JPS63143339A - Fuel selector for gas turbine using two types of fuel - Google Patents

Fuel selector for gas turbine using two types of fuel

Info

Publication number
JPS63143339A
JPS63143339A JP28897686A JP28897686A JPS63143339A JP S63143339 A JPS63143339 A JP S63143339A JP 28897686 A JP28897686 A JP 28897686A JP 28897686 A JP28897686 A JP 28897686A JP S63143339 A JPS63143339 A JP S63143339A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
signal
calorific value
heating value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28897686A
Other languages
Japanese (ja)
Other versions
JPH076416B2 (en
Inventor
Yasumasa Nishijima
庸正 西嶋
Toshiji Takami
高見 利次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28897686A priority Critical patent/JPH076416B2/en
Publication of JPS63143339A publication Critical patent/JPS63143339A/en
Publication of JPH076416B2 publication Critical patent/JPH076416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To check any variations in load at the time of fuel selection, by correcting the setting heating value with the measured heating value at the time of fuel selection for a gas turbine, while setting this corrected value down to a corrective feedback signal, comparing it with a fuel flow setting signal, and controlling each fuel thereby. CONSTITUTION:Each of heating value measuring instruments 1A and 1B is installed in two fuel systems supplying each of two types A and B. And, a flow feedback signal 15A compensating a flow signal FMA out of a flow measuring instrument 4A by the ratio of a heating value signal HA out of the heating value measuring instrument 1A on one side to the setting heating value HAO is set down to a comparison signal, and there is provided with a comparator 12 compensating a control output signal 16A out of a fuel distributor 3. Likewise, a flow feedback signal 15B compensating a flow signal FMA out of a flow measuring instrument 4B by the ratio of a heating value signal HB out of the heating value measuring instrument 1B on the other side to the setting heating value HBO is set down to the comparison signal, and there is a comparator 13 compensating a control output signal 16B out of the fuel distributor 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2種類以上の燃料を使用するガスタービンで負
荷運転中に発熱量の曳動しやすい燃料を使用する場合に
負荷変動を抑制し得るように改良したガスタービンに関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention suppresses load fluctuations when a gas turbine that uses two or more types of fuel uses a fuel whose calorific value tends to fluctuate during load operation. This invention relates to a gas turbine that has been improved to achieve the desired results.

〔従来の技術〕[Conventional technology]

ガスタービンは、各種の気体燃料、液体燃料が用いられ
1次に述べるような場合には2種類の燃料を切り替えて
供給する必要がある。
Gas turbines use various gaseous fuels and liquid fuels, and in the case described below, it is necessary to switch and supply two types of fuel.

(i)、液体燃料と気体燃料との共用及び混焼(ガスと
軽油等) (ii)、異種の気体燃料の共用及び混焼(天然ガスと
プロパン等) (市)、高揮発性燃料(ナフサ等)の為の起動用燃料(
軽油等)の必要性による燃料切替 (〜)、難着火性燃料(石炭ガス等)の為の起動用燃料
(軽油等)の必要性による燃料切替このような必要性に
おける燃料切替は、従来技術においては次の如〈実施さ
れていた。第2図に従来技術における制御系統を示す6 今、燃料Aで運転していたものを燃料Bに切替える場合
で説明する。
(i), Common use and mixed combustion of liquid fuels and gaseous fuels (gas and light oil, etc.) (ii), Common use and mixed combustion of different types of gaseous fuels (natural gas and propane, etc.) (City), Highly volatile fuels (naphtha, etc.) ) for starting fuel (
Fuel switching (~) due to the need for starting fuel (light oil, etc.) due to the need for starting fuel (light oil, etc.) for difficult-to-ignite fuels (coal gas, etc.) Fuel switching for such needs is conventional technology. In this case, the following was carried out. FIG. 2 shows a control system in the prior art.6 Now, a case will be explained in which a system that was operating on fuel A is switched to fuel B.

切替開始前は燃料流量設定信号2に対応した燃料A7が
、流量制御器5で制御されながら燃焼器10に噴射され
、圧縮機9で昇圧された燃焼空気とともに燃焼され、タ
ービン11に導入されて、熱エネルギを回転エネルギに
変換し1発電機6を駆動し、電力を発生している。この
状態で燃料A7から燃料B8へ切替操作した場合、燃料
分配器3において1時間とともに燃料Bを増加させ、燃
料Aを減少させる信号を発生させる。この信号は、燃料
Aと燃料Bとを制御している制御器5へ与えられ、信号
に対応した燃料流量となるようになっている。この精度
を確保する為に燃料A、燃料Bの系統にはそれぞれ流量
測定器4を設けてあり、各実流量信号を比較器12.比
較器13にフィードバック信号として与えている。分配
器3では、切替期間中、燃料Aと燃料Bとの合計流量が
Before the start of switching, fuel A7 corresponding to the fuel flow rate setting signal 2 is injected into the combustor 10 while being controlled by the flow rate controller 5, is combusted together with combustion air pressurized by the compressor 9, and is introduced into the turbine 11. , converts thermal energy into rotational energy, drives the first generator 6, and generates electric power. When switching from fuel A7 to fuel B8 in this state, the fuel distributor 3 generates a signal to increase fuel B and decrease fuel A over one hour. This signal is given to the controller 5 that controls fuel A and fuel B, so that the fuel flow rate corresponds to the signal. In order to ensure this accuracy, a flow rate measuring device 4 is provided in each of the fuel A and fuel B systems, and each actual flow rate signal is measured by a comparator 12. It is given to the comparator 13 as a feedback signal. In the distributor 3, during the switching period, the total flow rate of fuel A and fuel B is .

燃料流量設定信号に等しくなるよう、F=F^十FBの
関係で制御し続けられる。
Control is continued based on the relationship F=F^1FB so that it becomes equal to the fuel flow rate setting signal.

燃料流量設定信号は、切替直前の値が切替期間を通して
同一値として与えられる。
The fuel flow rate setting signal is given the same value immediately before switching throughout the switching period.

上記は代表的な切替手順であるが、前述の燃料切替を行
う場合、適用燃料の如何によって、以下のような特記事
項が必要とされる。
The above is a typical switching procedure, but when performing the fuel switching described above, the following special notes are required depending on the applied fuel.

(イ)、流量制御器5は、制御弁として図示されている
がその他制御装置にも置き換え得ること。
(a) Although the flow rate controller 5 is illustrated as a control valve, it can be replaced with other control devices.

(ロ)、フィードバックの流量信号は、弁ストローク等
、間接的に流量を検知できるものであっても良いこと。
(b) The feedback flow rate signal may be one that can indirectly detect the flow rate, such as a valve stroke.

(ハ)、燃料分配器の分配率と時間との関係は必ずしも
直線的でなく、F=FA+FBとなるような機器側要求
に応じた関係でさえあれば良いこと。
(c) The relationship between the distribution ratio of the fuel distributor and time is not necessarily linear, but only needs to be a relationship that meets the requirements of the equipment, such as F=FA+FB.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上に述べた従来技術においては、燃料の切替に関して次
のような必要がある。
In the prior art described above, the following requirements are required regarding fuel switching.

(a)、燃料切替制御の基本は、切替の全期間を通して
、燃料Aによる入熱と燃料Bによる入熱との合計が一定
である必要がある。
(a) The basics of fuel switching control is that the sum of heat input from fuel A and heat input from fuel B must be constant throughout the entire switching period.

(b)、従来技術は基本的には、流量制御であるから、
燃料Aと燃料Bとの流量和を一定としている。これは、
燃料Aと燃料Bの発熱量が既知であり、かつ、発熱量の
変動が生じない場合には問題なく適用できる。しかし、
燃料発熱量の偏差が大きな燃料又は時間的な発熱量変動
を有する燃料を切替える場合には、切替時に負荷変動を
生ずることになる。又、発熱量変動が著しい場合には切
替時に燃焼不安定が生じ1例えば、失火等のトラブルを
起こす危険性がある。
(b) Since the conventional technology is basically flow control,
The sum of the flow rates of fuel A and fuel B is kept constant. this is,
If the calorific values of fuel A and fuel B are known and the calorific values do not fluctuate, this method can be applied without any problem. but,
When switching between fuels with large deviations in fuel calorific value or fuels with temporal fluctuations in calorific value, load fluctuations will occur at the time of switching. Furthermore, if the calorific value fluctuates significantly, combustion may become unstable at the time of switching; for example, there is a risk of troubles such as misfires.

(C)、燃料Bが設定発熱量に対して大きな偏差をもっ
て供給された場合を例にとって上記を具体的に説明する
。(このことは燃料A又は燃料Bに偏差が生じた場合の
みならず、燃料A及び燃料B共に偏差が生じた場合にも
同様に説明し得る。) 第3図は、燃料Bの発熱量が設定通りに供給された場合
を示す。本図の下l1l(流量切替率)に示す如く燃料
Aの流量を漸減せしめるとともに燃料Bの流量を漸増せ
しめて、その流量和を一定に保つと、本第3図の上欄(
エネルギ%)の如く、エネルギ総和は設定値の如くにな
る。
(C) The above will be specifically explained using an example in which the fuel B is supplied with a large deviation from the set calorific value. (This can be explained not only when a deviation occurs in fuel A or fuel B, but also when a deviation occurs in both fuel A and fuel B.) Figure 3 shows that the calorific value of fuel B is Indicates the case where it is supplied according to the settings. If the flow rate of fuel A is gradually decreased and the flow rate of fuel B is gradually increased as shown in the lower part l1l (flow rate switching rate) of this figure, and the sum of the flow rates is kept constant, the upper column of this figure 3 (
energy %), the total energy becomes the set value.

本発明において発熱量とは単位量の燃料の発熱量(Ca
 Q / cc )を言い、これに体積を乗じた総発熱
量は(ガスタービンの入熱に相当するものとして)入熱
量という。
In the present invention, the calorific value refers to the calorific value of a unit amount of fuel (Ca
Q/cc), and the total calorific value multiplied by the volume is called the heat input (corresponding to the heat input of a gas turbine).

第4図は燃料Bの発熱量が設定値よりも小さかつた場合
を示し、燃料A→同Bの切替に伴ってエネルギ総和は設
定値よりも低下する。
FIG. 4 shows a case where the calorific value of fuel B is smaller than the set value, and as fuel A is switched from fuel A to fuel B, the total energy becomes lower than the set value.

第5図は燃料Bの発熱量が設定値に比して時間と共に変
化する場合を示し、エネルギ総和は設定値に比して、時
間と共に変化する。
FIG. 5 shows a case where the calorific value of fuel B changes over time compared to the set value, and the total energy changes over time compared to the set value.

上述の如く切替の期間中にエネルギの総和は、図示の1
→2に移動し、入熱量は切替前後で変化するから、結局
、ガスタービン負荷はその偏差に応じて変化することに
なる。発熱量が時間的に変化する場合も同様にして負荷
変動が発生する。
As mentioned above, the total energy during the switching period is 1 as shown in the figure.
→ Since the amount of heat input changes before and after switching, the gas turbine load will change according to the deviation. Load fluctuations occur in the same way when the amount of heat generated changes over time.

以上の如く、従来技術では1発熱量が設定値に比して変
化する場合にはその偏差分だけ入熱の変化、即ち、負荷
の変化が生じるという問題を有する。
As described above, the conventional technology has a problem in that when the amount of heat generated per unit changes compared to the set value, the heat input changes by the deviation, that is, the load changes.

近年のエネルギ多様化の退勢から、ガスタービン用燃料
もかなりの広範囲のものを使用できることが要求されて
おり、従来技術の改善が急務となって来ている。
With the decline in energy diversification in recent years, it has become necessary to be able to use a considerably wide variety of fuels for gas turbines, and there is an urgent need to improve conventional technologies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術においては燃料切替時の制御は燃料流量一定と
するものであり、燃料の発熱量の変動は即、入熱の変動
となり、結果としてガスタービン出力の変動となった。
In the conventional technology, the control at the time of fuel switching is such that the fuel flow rate is kept constant, and fluctuations in the calorific value of the fuel immediately result in fluctuations in the heat input, resulting in fluctuations in the gas turbine output.

本発明の目的は、燃料切換時の制御について、各燃料の
流量のみでなく1発熱量をも考慮に入れて各燃料の入熱
量を一定ならしめるように燃料切替時の入熱の補正を行
ない、切替時の負荷変動を抑制し得る燃料切替装置を提
供しようとすることにある。
An object of the present invention is to correct the heat input during fuel switching so that the heat input of each fuel is made constant by taking into account not only the flow rate of each fuel but also the calorific value of each fuel. An object of the present invention is to provide a fuel switching device that can suppress load fluctuations during switching.

c問題点を解決するための手段〕 上記目的はガスタービンの燃料切替時、設定発熱量に対
して、実測発熱量で修正し、これを修正フィードバック
信号として、燃料流量設定信号と比較して、各燃料を制
御することにより達成される。
Means for Solving Problem c] The above purpose is to correct the set calorific value using the actually measured calorific value when switching the fuel of the gas turbine, use this as a corrected feedback signal, and compare it with the fuel flow rate setting signal. This is achieved by controlling each fuel.

上述の原理を実用面に適用するための具体的構成として
、本発明に係るガスタービン燃料切替装置は、A、82
種類の燃料をそれぞれ供給する2系統の燃料系Aと燃料
系Bとを備えると共に、燃料系A上に流量測定器(4A
)と、流量制御器(5A)とを設け、燃料系B上に流量
測定器(4B)と流量制御器(5B)とを設け、かつ、
燃料分配器(3)から発せられる流量制御器(5A)の
制御用出力信号(16A)を流量測定器(4A)のフィ
ードバック信号で補正すると共に、燃料分配器(3)か
ら発せられる流量制御器(5B)の制御用出力信号(1
6B)を流量測定器(4B)のフィードバック信号で補
正するガスタービンの燃料切替装置において、燃料系A
に発熱量測定器(1A)を、燃料系Bに発熱量測定器(
1B)をそれぞれ設けると共に1発熱量測定器(1A)
からの発熱量信号(HA)と設定発熱量HAOとの比に
よって流量測定器(4A)からの流量信号(FM^)を
補正した流量フィードバック信号(15A)を比較信号
として燃料分配器(3)の制御出力信号(16A)を補
正する比較器(12)を設け、一方1発熱量測定器(1
B)からの発熱量信号Haと設定発熱量(HBO)との
比によって流量測定器(4B)からの流量信号(FM^
)を補正した流量フィードバック信号(15B)を比較
信号として燃料分配器(3)の制御出力信号(16B)
を補正する比較器(13)を設けたことを特徴とする。
As a specific configuration for applying the above-mentioned principle in practical terms, the gas turbine fuel switching device according to the present invention has A.
It is equipped with two systems, fuel system A and fuel system B, which supply different types of fuel, and a flow rate measuring device (4A
) and a flow rate controller (5A), a flow rate measuring device (4B) and a flow rate controller (5B) are provided on the fuel system B, and
The control output signal (16A) of the flow rate controller (5A) emitted from the fuel distributor (3) is corrected by the feedback signal of the flow rate measuring device (4A), and the flow rate controller (3) emitted from the fuel distributor (3) (5B) control output signal (1
6B) using a feedback signal from a flow rate measuring device (4B), the fuel system A
and a calorific value measuring device (1A) in the fuel system B, and a calorific value measuring device (1A) in the fuel system B.
1B) and one calorific value measuring device (1A).
The fuel distributor (3) uses the flow rate feedback signal (15A), which is obtained by correcting the flow rate signal (FM^) from the flow rate measuring device (4A) according to the ratio of the calorific value signal (HA) from the and the set calorific value HAO, as a comparison signal. A comparator (12) is provided to correct the control output signal (16A) of the 1 calorific value measuring device (16A).
The flow rate signal (FM^) from the flow rate measuring device (4B) is determined by the ratio of the calorific value signal Ha from B) and the set calorific value (HBO).
) with the corrected flow rate feedback signal (15B) as a comparison signal and the control output signal (16B) of the fuel distributor (3).
The present invention is characterized in that it is provided with a comparator (13) for correcting.

〔作用〕[Effect]

燃料流量設定信号は切替期間を通じて一定値であり、燃
料による入熱の変化があった場合1発電機の出力変化と
して現われる。
The fuel flow rate setting signal is a constant value throughout the switching period, and when there is a change in heat input due to the fuel, it appears as a change in the output of one generator.

この為、燃料による入熱、即ち発熱量を実測し設定発熱
量と比較し、その偏差を修正フィードバック信号として
使用し、燃料流量制御することで燃料切替時の負荷変動
を無くすことができる。
Therefore, the heat input by the fuel, that is, the calorific value, is actually measured and compared with the set calorific value, and the deviation is used as a correction feedback signal to control the fuel flow rate, thereby eliminating load fluctuations during fuel switching.

〔実施例〕〔Example〕

第1図に本発明に係る燃料切替装置の1実施例を示す。 FIG. 1 shows one embodiment of a fuel switching device according to the present invention.

第2図に示した従来例との相違は以下の通りである。The differences from the conventional example shown in FIG. 2 are as follows.

(I)、各燃料系統に、発熱量測定器1を設け、各燃料
の発熱量を測定し、初期設定発熱量と比較する。1Aは
燃料系A用の発熱量測定器であり、1Bは燃料系B用の
発熱量測定器である。
(I) A calorific value measuring device 1 is provided in each fuel system, and the calorific value of each fuel is measured and compared with the initially set calorific value. 1A is a calorific value measuring device for fuel system A, and 1B is a calorific value measuring device for fuel system B.

(■)、この比較での偏差信号を各燃料系統の流量測定
器4からのフィードバック信号に演算させ、修正フィー
ドバック信号(即ち、突入熱となる)として各比較器に
与える。4Aは燃料系A用の流量測定器であり、4Bは
燃料系B用の流量測定器である。
(■) The deviation signal from this comparison is calculated using the feedback signal from the flow rate measuring device 4 of each fuel system, and is given to each comparator as a corrected feedback signal (that is, it becomes inrush heat). 4A is a flow meter for fuel system A, and 4B is a flow meter for fuel system B.

各比較器12.13以降の制御機構の構成9機能は第1
図の従来技術の場合と同様である。
The configuration 9 functions of the control mechanism after each comparator 12 and 13 are the first
This is the same as the case of the prior art shown in the figure.

本発明を実施する場合、次のように構成することが出来
る。
When implementing the present invention, it can be configured as follows.

(−)、流量制御器5は、制御弁として図示されている
が、その他制御機器にも置き換えられること。
(-) Although the flow rate controller 5 is illustrated as a control valve, it can be replaced with other control devices.

(ニ)、フィードバックの流量信号は、弁ストローク等
1間接的に流量を検知できるものであっても良いこと。
(d) The feedback flow rate signal may be one that can indirectly detect the flow rate, such as a valve stroke.

(三)、燃料分配器の分配率と時間の関係は必ずしも直
線的でなく、F=F^十FBとなるような機器側要求に
応じた関係であれば良いこと。
(3) The relationship between the distribution rate of the fuel distributor and time is not necessarily linear, and it is sufficient as long as it meets the requirements of the equipment, such as F=F^1FB.

従来技術においては燃料流量のみの切換比率制御方式を
とっている為、発熱量偏差分だけ入熱に偏差を生じ、こ
れが負荷変動を生ぜしめていたという欠点を排除するた
め本発明の装置は上記実施例の如く、切替時の燃料流量
制御に追加して、発熱量に基づく補正を行うことにより
、入熱の偏差を抑制し、負荷変動を無くそうとするもの
である。
In order to eliminate the drawback that the conventional technology uses a switching ratio control method for only the fuel flow rate, a deviation occurs in the heat input by the amount of heat generated, and this causes load fluctuation. As in the example, in addition to the fuel flow rate control at the time of switching, correction is performed based on the calorific value to suppress deviations in heat input and eliminate load fluctuations.

燃料Bとして設定値より高い発熱量の燃料が供給された
場合の本実施例による切替時の推移を図示すると第6図
のようになる。
FIG. 6 shows the transition at the time of switching according to this embodiment when fuel with a calorific value higher than the set value is supplied as fuel B.

切替動作を開始し、設定切替比に応じて、F^。Start the switching operation, and according to the set switching ratio, F^.

FBの燃料比率により流量分割を進めて行くが、その際
、燃料Bの発熱量(実測値)Hs(第1図参照)が、初
期設定値Haoよりも高い場合は、設定流量FBをその
まま流せば、燃料B側の入熱が設定値よりも大きくなり
、負荷変動を生じるので、HB/Haoのバイアスをフ
ィードバック系統に掛けてやることにより、実際の燃料
流量を1発熱量比率により補正し、入熱を設定レベルに
抑制することが可能になる。
The flow rate is divided according to the fuel ratio of FB, but if the calorific value (actual value) Hs (see Figure 1) of fuel B is higher than the initial setting value Hao, the set flow rate FB can be passed as is. For example, the heat input on the fuel B side becomes larger than the set value, causing load fluctuations, so by applying the HB/Hao bias to the feedback system, the actual fuel flow rate is corrected by the 1 calorific value ratio, It becomes possible to suppress heat input to a set level.

この制御方式では、設定流量比と、実際の流量片は、第
6図に示す如く発熱量偏差に応じて、差異を生ずること
になる。
In this control system, the set flow ratio and the actual flow rate differ depending on the calorific value deviation, as shown in FIG.

燃料Bのみならず、mF4Aの発熱量に偏差を生じた場
合、又は、燃料A又は燃料Bの発熱量が共に偏差を生じ
た場合も、第6図と同様に負荷変動を抑制できる。
In the case where a deviation occurs in the calorific value of not only fuel B but also mF4A, or in the case where a deviation occurs in both the calorific value of fuel A or fuel B, load fluctuation can be suppressed in the same manner as in FIG. 6.

更に切替途中で発熱量の時間的(時間に伴う)変動が生
じた場合も本実施例の装置により切替時の負荷変動を抑
制することができる。第7図にこの場合を示す。
Furthermore, even if temporal (accompanied by time) fluctuations in the amount of heat generated occur during switching, the device of this embodiment can suppress load fluctuations at the time of switching. FIG. 7 shows this case.

本実施例の装置による上述の制御方法を更に発展させて
、燃料流量設定信号Foを燃料切替中に固定する代りに
可変とすることも可能である。即ち、燃料流量設定信号
Fo’ として、例えば、Fo’ :Fo+f (切替
時間) の関係を設定してやれば、燃料切替を行ないながら同時
に入熱を変動なく上昇又は下降させることも可能となる
It is also possible to further develop the above-described control method using the apparatus of this embodiment, and to make the fuel flow rate setting signal Fo variable instead of being fixed during fuel switching. That is, by setting the fuel flow rate setting signal Fo' to the relationship Fo' :Fo+f (switching time), for example, it becomes possible to simultaneously increase or decrease the heat input without fluctuation while switching the fuel.

又、本発明装置の他の使用方法として、燃料切替期間中
に発熱量変動が生じないことが予め解っている場合には
、発熱量測定は連続測定の必要はなく、ある時点(例え
ば切替前)での測定値を入力しておけば良い。
In addition, as another method of using the device of the present invention, if it is known in advance that the calorific value will not fluctuate during the fuel switching period, there is no need to continuously measure the calorific value, but at a certain point (for example, before switching). ) and enter the measured value.

以上の如く、本発明により、従来の燃料切替方式の欠点
は全く解消し、発熱量が変動する燃料においても、負荷
変動の無い切替制御が可能となる。
As described above, the present invention completely eliminates the drawbacks of conventional fuel switching systems, and enables switching control without load fluctuations even for fuels whose calorific value fluctuates.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料切替時の負荷変動を抑制できるの
で、安定した制御系統を構成することができるとともに
、運転の信頼性の向上が図れ、また、急激な負荷変動が
無いことによるガスタービン部品寿命の延長を期待し得
る。
According to the present invention, load fluctuations during fuel switching can be suppressed, so a stable control system can be constructed, and operational reliability can be improved. It can be expected that the lifespan of parts will be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例における燃料切替制御系統図
である。第2図は従来技術における燃料切替制御系統図
である。第3図は従来技術における発熱量変動なし時の
切替状態を示す図表、第4図は同じく発熱量が設定値よ
りも低い場合の切替状態を示す図表、第5図は同じく発
熱量が時間的に変化する場合の切替状態を示す図表であ
る。第6図及び第7図はそれぞれ本発明の実施例におけ
る作用、効果を説明する為の図表で、第6図は発熱量が
設定値よりも高い場合を示し、第7図は切替途中で発熱
量の変動が生じた場合を示してb)る。 1・・・発熱量測定器、1A・・・燃料A用の発熱量測
定器、1B・・・燃料B用の発熱量測定器、4・・・流
量測定器、4A・・・燃料A用の流量測定器、4B・・
・燃料B用の流量測定器、16A・・・燃料A用の燃料
分配器出力信号、16B・・・燃料B用の燃料分配器出
力信号。
FIG. 1 is a fuel switching control system diagram in one embodiment of the present invention. FIG. 2 is a fuel switching control system diagram in the prior art. Figure 3 is a chart showing the switching state when there is no variation in the amount of heat generated in the conventional technology, Figure 4 is a chart showing the switching state when the amount of heat generated is lower than the set value, and Figure 5 is also a chart showing the switching state when the amount of heat generated is lower than the set value. FIG. Figures 6 and 7 are charts for explaining the functions and effects of the embodiments of the present invention, respectively. Figure 6 shows the case where the amount of heat generated is higher than the set value, and Figure 7 shows the case where the amount of heat generated is higher than the set value, and Figure 7 shows the amount of heat generated during switching. b) shows a case where a change in quantity occurs. 1... Calorific value measuring device, 1A... Calorific value measuring device for fuel A, 1B... Calorific value measuring device for fuel B, 4... Flow rate measuring device, 4A... For fuel A Flow rate measuring device, 4B...
- Flow rate measuring device for fuel B, 16A...Fuel distributor output signal for fuel A, 16B...Fuel distributor output signal for fuel B.

Claims (1)

【特許請求の範囲】[Claims] 1、A、B2種類の燃料をそれぞれ供給する2系等の燃
料系Aと燃料系Bとを備えると共に、燃料系A上に流量
測定器(4A)と、流量制御器(5A)とを設け、燃料
系B上に流量測定器(4B)と流量制御器(5B)とを
設け、かつ、燃料分配器(3)から発せられる流量制御
器(5A)の制御用出力信号(16A)を流量測定器(
4A)のフィードバック信号で補正すると共に、燃料分
配器(3)から発せられる流量制御器(5B)の制御用
出力信号(16B)を流量測定器(4B)のフィードバ
ック信号で補正するガスタービンの燃料切替装置におい
て、燃料系Aに発熱量測定器(1A)を、燃料系Bに発
熱量測定器(1B)をそれぞれ設けると共に、発熱量測
定器(1A)からの発熱量信号(H_A)と設定発熱量
H_A_Oとの比によつて流量測定器(4A)からの流
量信号(F_M_A)を補正した流量フィードバック信
号(15A)を比較信号として燃料分配器(3)の制御
出力信号(16A)を補正する比較器(12)を設け、
一方、発熱量測定器(1B)からの発熱量信号H_Bと
設定発熱量(H_B_O)との比によつて流量測定器(
4B)からの流量信号(F_M_B)を補正した流量フ
ィードバック信号(15B)を比較信号として燃料分配
器(3)の制御出力信号(16B)を補正する比較器(
13)を設けたことを特徴とする、2種類の燃料を使用
するガスタービンの燃料切替装置。
1, A, B It is equipped with a fuel system A and a fuel system B such as two systems that supply two types of fuel, respectively, and a flow rate measuring device (4A) and a flow rate controller (5A) are provided on the fuel system A. , a flow rate measuring device (4B) and a flow rate controller (5B) are provided on the fuel system B, and the control output signal (16A) of the flow rate controller (5A) emitted from the fuel distributor (3) is used as the flow rate. Measuring instrument (
4A), and the control output signal (16B) of the flow rate controller (5B) emitted from the fuel distributor (3) is corrected with the feedback signal of the flow rate measuring device (4B). In the switching device, a calorific value measuring device (1A) is provided in the fuel system A, and a calorific value measuring device (1B) is provided in the fuel system B, and the calorific value signal (H_A) from the calorific value measuring device (1A) is set. The control output signal (16A) of the fuel distributor (3) is corrected using the flow rate feedback signal (15A), which is obtained by correcting the flow rate signal (F_M_A) from the flow rate measuring device (4A) according to the ratio with the calorific value H_A_O, as a comparison signal. A comparator (12) is provided to
On the other hand, the flow rate measuring device (
A comparator (4B) that corrects the control output signal (16B) of the fuel distributor (3) by using the flow rate feedback signal (15B) that is obtained by correcting the flow rate signal (F_M_B) from the fuel distributor (3) as a comparison signal.
13) A fuel switching device for a gas turbine that uses two types of fuel.
JP28897686A 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel Expired - Lifetime JPH076416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28897686A JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28897686A JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Publications (2)

Publication Number Publication Date
JPS63143339A true JPS63143339A (en) 1988-06-15
JPH076416B2 JPH076416B2 (en) 1995-01-30

Family

ID=17737232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28897686A Expired - Lifetime JPH076416B2 (en) 1986-12-05 1986-12-05 Fuel switching device for gas turbines that uses two types of fuel

Country Status (1)

Country Link
JP (1) JPH076416B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170544A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Gas turbine control device
JP2007138949A (en) * 2005-11-22 2007-06-07 General Electric Co <Ge> Method and device for operating gas turbine engine system
ITMI20091370A1 (en) * 2009-07-30 2011-01-31 Ansaldo Energia Spa METHOD AND GROUP TO SUPPLY FUEL TO A COMBUSTION CHAMBER OF A GAS TURBINE SYSTEM
JP2014105601A (en) * 2012-11-26 2014-06-09 Hitachi Ltd Gas turbine combustor and method for operating the same
JP2014159796A (en) * 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Power generation system and operation method of power generation system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656295B2 (en) * 2004-11-25 2011-03-23 株式会社Ihi Gas turbine fuel control method and apparatus
US7770400B2 (en) * 2006-12-26 2010-08-10 General Electric Company Non-linear fuel transfers for gas turbines
SG11201502454PA (en) 2012-09-28 2015-06-29 Fujifilm Corp Functional polymer membrane, and method of producing same
JP5980702B2 (en) 2013-03-07 2016-08-31 富士フイルム株式会社 INKJET INK COMPOSITION, INKJET RECORDING METHOD, AND MOLDED PRINTED PRODUCTION METHOD
JP6004971B2 (en) 2013-03-12 2016-10-12 富士フイルム株式会社 Inkjet ink composition for producing decorative sheet molded product or in-mold molded product, inkjet recording method for producing decorated sheet molded product or in-mold molded product, ink set for producing decorative sheet molded product or in-mold molded product, decorative Decorative sheet for producing sheet molded product or in-mold molded product, decorated sheet molded product, and method for producing in-mold molded product
JP6066960B2 (en) 2014-05-30 2017-01-25 富士フイルム株式会社 Actinic ray curable ink composition for molding process, ink set, inkjet recording method, decorative sheet for molding process, decorative sheet molded product, and method for producing in-mold molded product
WO2024068598A1 (en) 2022-09-29 2024-04-04 Fujifilm Manufacturing Europe Bv Membranes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170544A (en) * 1994-12-16 1996-07-02 Kawasaki Heavy Ind Ltd Gas turbine control device
JP2007138949A (en) * 2005-11-22 2007-06-07 General Electric Co <Ge> Method and device for operating gas turbine engine system
US7565805B2 (en) 2005-11-22 2009-07-28 General Electric Company Method for operating gas turbine engine systems
ITMI20091370A1 (en) * 2009-07-30 2011-01-31 Ansaldo Energia Spa METHOD AND GROUP TO SUPPLY FUEL TO A COMBUSTION CHAMBER OF A GAS TURBINE SYSTEM
WO2011012985A3 (en) * 2009-07-30 2011-04-07 Ansaldo Energia S.P.A. Method and assembly for supplying fuel to a combustion chamber of a gas turbine plant
JP2014105601A (en) * 2012-11-26 2014-06-09 Hitachi Ltd Gas turbine combustor and method for operating the same
JP2014159796A (en) * 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Power generation system and operation method of power generation system

Also Published As

Publication number Publication date
JPH076416B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JPS63143339A (en) Fuel selector for gas turbine using two types of fuel
US7396228B2 (en) Fuel gas calorie control method and device
US8015791B2 (en) Fuel control system for gas turbine and feed forward control method
US4576570A (en) Automatic combustion control apparatus and method
US7568349B2 (en) Method for controlling combustion device dynamics
US6763664B2 (en) Fuel ratio control method and device in a gas turbine combustor
WO2006087803A1 (en) Method for controlling calorific value of gas and apparatus for controlling calorific value of gas
KR20190034813A (en) Integrated Coal Gasification Heat Duty Auto Control System
JPS63159628A (en) Fuel switching device for gas turbine
JPS6029515A (en) Combustion controller
JP2868067B2 (en) Combustion control device
JPS6140432A (en) Fuel control device in gas turbine
JPH04143425A (en) Gas turbine controller
KR100257336B1 (en) Fuel amount adjusting apparatus of power plant
JPS6329111A (en) Control method and device for air-fuel ratio in combustion apparatus
US5821702A (en) Discharge lamp control circuit using a luminous flux table
JPH0553533B2 (en)
JPS63183230A (en) Control method for combustion temperature of gas turbine
KR100321045B1 (en) Apparatus and method for controlling calorific value of coke oven gas
KR0169800B1 (en) Automatic wind pressure regulating method for combustion system
JPH073284B2 (en) Combustion control device
JPH01285627A (en) Gas turbine fuel control device
JPH1181920A (en) Combined cycle controller and gas turbine controller
JPS5856050B2 (en) Boiler combustion control device
JPH10231708A (en) Combustion control method in coal-fired thermal power generating plant