, the method can be applied without any problem. But,
When a fuel having a large deviation of the calorific value of fuel or a fuel having a temporal fluctuation of the calorific value is switched, a load fluctuation occurs at the time of switching. Further, when the amount of heat generation fluctuates significantly, combustion instability may occur at the time of switching, and there is a risk of causing trouble such as misfire.

(c).燃料Bが設定発熱量に対して大きな偏差をもつ
て供給された場合を例にとつて上記を具体的に説明す
る。(このことは燃料A又は燃料Bに偏差が生じた場合
のみならず、燃料A及び燃料B共に偏差が生じた場合に
も同様に説明し得る。) 第3図は、燃料Bの発熱量が設定通りに供給された場合
を示す。本図の下欄(流量切替率)に示す如く燃料Aの
流量を漸減せしめるとともに燃料Bの流量を漸増せしめ
て、その流量和を一定に保つと、本第3図の上欄(エネ
ルギ%)の如く、エネルギ総和は設定値の如くになる。
(C). The above will be specifically described by taking as an example the case where the fuel B is supplied with a large deviation from the set heat generation amount. (This can be similarly explained not only when there is a deviation in the fuel A or the fuel B, but also when there is a deviation in both the fuel A and the fuel B.) FIG. The case where it is supplied as set is shown. When the flow rate of the fuel A is gradually decreased and the flow rate of the fuel B is gradually increased as shown in the lower column (flow rate switching rate) of this figure to keep the total flow rate constant, the upper column (energy%) of this FIG. As described above, the total energy becomes like the set value.

本発明において発熱量とは単位量の燃料の発熱量(cal/
cc)を言い、これに体積を乗じた総発熱量は(ガスター
ビンの入熱に相当するものとして)入熱量という。
In the present invention, the calorific value is the calorific value of a unit amount of fuel (cal /
cc), and the total calorific value multiplied by the volume is called the heat input (as equivalent to the heat input of the gas turbine).

第4図は燃料Bの発熱量が設定値よりも小さかつた場合
を示し、燃料A→同Bの切替に伴つてエネルギ総和は設
定値よりも低下する。
FIG. 4 shows the case where the calorific value of the fuel B is smaller than the set value, and the total energy becomes lower than the set value as the fuel A → the same B is switched.

第5図は燃料Bの発熱量が設定値に比して時間と共に変
化する場合を示し、エネルギ総和は設定値に比して、時
間と共に変化する。
FIG. 5 shows the case where the calorific value of the fuel B changes with time as compared with the set value, and the total energy changes with time as compared with the set value.

上述の如く切替の期間中にエネルギの総和は、図示の1
→2に移動し、入熱量は切替前後で変化するから、結
局、ガスタービン負荷はその偏差に応じて変化すること
になる。発熱量が時間的に変化する場合も同様にして負
荷変動が発生する。
As described above, the total energy during the switching is 1
→ 2, the heat input changes before and after switching, so the gas turbine load will eventually change according to the deviation. When the amount of heat generation changes with time, the load changes similarly.

以上の如く、従来技術では、発熱量が設定値に比して変
化する場合にはその偏差分だけ入熱の変化、即ち、負荷
の変化が生じるという問題を有する。
As described above, the conventional technique has a problem that when the calorific value changes as compared with the set value, the change of the heat input, that is, the change of the load occurs by the deviation.

近年のエネルギ多様化の過勢から、ガスタービン用燃料
もかなりの広範囲のものを使用できることが要求されて
おり、従来技術の改善が急務となつて来ている。
Due to the recent diversification of energy, it has been required that a wide range of fuels for gas turbines can be used, and there is an urgent need to improve the prior art.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来技術においては燃料切替時の制御は燃料流量一定と
するものであり、燃料の発熱量の変動は即、入熱の変動
となり、結果としてガスタービン出力の変動となつた。
In the prior art, the control at the time of fuel switching is to make the fuel flow rate constant, and the variation of the calorific value of the fuel immediately causes the variation of the heat input, resulting in the variation of the output of the gas turbine.

本発明の目的は、燃料切換時の制御について、各燃料の
流量のみでなく、発熱量をも考慮に入れて各燃料の入熱
量を一定ならしめるように燃料切替時の入熱の補正を行
ない、切替時の負荷変動を抑制し得る燃料切替装置を提
供しようとすることにある。
An object of the present invention is to correct the heat input at the time of fuel switching so that the heat input amount of each fuel is made constant by taking into consideration not only the flow rate of each fuel but also the heat generation amount in the control at the time of fuel switching. It is an object of the present invention to provide a fuel switching device capable of suppressing load fluctuation during switching.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はガスタービンの燃料切替時、設定発熱量に対
して、実測発熱量で修正し、これを修正フイードバツク
信号として、燃料流量設定信号と比較して、各燃料を制
御することにより達成される。
The above object is achieved by correcting the set calorific value with the measured calorific value at the time of fuel switching of the gas turbine, comparing this with the corrected feedback signal and comparing with the fuel flow rate setting signal, and controlling each fuel. .

上述の原理を実用面に適用するための具体的構成とし
て、本発明に係るガスタービン燃料切替装置は、A,B2種
類の燃料をそれぞれ供給する2系統の燃料系Aと燃料系
Bとを備えると共に、燃料系A上に流量測定器(4A)
と、流量制御器(5A)とを設け、燃料系B上に流量測定
器(4B)と流量制御器(5B)とを設け、かつ、燃料分配
器(3)から発せられる流量制御器(5A)の制御用出力
信号(16A)を流量測定器(4A)のフイードバツク信号
で補正すると共に、燃料分配器(3)から発せられる流
量制御器(5B)の制御用出力信号(16B)を流量測定器
(4B)のフイードバツク信号で補正するガスタービンの
燃料切替装置において、燃料系Aに発熱量測定器(1A)
を、燃料系Bに発熱量測定器(1B)をそれぞれ設けると
共に、発熱量測定器(1A)からの発熱量信号(HA)と設
定発熱量HAOとの比によつて流量測定器(4A)からの流
量信号(FMA)を補正した流量フイードバツク信号(15
A)を比較信号として燃料分配器(3)の制御出力信号
(16A)を補正する比較器(12)を設け、一方、発熱量
測定器(1B)からの発熱量信号HBと設定発熱量(HBO
との比によつて流量測定器(4B)からの流量信号
(FMA)を補正した流量フイードバツク信号(15B)を比
較信号として燃料分配器(3)の制御出力信号(16B)
を補正する比較器(13)を設けたことを特徴とする。
As a specific configuration for applying the above principle to practical use, a gas turbine fuel switching device according to the present invention includes two fuel systems A and B for respectively supplying A and B two types of fuel. Together with the fuel system A, a flow rate measuring device (4A)
And a flow rate controller (5A), a flow rate measuring device (4B) and a flow rate controller (5B) on the fuel system B, and a flow rate controller (5A) emitted from the fuel distributor (3). ) Control output signal (16A) is corrected by the feed back signal of the flow meter (4A), and the control output signal (16B) of the flow controller (5B) emitted from the fuel distributor (3) is measured. In the fuel switching device of the gas turbine that corrects with the feedback signal of the device (4B), the calorific value measuring device (1A) is installed in the fuel system A.
The fuel system B is provided with a calorific value measuring device (1B), and the flow measuring device (1A) is provided with a flow measuring device (1A) based on the ratio of the calorific value signal (H A ) from the calorific value measuring device (1A) to the set calorific value H AO . 4A) flow rate feedback signal (F MA ) corrected from flow rate feedback signal (15
A) is used as a comparison signal to provide a comparator (12) that corrects the control output signal (16A) of the fuel distributor (3), while the calorific value signal H B from the calorific value measuring device (1B) and the set calorific value are set. (H BO )
The control output signal (16B) of the fuel distributor (3) using the flow rate feedback signal (15B), which is the flow rate signal (F MA ) corrected from the flow rate measuring device (4B), as a comparison signal.
Is provided with a comparator (13) for correcting

〔作用〕[Action]

燃料流量設定信号は切替期間を通じて一定値であり、燃
料による入熱の変化があつた場合、発電機の出力変化と
して現われる。
The fuel flow rate setting signal has a constant value throughout the switching period, and when there is a change in heat input due to fuel, it appears as a change in the output of the generator.

この為、燃料による入熱、即ち発熱量を実測し設定発熱
量と比較し、その偏差を修正フイードバツク信号として
使用し、燃料流量制御することで燃料切替時の負荷変動
を無くすことができる。
Therefore, the heat input by the fuel, that is, the calorific value is actually measured and compared with the set calorific value, and the deviation thereof is used as a correction feed back signal to control the fuel flow rate, whereby the load fluctuation at the time of fuel switching can be eliminated.

〔実施例〕〔Example〕

第1図に本発明に係る燃料切替装置の1実施例を示す。 FIG. 1 shows one embodiment of the fuel switching device according to the present invention.

第2図に示した従来例との相違は以下の通りである。Differences from the conventional example shown in FIG. 2 are as follows.

(I).各燃料系統に、発熱量測定器1を設け、各燃料
の発熱量を測定し、初期設定発熱量と比較する。1Aは燃
料系A用の発熱量測定器であり、1Bは燃料系B用の発熱
量測定器である。
(I). A calorific value measuring device 1 is provided in each fuel system, and the calorific value of each fuel is measured and compared with the initially set calorific value. 1A is a calorific value measuring device for fuel system A, and 1B is a calorific value measuring device for fuel system B.

(II).この比較での偏差信号を各燃料系統の流量測定
器4からのフイードバツク信号に演算させ、修正フイー
ドバツク信号(即ち、実入熱となる)として各比較器に
与える。4Aは燃料系A用の流量測定器であり、4Bは燃料
系B用の流量測定器である。
(II). The deviation signal in this comparison is calculated as a feedback back signal from the flow rate measuring device 4 of each fuel system, and given to each comparator as a modified feedback back signal (that is, actual heat input). 4A is a flow meter for fuel system A, and 4B is a flow meter for fuel system B.

各比較器12,13以降の制御機構の構成,機能は第1図の
従来技術の場合と同様である。
The structure and function of the control mechanism after each of the comparators 12 and 13 are the same as those in the prior art shown in FIG.

本発明を実施する場合、次のように構成することが出来
る。
When the present invention is implemented, it can be configured as follows.

(一).流量制御器5は、制御弁として図示されている
が、その他制御機器にも置き換えられること。
(one). The flow rate controller 5 is shown as a control valve, but may be replaced with other control devices.

(二).フイードバツクの流量信号は、弁ストローク
等、間接的に流量を検知できるものであつても良いこ
と。
(two). The feed back flow rate signal may be one that can indirectly detect the flow rate, such as a valve stroke.

(三).燃料分配器の分配率と時間の関係は必ずしも直
線的でなく、F=FA+FBとなるような機器側要求に応じ
た関係であれば良いこと。
(three). The relationship between the distribution rate of the fuel distributor and time is not necessarily linear, but may be any relationship that meets the equipment-side requirements such that F = F A + F B.

従来技術においては燃料流量のみの切換比率制御方式を
とつている為、発熱量偏差分だけ入熱に偏差を生じ、こ
れが負荷変動を生ぜしめていたという欠点を排除するた
め本発明の装置は上記実施例の如く、切替時の燃料流量
制御に追加して、発熱量に基づく補正を行うことによ
り、入熱の偏差を抑制し、負荷変動を無くそうとするも
のである。
In the prior art, since the switching ratio control method of only the fuel flow rate is adopted, the deviation of the heat input is caused by the deviation of the calorific value, which eliminates the drawback that it causes the load fluctuation. As in the example, in addition to the fuel flow rate control at the time of switching, the correction based on the heat generation amount is performed to suppress the deviation of heat input and eliminate the load fluctuation.

燃料Bとして数定値より高い発熱量の燃料が供給された
場合の本実施例による切替時の推移を図示すると第6図
のようになる。
FIG. 6 shows the transition at the time of switching according to the present embodiment when a fuel having a calorific value higher than a certain constant value is supplied as the fuel B.

切替動作を開始し、設定切替比に応じて、FA,FBの燃料
比率により流量分割を進めて行くが、その際、燃料Bの
発熱量(実測値)HB(第1図参照)が、初期設定値HBO
よりも高い場合は、設定流量FBをそのまま流せば、燃料
B側の入熱が設定値よりも大きくなり、負荷変動を生じ
るので、HB/HBOのバイアスをフイードバツク系統に掛け
てやることにより、実際の燃料流量を、発熱量比率によ
り補正し、入熱を設定レベルに抑制することが可能にな
る。
The switching operation is started and the flow rate division is advanced according to the fuel ratio of F A and F B according to the set switching ratio. At that time, the calorific value of the fuel B (measured value) H B (see FIG. 1) Is the initial setting value H BO
If it is higher than that, if the set flow rate F B is flown as it is, the heat input on the fuel B side will be larger than the set value and load fluctuations will occur, so bias the H B / H BO to the feedback system. As a result, the actual fuel flow rate can be corrected by the heat generation ratio, and the heat input can be suppressed to the set level.

この制御方式では、設定流量比と、実際の流量比は、第
6図に示す如く発熱量偏差に応じて、差異を生ずること
になる。
In this control method, the set flow rate ratio and the actual flow rate ratio differ according to the calorific value deviation as shown in FIG.

燃料Bのみならず、燃料Aの発熱量に偏差を生じた場
合、又は、燃料A又は燃料Bの発熱量が共に偏差を生じ
た場合も、第6図と同様に負荷変動を抑制できる。
Not only in the case of the fuel B, but also in the case where there is a deviation in the calorific value of the fuel A, or when there is a deviation in the calorific value of both the fuel A and the fuel B, the load fluctuation can be suppressed as in FIG.

更に切替途中で発熱量の時間的(時間に伴う)変動が生
じた場合も本実施例の装置により切替時の負荷変動を抑
制することができる。第7図にこの場合を示す。
Further, even when the amount of heat generation changes with time (with time) during the switching, the device of this embodiment can suppress the load fluctuation at the time of switching. This case is shown in FIG.

本実施例の装置による上述の制御方法を更に発展させ
て、燃料流量設定信号FOの燃料切替中に固定する代りに
可変とすることも可能である。即ち、燃料流量設定信号
FO′として、例えば、 FO′=FO+(切替時間) の関係を設定してやれば、燃料切替を行ないながら同時
に入熱を変動なく上昇又は下降させることも可能とな
る。
It is also possible to further develop the above-mentioned control method by the device of the present embodiment and make the fuel flow rate setting signal F O variable instead of fixing it during fuel switching. That is, the fuel flow rate setting signal
For example, if the relation of F O ′ = F O + (switching time) is set as F O ′, it is possible to simultaneously increase or decrease the heat input without changing while performing fuel switching.

又、本発明装置の他の使用方法として、燃料切替期間中
に発熱量変動が生じないことが予め解つている場合に
は、発熱量測定は連続測定の必要はなく、ある時点(例
えば切替前)での測定値を入力しておけば良い。
Further, as another method of using the device of the present invention, when it is known in advance that the calorific value does not change during the fuel switching period, the calorific value measurement does not require continuous measurement, and the calorific value is not measured at a certain time (for example, before switching). ) You just input the measured value.

以上の如く、本発明により、従来の燃料切替方式の欠点
は全く解消し、発熱量が変動する燃料においても、負荷
変動の無い切替制御が可能となる。
As described above, according to the present invention, the drawbacks of the conventional fuel switching system are completely eliminated, and it becomes possible to perform switching control without load fluctuation even with fuel whose calorific value varies.

〔発明の効果〕〔The invention's effect〕

本発明によれば、燃料切替時の負荷変動を抑制できるの
で、安定した制御系統を構成することができるととも
に、運転の信頼性の向上が図れ、また、急激な負荷変動
が無いことによるガスタービン部品寿命の延長を期待し
得る。
According to the present invention, the load fluctuation at the time of fuel switching can be suppressed, so that a stable control system can be configured, the reliability of the operation can be improved, and the gas turbine due to no sudden load fluctuation can be achieved. It can be expected that the service life of parts will be extended.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例における燃料切替制御系統図
である。第2図は従来技術における燃料切替制御系統図
である。第3図は従来技術における発熱量変動なし時の
切替状態を示す図表、第4図は同じく発熱量が設定値よ
りも低い場合の切替状態を示す図表、第5図は同じく発
熱量が時間的に変化する場合の切替状態を示す図表であ
る。第6図及び第7図はそれぞれ本発明の実施例におけ
る作用,効果を説明する為の図表で、第6図は発熱量が
設定値よりも高い場合を示し、第7図は切替途中で発熱
量の変動が生じた場合を示している。 1……発熱量測定器、1A……燃料A用の発熱量測定器、
1B……燃料B用の発熱量測定器、4……流量測定器、4A
……燃料A用の流量測定器、4B……燃料B用の流量測定
器、16A……燃料A用の燃料分配器出力信号、16B……燃
料B用の燃料分配器出力信号。
FIG. 1 is a fuel switching control system diagram in one embodiment of the present invention. FIG. 2 is a fuel switching control system diagram in the prior art. FIG. 3 is a diagram showing a switching state when there is no fluctuation in heat generation amount in the prior art, FIG. 4 is a diagram showing a switching state when the heat generation amount is lower than a set value, and FIG. 6 is a chart showing a switching state when changing to. 6 and 7 are charts for explaining the action and effect in the embodiment of the present invention, respectively. FIG. 6 shows the case where the heat generation amount is higher than the set value, and FIG. 7 shows heat generation during switching. The figure shows the case where the amount changes. 1 ... Calorimeter, 1A ... Calorimeter for fuel A,
1B ... Calorific value measuring device for fuel B, 4 ... Flow rate measuring device, 4A
...... Flow meter for fuel A, 4B …… Flow meter for fuel B, 16A …… Fuel distributor output signal for fuel A, 16B …… Fuel distributor output signal for fuel B.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】A,B2種類の燃料をそれぞれ供給する2系等
の燃料系Aと燃料系Bとを備えると共に、燃料系A上に
流量測定器(4A)と、流量制御器(5A)とを設け、燃料
系B上に流量測定器(4B)と流量制御器(5B)とを設
け、かつ、燃料分配器(3)から発せられる流量制御器
(5A)の制御用出力信号(16A)を流量測定器(4A)の
フイードバツク信号で補正すると共に、燃料分配器
(3)から発せられる流量制御器(5B)の制御用出力信
号(16B)を流量測定器(4B)のフイードバツク信号で
補正するガスタービンの燃料切替装置において、燃料系
Aに発熱量測定器(1A)を、燃料系Bに発熱量測定器
(1B)をそれぞれ設けると共に、発熱量測定器(1A)か
らの発熱量信号(HA)と設定発熱量HAOとの比によつて
流量測定器(4A)からの流量信号(FMA)を補正した流
量フイードバツク信号(15A)を比較信号として燃料分
配器(3)の制御出力信号(16A)を補正する比較器(1
2)を設け、一方、発熱量測定器(1B)からの発熱量信
号HBと設定発熱量(HBO)との比によつて流量測定器(4
B)からの流量信号(FMB)を補正した流量フイードバツ
ク信号(15B)を比較信号として燃料分配器(3)の制
御出力信号(16B)を補正する比較器(13)を設けたこ
とを特徴とする、2種類の燃料を使用するガスタービン
の燃料切替装置。
1. A fuel system A and a fuel system B such as two systems for supplying two kinds of fuels A and B respectively, and a flow rate measuring device (4A) and a flow rate controller (5A) on the fuel system A. And a flow rate measuring device (4B) and a flow rate controller (5B) are provided on the fuel system B, and a control output signal (16A) of the flow rate controller (5A) emitted from the fuel distributor (3). ) Is corrected by the feed back signal of the flow meter (4A), and the control output signal (16B) of the flow controller (5B) emitted from the fuel distributor (3) is adjusted by the feed back signal of the flow meter (4B). In the fuel switching device of the gas turbine to be corrected, the calorific value measuring device (1A) is provided in the fuel system A, the calorific value measuring device (1B) is provided in the fuel system B, and the calorific value from the calorific value measuring device (1A) is provided. signal (H a) by the ratio between the set heat value H AO and connexion flow meter flow rate signal from (4A) (F MA) Comparator to correct the control output signal (16A) of the corrected flow rate fed back signal (15A) fuel distributor as a comparison signal (3) (1
2) is provided, while the flow rate measuring device (4) is set by the ratio of the calorific value signal H B from the calorific value measuring device (1B) and the set calorific value (H BO ).
A comparator (13) for correcting the control output signal (16B) of the fuel distributor (3) is provided with the flow rate feedback signal (15B) obtained by correcting the flow rate signal (F MB ) from B) as a comparison signal. A fuel switching device for a gas turbine that uses two types of fuel.
JP28897686A 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel Expired - Lifetime JPH076416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28897686A JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28897686A JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Publications (2)

Publication Number Publication Date
JPS63143339A JPS63143339A (en) 1988-06-15
JPH076416B2 true JPH076416B2 (en) 1995-01-30

Family

ID=17737232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28897686A Expired - Lifetime JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Country Status (1)

Country Link
JP (1) JPH076416B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152818A (en) * 2004-11-25 2006-06-15 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling fuel of gas turbine
JP2008163939A (en) * 2006-12-26 2008-07-17 General Electric Co <Ge> Non-linear fuel transfer for gas turbine
WO2014050993A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Functional polymer membrane, and method for producing same
WO2014136923A1 (en) 2013-03-07 2014-09-12 富士フイルム株式会社 Inkjet ink composition, inkjet recording method, printed matter and method of producing formed printed matter
WO2014142101A1 (en) 2013-03-12 2014-09-18 富士フイルム株式会社 Ink jet ink composition, ink jet recording method, ink set, decorative sheet, decorative sheet molded product, method for producing in-mold molded article, and in-mold molded article
EP2949710A1 (en) 2014-05-30 2015-12-02 Fujifilm Corporation Radiation-curable ink composition, ink set, inkjet recording method, decorative sheet, decorative sheet molded product, process for producing in-mold molded article, and in-mold molded article
WO2024068598A1 (en) 2022-09-29 2024-04-04 Fujifilm Manufacturing Europe Bv Membranes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716668B2 (en) * 1994-12-16 1998-02-18 川崎重工業株式会社 Gas turbine control device
US7565805B2 (en) * 2005-11-22 2009-07-28 General Electric Company Method for operating gas turbine engine systems
IT1395125B1 (en) * 2009-07-30 2012-09-05 Ansaldo Energia Spa METHOD AND GROUP TO SUPPLY FUEL TO A COMBUSTION CHAMBER OF A GAS TURBINE SYSTEM
JP6023566B2 (en) * 2012-11-26 2016-11-09 三菱日立パワーシステムズ株式会社 Gas turbine combustor and operation method thereof
JP6053560B2 (en) * 2013-02-20 2016-12-27 三菱日立パワーシステムズ株式会社 Power generation system and method for operating power generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152818A (en) * 2004-11-25 2006-06-15 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling fuel of gas turbine
JP4656295B2 (en) * 2004-11-25 2011-03-23 株式会社Ihi Gas turbine fuel control method and apparatus
JP2008163939A (en) * 2006-12-26 2008-07-17 General Electric Co <Ge> Non-linear fuel transfer for gas turbine
WO2014050993A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Functional polymer membrane, and method for producing same
WO2014136923A1 (en) 2013-03-07 2014-09-12 富士フイルム株式会社 Inkjet ink composition, inkjet recording method, printed matter and method of producing formed printed matter
WO2014142101A1 (en) 2013-03-12 2014-09-18 富士フイルム株式会社 Ink jet ink composition, ink jet recording method, ink set, decorative sheet, decorative sheet molded product, method for producing in-mold molded article, and in-mold molded article
EP2949710A1 (en) 2014-05-30 2015-12-02 Fujifilm Corporation Radiation-curable ink composition, ink set, inkjet recording method, decorative sheet, decorative sheet molded product, process for producing in-mold molded article, and in-mold molded article
WO2024068598A1 (en) 2022-09-29 2024-04-04 Fujifilm Manufacturing Europe Bv Membranes

Also Published As

Publication number Publication date
JPS63143339A (en) 1988-06-15

Similar Documents

Publication Publication Date Title
KR0161315B1 (en) Gasturbine control method and apparatus
EP2187023B1 (en) Fuel control system for gas turbine and feed forward control method
US6092362A (en) Gas-turbine combustor with load-responsive premix burners
JPH076416B2 (en) Fuel switching device for gas turbines that uses two types of fuel
US7568349B2 (en) Method for controlling combustion device dynamics
US20030217553A1 (en) Gas turbine pilot burner water injection
KR20090029626A (en) Device for regulating an internal combustion engine operable with liquid and/or gaseous fuel
EP1300566B1 (en) Fuel ratio control method in a gas turbine combustor
GB2485043A (en) A method and system for preventing combustion instabilities during transient operations
CN103216339A (en) Combustor blowout recovery method and system
JP2001165431A (en) Apparatus for controlling air-fuel ratio of reformer for fuel cell
JPH0544537B2 (en)
JP3716586B2 (en) Gas turbine combustor
JPH06341330A (en) Method for controlling fuel of gas turbine
JPH074267A (en) Fuel gas supply device for gas turbine
JPS62218628A (en) Fuel control device for double gas fuel combustion turbine
JPS63159628A (en) Fuel switching device for gas turbine
JPH10232016A (en) Fuel feed control method of multi-fuel fired boiler and apparatus thereof
JPH04143425A (en) Gas turbine controller
Corbett et al. Control requirements for the RB 211 low-emission combustion system
JPH025367A (en) Combustion control device of catalytic burner for fuel cell
JPS63183230A (en) Control method for combustion temperature of gas turbine
JP2004211625A (en) Gas turbine control method and gas turbine control device
JPH11210496A (en) Gas turbine fuel control device
JPS61258929A (en) Fuel controller for gas turbine