JPS62218628A - Fuel control device for double gas fuel combustion turbine - Google Patents

Fuel control device for double gas fuel combustion turbine

Info

Publication number
JPS62218628A
JPS62218628A JP5920986A JP5920986A JPS62218628A JP S62218628 A JPS62218628 A JP S62218628A JP 5920986 A JP5920986 A JP 5920986A JP 5920986 A JP5920986 A JP 5920986A JP S62218628 A JPS62218628 A JP S62218628A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
gas turbine
calorific value
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5920986A
Other languages
Japanese (ja)
Other versions
JPH063148B2 (en
Inventor
Seisaku Takihana
瀧花 清作
Yasumasa Nishijima
庸正 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5920986A priority Critical patent/JPH063148B2/en
Publication of JPS62218628A publication Critical patent/JPS62218628A/en
Publication of JPH063148B2 publication Critical patent/JPH063148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To permit two kinds of gas fuels to be combusted continuously, by supplying a high calorific fuel when a quantity of flow of a low calorific fuel has reached a value greater than a prescribed value. CONSTITUTION:A flow meter 8 and a flow control valve 9 are provided with a low calorific fuel supply system. When only a single fuel is combusted, the quantity of flow of a low calorific fuel is measured by the flow meter 8 and when it has become greater than a prescribed value, the flow control valve 9 controls to supply a prescribed quantity of flow. The shortage of fuel is covered by supplying a high calorific fuel for operation by mixed fuel combustion. With this arrangement, two different kinds of gas fuels can be continuously combusted.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は気体燃料沌ガスタービン設備に係り。[Detailed description of the invention] [Industrial use parts] The present invention relates to gas-fueled gas turbine equipment.

特に気体燃料発熱量が犬さく相違する2s頌の気体燃料
を燃焼させるに好適な二重気体燃料供給制御装置に関す
る。
In particular, the present invention relates to a dual gas fuel supply control device suitable for burning two kinds of gaseous fuels, which have significantly different gaseous fuel calorific values.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭48−48813号に記載のよう
に、一系統の気体燃料供給系統に於いて。
The conventional device has a single gaseous fuel supply system, as described in Japanese Patent Application Laid-Open No. 48-48813.

燃料ノズル、り熱料流量調整弁等を変更することなく、
燃料ガス濃度変化又はカロリーが変動した場合は、連続
計測した値に応じてガスタービン制御設定信号を制御す
るように、なっていた。しかし。
without changing the fuel nozzle, reheating material flow rate adjustment valve, etc.
When the fuel gas concentration or calories fluctuate, the gas turbine control setting signal is controlled in accordance with the continuously measured values. but.

発?pItが大きく(例えば10%以上)相違する場合
には、制御信号のA整だけではなく、燃料ノズルでの圧
力比を適正にする必要があるが、この点((ついては配
慮されていなかった。なお、燃料ノズル圧力比について
配慮されたものとして関連するものには例えば、特願昭
58−176201号が挙げられるが、燃料ノズル構造
上の制約が有る場合(例えば、気体・液体二重燃料焚ガ
スタービン用撚科ノズル)及び切換時の負荷変動につい
ては配慮されていなかった。
Departure? If there is a large difference in pIt (for example, 10% or more), it is necessary to not only adjust the A of the control signal but also to adjust the pressure ratio at the fuel nozzle, but this point was not taken into consideration. Note that Japanese Patent Application No. 176201/1987 is an example of a related document that considers the fuel nozzle pressure ratio; No consideration was given to the twisting nozzle for gas turbines) and load fluctuations during switching.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち特開昭48−48813号は。 Among the above-mentioned conventional techniques, Japanese Patent Application Laid-Open No. 48-48813 is.

燃料供給系統としては1例えば:s7図のような要素か
ら構成されている。17はガスカロリーメータ、3はガ
スタービン制御弁(流を調整弁)、4は遮断及び圧力A
4整弁%2は燃料ノズル、1は燃焼器、5はガスタービ
ン制御装置である。本従来技術では、与えられた燃料供
給圧力 2科性状(特に、ガス発熱量)条件にて、一種
類の燃料に対しては、運転継続することが可能であり、
又、発熱量変動例対しても、カロリーメータを設置し。
The fuel supply system is composed of elements as shown in Figure 1, for example: s7. 17 is a gas calorimeter, 3 is a gas turbine control valve (a flow regulating valve), 4 is a shutoff and pressure A
4 Valve adjustment% 2 is a fuel nozzle, 1 is a combustor, and 5 is a gas turbine control device. In this conventional technology, it is possible to continue operation for one type of fuel under the given fuel supply pressure and two properties (particularly gas calorific value) conditions.
Also, a calorimeter is installed for cases where the calorific value fluctuates.

その変動に応じた制御信号を得ることで、対応できるが
、許容発熱量変動中は制限を受け、一般に10%以内で
ある。又この範囲を越える気体熱料を帖焼させようとす
ると、燃料ノズル噴射口径は一定であるので、圧力比が
適正でなくなり1機器に損傷を与える。気体燃料ノズル
口径を選定する場せ、与えられた発熱量により、is図
の如く全負荷条件にて燃料ノズル出入口圧力比が適正と
なる様にする。一般に圧力比が下限笹以下の場合。
This can be handled by obtaining a control signal according to the fluctuation, but there is a limit during the permissible heat generation fluctuation, which is generally within 10%. Furthermore, if an attempt is made to burn off a gaseous heating material exceeding this range, since the fuel nozzle injection diameter is constant, the pressure ratio will not be appropriate and damage to the equipment will occur. When selecting the gaseous fuel nozzle diameter, make sure that the given calorific value makes the fuel nozzle inlet and outlet pressure ratio appropriate under full load conditions as shown in the IS diagram. Generally, when the pressure ratio is below the lower limit.

燃焼構内で、過大の燃焼撮動が発生し、燃焼器等の機器
に損傷を与える。父、逆に圧力比が上限値以上の場合、
、S料ノズルでの燃料噴射パターンが不適正となり、燃
焼器の過熱を招くことに唸る。
Excessive combustion imaging occurs in the combustion facility, damaging equipment such as the combustor. Father, conversely, if the pressure ratio is above the upper limit,
, the fuel injection pattern at the S fuel nozzle becomes inappropriate, leading to overheating of the combustor.

関連従来技術である特願昭58−176201は。Japanese Patent Application No. 58-176201 is a related prior art.

燃料供給系統としては、第9図のような要素から構成さ
れている。18は切換弁制御装置、19は切換弁である
。発熱量が大傘く変動する場合に。
The fuel supply system is composed of elements as shown in FIG. 18 is a switching valve control device, and 19 is a switching valve. When the amount of heat generated fluctuates considerably.

燃料ノズルでの出入口圧力比を適正とする方法として、
燃料ノズルガス穴を2系統独立して設置し。
As a method to optimize the inlet and outlet pressure ratio at the fuel nozzle,
Install two independent fuel nozzle gas holes.

圧力比を計測し、切換弁を用いて噴射面積を調整してい
る(@10図)、、シかしながら、切部弁作動直後の過
渡的な気体燃料流量変動に伴表う負荷変動が発生すると
いう問題があった。又、燃料ノズルの構造上の制約(例
えば、第11因に示すような気体・液体二重燃料焚ノズ
ルの場合には、実際上、ガス穴を2系統独立させて配置
させることが不可能である。)に対する配慮がをされて
いなかった。
The pressure ratio is measured and the injection area is adjusted using a switching valve (Fig. 10). There was a problem that occurred. In addition, structural limitations of the fuel nozzle (for example, in the case of a gas/liquid dual fuel firing nozzle as shown in factor 11, it is practically impossible to arrange two systems of gas holes independently). ) was not considered.

本発明の目的は、ガスタービンパッケージ内の系統は、
従来のまま一系統とし、そのシンプルさを残し、上述の
制約を解決し、又1発熱量が大きく相違(101以上)
する2種類の気体燃料を燃焼可能とすることにある。
It is an object of the present invention that the system within the gas turbine package is
The system remains simple, solves the above-mentioned constraints, and has a large difference in calorific value (more than 101).
The objective is to make it possible to burn two types of gaseous fuels.

〔問題点を解決するための手段〕[Means for solving problems]

発熱量が大きく相違する2種類の気体燃料を。 Two types of gaseous fuels with greatly different calorific values.

燃焼器等の機器に損傷を与えず、過渡的な変動を押さえ
、かつ燃料ノズルの構造上の制約を受けることなく、連
続的に燃焼する為には、ガスタービンパッケージ内に設
置される燃料ノズル、ガスタービン制御弁(it調整弁
)及び、遮断及び圧力調整弁は一系統とし、その上流側
で2種類の気体燃料を混合させる系統とするのがシンプ
ルである。
In order to burn continuously without damaging the combustor or other equipment, suppressing transient fluctuations, and being free from the structural constraints of the fuel nozzle, the fuel nozzle is installed inside the gas turbine package. It is simple to use one system for the gas turbine control valve (IT adjustment valve) and the shutoff and pressure adjustment valve, and to mix two types of gaseous fuels on the upstream side of the system.

上記パッケージ内機器は、2種類の気体燃料のうち1発
熱量の大きい気体燃料で設計し、かつ、燃料流量の少な
い無負荷時に、圧力比下限値を守れる範囲でノズル面積
を大きくとる、これにて1発熱量の大きい気体燃料を使
って全負荷帯に渡って運転が可能となる。発熱量の小さ
い気体燃料に対しては、低負荷帯の燃料流量の少ない範
囲で(d、燃料ノズル圧力比制限内で運転可能となる。
The above-mentioned equipment in the package is designed using gaseous fuel with one of the two types of gaseous fuel that has a larger calorific value, and the nozzle area is designed to be large enough to maintain the lower limit of the pressure ratio during no-load conditions with low fuel flow rate. This makes it possible to operate over the entire load range using gaseous fuel with a large calorific value. For gaseous fuels with a small calorific value, operation is possible within the fuel nozzle pressure ratio limit (d) in a low fuel flow rate range in a low load zone.

高負荷帯では、燃料流量が大きく、従って燃料ノズル圧
力比が上限値を越えてしまう為、圧力比上限に達する前
の適切な燃料流量になったところで、流!調整弁にて制
限し一定流量制御する。、負荷上昇に伴ない不足する燃
料は1発熱量の大きい燃料を混合し、燃料ノズル圧力比
が適切な範囲内に入るようにする。これは、発熱量の大
きい燃料を混合することによって1発熱量の小さい燃料
を単一専焼する場合と比べ燃料増加割合が低減(すなわ
ち。
In a high load range, the fuel flow rate is large and therefore the fuel nozzle pressure ratio exceeds the upper limit, so when the fuel flow reaches the appropriate fuel flow rate before reaching the upper limit of the pressure ratio, the flow! The flow rate is controlled at a constant rate using a regulating valve. When the fuel becomes insufficient as the load increases, fuel with a large calorific value is mixed to keep the fuel nozzle pressure ratio within an appropriate range. This means that by mixing fuels with a large calorific value, the fuel increase rate is reduced compared to the case where a single fuel with a small calorific value is burned exclusively.

混合燃料の発熱量が徐々に増加している。)しているた
めである。発熱量の小さい気体燃料を負荷に応じて必要
量を供給する状懐から、一定流量制御に切換える方法と
しては、流量監視による方法。
The calorific value of the mixed fuel is gradually increasing. ). One way to switch from supplying the required amount of gaseous fuel with a small calorific value according to the load to constant flow control is to monitor the flow rate.

燃料ノズル圧力比を監視する方法及びガスタービン負荷
割合を監視する方法があり、いずれの場合、  も、上
限値を設定しておき、この値を越えた時、一定流量制御
に切換える。尚切換点でのハンチングを避ける為、切換
流量には適切なヒステリシスを設ける。以上により、上
記目的は達成される。
There are two methods: monitoring the fuel nozzle pressure ratio and monitoring the gas turbine load ratio. In either case, an upper limit value is set, and when this value is exceeded, the control switches to constant flow rate control. In order to avoid hunting at the switching point, provide appropriate hysteresis for the switching flow rate. Through the above, the above objective is achieved.

〔作用〕[Effect]

ガスタービンパッケージ内f!!器は発熱量の大きい気
体燃料をベースに設計されている為、2W1類の気体燃
料のうち1発熱量の大きい気体燃料に対しては1本燃料
を選択した場合、この燃料供給系統内の遮断弁を全開(
発熱量の小さい燃料供給系統内の遮断弁は全閉)するこ
と釦よって、適正燃料ノズル圧力比範囲内でガスタービ
ンを連続運転することができる。一方1発熱量の小さい
気体燃料を選択した場合は、この燃料供給系統内の遮断
弁を全開(発熱量の大きい燃料供給系統内の遮断弁は全
閉)し、又流を調整弁は全閉(バイパス量ゼロ)シ、ガ
スタービン運転に必要な燃料ガス量をガスタービンに供
給する。ガスタービン低負荷時は燃料流量が小さい為、
燃料ノズル圧力比は適正値となる。ガスタービン高負荷
時には燃料流量が大きくなる為、燃料ノズル圧力比は上
限値を越えてしまうので、燃料流量計にて流量を監視し
、上限値に達した時点で燃料調整弁を作動させ、バイパ
ス看を制御し、一方、発熱量の大きい燃料供給系統内の
遮断弁を全開させる。これにより、低発熱量燃料は一定
流量制御され、一方、高発熱量燃料は圧力調整弁にて一
定圧力制御される。ガスタービン負荷が上昇すると、燃
料供給量が不足し、ガスタービン供給圧力が低下する為
、高発熱量燃料供給系統圧力が低下するが、圧力調整弁
が一定圧力制御する為、弁が開き、不足分の燃料が高発
熱を燃料供給系統からガスタービンへ供給される。
f in the gas turbine package! ! Since the device is designed based on a gaseous fuel with a large calorific value, if one fuel is selected for a gaseous fuel with a large calorific value among the 2W1 type gaseous fuels, a cutoff in this fuel supply system will occur. Fully open the valve (
By fully closing the shutoff valve in the fuel supply system that generates a small amount of heat, the gas turbine can be operated continuously within the appropriate fuel nozzle pressure ratio range. On the other hand, if a gaseous fuel with a small calorific value is selected, the shutoff valve in this fuel supply system is fully opened (the shutoff valve in the fuel supply system with a large calorific value is fully closed), and the flow regulating valve is fully closed. (Bypass amount zero) Supplies the amount of fuel gas necessary for gas turbine operation to the gas turbine. Since the fuel flow rate is small when the gas turbine is under low load,
The fuel nozzle pressure ratio becomes an appropriate value. When the gas turbine is under high load, the fuel flow rate increases and the fuel nozzle pressure ratio exceeds the upper limit. Therefore, the flow rate is monitored with a fuel flow meter, and when the upper limit is reached, the fuel adjustment valve is activated to bypass the At the same time, the shutoff valve in the fuel supply system, which generates a large amount of heat, is fully opened. As a result, the flow rate of the low calorific value fuel is controlled to be constant, while the pressure of the high calorific value fuel is controlled to be constant by the pressure regulating valve. When the gas turbine load increases, the fuel supply amount becomes insufficient and the gas turbine supply pressure decreases, resulting in a decrease in the high calorific value fuel supply system pressure.However, since the pressure regulating valve controls the constant pressure, the valve opens and the shortage occurs. The high heat generated fuel is supplied from the fuel supply system to the gas turbine.

高発熱量燃料を混合して使用する為、低発熱量燃料だけ
を使用した場合と比較して、燃料流量増加割合は小さく
なる。従って燃料ノズル圧力比増加割合も低減され、1
00%負荷時でも適正圧力比を維持することが可能とな
る。
Since a mixture of high calorific value fuels is used, the fuel flow rate increase rate is smaller than when only low calorific value fuels are used. Therefore, the fuel nozzle pressure ratio increase rate is also reduced, and 1
It becomes possible to maintain an appropriate pressure ratio even at 00% load.

〔実施例〕〔Example〕

μ下2本発明の一実施例を第1図によシ説明する。高発
熱量燃料供給系統には、遮断弁11及び圧力調整弁12
が設置され、当該燃料選択時は当該遮断弁11を全開さ
せ、当該燃料はガスタービンへ一定圧力供給される。尚
この時、遮断弁6は全閉させる。ガスタービンに入った
燃料は、従来技術からなる。遮断及び圧力調整弁4、ガ
スタービン制御弁(流量調整弁)3.燃料ノズル2を通
り燃焼器1内へ噴射される。ガスタービン負荷。
An embodiment of the present invention will be explained with reference to FIG. The high calorific value fuel supply system includes a shutoff valve 11 and a pressure regulating valve 12.
is installed, and when the fuel is selected, the shutoff valve 11 is fully opened, and the fuel is supplied to the gas turbine at a constant pressure. At this time, the shutoff valve 6 is fully closed. The fuel entering the gas turbine consists of conventional technology. Shutoff and pressure regulating valve 4, gas turbine control valve (flow regulating valve) 3. The fuel is injected into the combustor 1 through the fuel nozzle 2. Gas turbine load.

速度及び排気温度はガスタービン制御装e5によって制
御され、その制御信号は流を調整弁3へ伝達される。低
発熱量燃料供給系統には、遮断弁6゜圧力調整弁?、f
i量計8.及び流量調整弁9が設置され、当該燃料選択
時は当該遮断弁6を全開(一方、遮断弁11は全閉)さ
せる。ガスタービン低負荷時は、燃料流量が少ない為、
流−を調整弁9け全閉(バイパス量ゼロ)しており、当
該燃料はガスタービンへ一定圧力供給される。この間。
The speed and exhaust temperature are controlled by the gas turbine controller e5, the control signals of which are transmitted to the flow regulating valve 3. The low calorific value fuel supply system has a 6° shutoff valve and pressure regulating valve? , f
i quantity meter8. and a flow rate adjustment valve 9 are installed, and when the fuel is selected, the shutoff valve 6 is fully opened (while the shutoff valve 11 is fully closed). When the gas turbine is under low load, the fuel flow rate is low, so
Nine flow regulating valves are fully closed (zero bypass amount), and the fuel is supplied to the gas turbine at a constant pressure. During this time.

流量は、流量計8で監視され、ガスタービン負荷が増加
し、当該流量が規定値以上に達した時、流量制御装置1
0より一定流量信号が流量調整弁9へ伝達される。この
時、遮断弁11も同時に全開させる。流量調整弁9によ
りバイパス量を調整し、ガスタービンへ流れるa量が一
定流量になるよう制御される。さらにガスタービン負荷
が増加すると、ガスタービンに供給すべき燃料流量は増
加するが、低発熱量燃料は上述の如く、一定流1制御さ
れている為、不足分は、高発熱量燃料供給系統から、圧
力調整弁12の機能により自動的にガスタービンへ供給
される。第2図に低発熱量燃料流量制御装置10の一実
施例を示す。ガスタービン低負荷時は燃料流量が小さい
為、信号切換器11の作用により、弁全閉信号14がi
t調整弁9へ伝達される。ガスタービン負荷増加に伴な
い燃料流量が増加し、流量信号が流量計8から信号切換
器作動回路12へ伝達される。流量信号が規定値に達す
ると信号切換器作動回路12が作動し、信号切換器11
が作動し、弁全閉信号14から一定流量信号13に切換
わり、一定流量信号13が流量調整弁9へ伝達される。
The flow rate is monitored by the flow meter 8, and when the gas turbine load increases and the flow rate reaches a specified value or more, the flow rate control device 1
0, a constant flow rate signal is transmitted to the flow rate regulating valve 9. At this time, the shutoff valve 11 is also fully opened at the same time. The amount of bypass is adjusted by the flow rate regulating valve 9, and the amount of a flowing to the gas turbine is controlled to be a constant flow rate. Furthermore, when the gas turbine load increases, the flow rate of fuel to be supplied to the gas turbine increases, but as the low calorific value fuel is controlled at a constant flow rate of 1 as mentioned above, the shortage is taken from the high calorific value fuel supply system. , is automatically supplied to the gas turbine by the function of the pressure regulating valve 12. FIG. 2 shows an embodiment of the low calorific value fuel flow rate control device 10. Since the fuel flow rate is small when the gas turbine is under low load, the valve fully closed signal 14 is changed to i by the action of the signal switch 11.
It is transmitted to the t adjustment valve 9. As the gas turbine load increases, the fuel flow rate increases, and a flow rate signal is transmitted from the flow meter 8 to the signal switching circuit 12. When the flow rate signal reaches a specified value, the signal switch operating circuit 12 is activated, and the signal switch 11 is activated.
is activated, the valve fully closed signal 14 is switched to the constant flow rate signal 13, and the constant flow rate signal 13 is transmitted to the flow rate regulating valve 9.

尚、一定流量信号13は/JIt計8のフィードバック
量とつき合せされ。
Note that the constant flow rate signal 13 is compared with the feedback amount of the /JIt meter 8.

その差分値により流を調整弁9は制御される。上記制御
によるガスタービン運転状態として、第3図に燃料ノズ
ル圧力比を2又第4図に燃料流量をそれぞれ示す。上記
実施例は、信号切換器作動回路入力を燃料流量とした場
合であるが、変形例として、fS料ノズル出入口圧力比
を入力とした場合の流量制鐸装[10の実施例を@5図
に、又、ガスタービン負荷割合を入力とした場合の流量
制御装置10の実施例を第6図にそれぞれ示す。
The flow regulating valve 9 is controlled by the difference value. As to the operating state of the gas turbine under the above control, FIG. 3 shows the fuel nozzle pressure ratio, and FIG. 4 shows the fuel flow rate. In the above embodiment, the fuel flow rate is used as the signal changer operating circuit input, but as a modification, the flow control system [10 embodiment is shown in Figure 5] where the fS fuel nozzle inlet/outlet pressure ratio is input. FIG. 6 shows an embodiment of the flow rate control device 10 in which the gas turbine load ratio is input.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1発熱量の大きく相違する(10チ以上
)21類の気体燃料を、ガスタービンパッケージ内機a
<e科ノズル、流量調整弁。
According to the present invention, 21 types of gaseous fuels having greatly different calorific values (10 or more) are used in the gas turbine package a
<e class nozzle, flow rate adjustment valve.

遮断及び圧力調整弁)を何ら変更することな〈従来技術
を使用し、連続的に使用でき、かつ、燃料ノズル圧力比
を適正値に維持することができるので、多岐に渡る気体
燃料を使用したいという顧客要求を満足することができ
、ガスタービン市場での優位性を確保することができ、
かつ、燃焼器等の機器の信頼性が飛躍的に向上するとい
う効果がある。
It is possible to use a wide variety of gaseous fuels without making any changes to the shut-off and pressure regulating valves. We are able to satisfy the customer's requirements and secure an advantage in the gas turbine market.
Moreover, there is an effect that the reliability of equipment such as a combustor is dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である2重気体燃料供給系統
図、第2図は第1図に示す燃料供給系統における流量制
御装置を示すブロック図、第3図は第2図に表わした流
量制御装置に基づく負荷に対する燃料ノズル圧力比を示
す特性図、第4図は同じく負荷に対する燃料流量を示す
特性図、第5図は本発明の他の実施例である流量制御装
置を示すブロック図、第6図は本発明の更に他の実施例
である流量制御装置を示すブロック図、第7図及び第9
図は従来技術を示す燃料供給系統図、第8図及び第10
図は第7図及び第9図の装置における負荷に対する燃料
ノズル圧力比を示す特性図、第11図は従来の気体・液
体二重燃料焚ノズルを示す部分断面図である。 6.11・・・遮断弁、7,12・・・圧力調整弁、8
・・・流量計、9・・・流量調整弁、10・・・流量制
御装置、11・・・信号切換器、12・・・信号切換器
作動回路、13・・・一定流量信号、14・・・全閉信
号。
Fig. 1 is a diagram of a dual gas fuel supply system which is an embodiment of the present invention, Fig. 2 is a block diagram showing a flow rate control device in the fuel supply system shown in Fig. 1, and Fig. 3 is shown in Fig. 2. FIG. 4 is a characteristic diagram showing the fuel nozzle pressure ratio with respect to the load based on the flow control device according to the present invention, FIG. 4 is a characteristic diagram showing the fuel flow rate with respect to the load, and FIG. Figures 6 and 6 are block diagrams showing flow rate control devices that are still other embodiments of the present invention, Figures 7 and 9.
The figures are fuel supply system diagrams showing conventional technology, Figures 8 and 10.
The figure is a characteristic diagram showing the fuel nozzle pressure ratio with respect to the load in the apparatuses shown in FIGS. 7 and 9, and FIG. 11 is a partial sectional view showing a conventional gas/liquid dual fuel firing nozzle. 6.11...Shutoff valve, 7,12...Pressure regulating valve, 8
. . . Flow meter, 9 . . Flow rate adjustment valve, 10 . . . Flow rate control device, 11 . ...Fully closed signal.

Claims (1)

【特許請求の範囲】 1、発熱量が相違する2種類の気体燃料を燃焼させるガ
スタービン設備に於いて、2系統の燃料供給系統を設け
、2系統のうち低発熱量を具備する燃料供給系統中に流
量計及び流量調整弁を設け、単一燃料専焼時当該燃料流
量を計測し、規定値以上の流量に達した時、流量調整弁
にて一定流量供給制御させ、不足する燃料分を高発熱量
を具備する燃料供給系統より供給し、混合させることに
より、安定燃焼状態にて単一及び混焼運転できることを
特徴とする二重気体燃料焚ガスタービンの燃料制御装置
。 2、特許請求の範囲第1項記載のうち、低発熱量を具備
する単一燃料専焼時、気体燃料噴射ノズル出入口圧力比
を計測し、規定値以上の圧力比に達した時、流量調整弁
にて一定流量供給制御させることを特徴とする二重燃料
焚ガスタービンの燃料制御装置。 3、特許請求の範囲第1項記載のうち、低発熱量を具備
する単一燃料専焼時、ガスタービン負荷出力を計測し、
規定値以上の出力割合に達した時、流量調整弁にて一定
流量供給制御させることを特徴とする二重燃料焚ガスタ
ービンの燃料制御装置。
[Claims] 1. In gas turbine equipment that burns two types of gaseous fuels with different calorific values, two fuel supply systems are provided, and the fuel supply system has the lower calorific value of the two systems. A flow meter and a flow rate adjustment valve are installed inside to measure the fuel flow rate during single fuel combustion, and when the flow rate reaches a specified value or higher, the flow rate adjustment valve controls the constant flow rate and increases the amount of fuel that is insufficient. A fuel control device for a dual gas fuel-fired gas turbine, characterized in that single and mixed combustion operation can be performed in a stable combustion state by supplying fuel from a fuel supply system having a calorific value and mixing the fuel. 2. Among the claims described in claim 1, when a single fuel with a low calorific value is exclusively fired, the gaseous fuel injection nozzle inlet and outlet pressure ratio is measured, and when the pressure ratio reaches a specified value or more, the flow rate regulating valve A fuel control device for a dual fuel-fired gas turbine, characterized in that a constant flow rate is controlled at a constant flow rate. 3. Among the claims described in claim 1, measuring the gas turbine load output during single fuel combustion with a low calorific value,
A fuel control device for a dual fuel-fired gas turbine, characterized in that when an output ratio exceeding a specified value is reached, a constant flow rate is controlled by a flow rate regulating valve.
JP5920986A 1986-03-19 1986-03-19 Dual gas fuel fired gas turbine fuel control system Expired - Lifetime JPH063148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5920986A JPH063148B2 (en) 1986-03-19 1986-03-19 Dual gas fuel fired gas turbine fuel control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5920986A JPH063148B2 (en) 1986-03-19 1986-03-19 Dual gas fuel fired gas turbine fuel control system

Publications (2)

Publication Number Publication Date
JPS62218628A true JPS62218628A (en) 1987-09-26
JPH063148B2 JPH063148B2 (en) 1994-01-12

Family

ID=13106785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5920986A Expired - Lifetime JPH063148B2 (en) 1986-03-19 1986-03-19 Dual gas fuel fired gas turbine fuel control system

Country Status (1)

Country Link
JP (1) JPH063148B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210200A (en) * 2008-03-05 2009-09-17 Hitachi Ltd Combustor and fuel supply method for combustor
JP2009270572A (en) * 2008-05-05 2009-11-19 General Electric Co <Ge> Single manifold dual gas turbine fuel system
JP2010159742A (en) * 2009-01-07 2010-07-22 General Electric Co <Ge> Method and apparatus for controlling heating value of low energy fuel
JP2011247252A (en) * 2010-05-25 2011-12-08 General Electric Co <Ge> System for fuel and diluent control
JP2013060946A (en) * 2011-08-24 2013-04-04 Mitsubishi Heavy Ind Ltd Gas turbine plant, control apparatus therefor, and control method therefor
JP2013076510A (en) * 2011-09-30 2013-04-25 Miura Co Ltd Gas supplying apparatus and combustion system
WO2024084922A1 (en) * 2022-10-17 2024-04-25 三菱重工業株式会社 Gas turbine control device, gas turbine control method, and gas turbine control program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545289B2 (en) * 2000-06-27 2010-09-15 新日本石油化学株式会社 Fuel supply facility for gas turbine and supply method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210200A (en) * 2008-03-05 2009-09-17 Hitachi Ltd Combustor and fuel supply method for combustor
US8261529B2 (en) 2008-03-05 2012-09-11 Hitachi, Ltd. Gas turbine combustor and gaseous fuel supply method for gas turbine combustor
EP2098785A3 (en) * 2008-03-05 2016-05-11 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and gaseous fuel supply method for gas turbine combustor
JP2009270572A (en) * 2008-05-05 2009-11-19 General Electric Co <Ge> Single manifold dual gas turbine fuel system
JP2010159742A (en) * 2009-01-07 2010-07-22 General Electric Co <Ge> Method and apparatus for controlling heating value of low energy fuel
JP2011247252A (en) * 2010-05-25 2011-12-08 General Electric Co <Ge> System for fuel and diluent control
JP2013060946A (en) * 2011-08-24 2013-04-04 Mitsubishi Heavy Ind Ltd Gas turbine plant, control apparatus therefor, and control method therefor
JP2013076510A (en) * 2011-09-30 2013-04-25 Miura Co Ltd Gas supplying apparatus and combustion system
WO2024084922A1 (en) * 2022-10-17 2024-04-25 三菱重工業株式会社 Gas turbine control device, gas turbine control method, and gas turbine control program

Also Published As

Publication number Publication date
JPH063148B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JP3502171B2 (en) Gas turbine control method
JP4331406B2 (en) Burner operation method and burner apparatus
JPS61241425A (en) Fuel gas controlling method of gas turbine and controller
WO1988008075A1 (en) Wide range gaseous fuel combustion system for gas turbine engines
JPH02291433A (en) Integrally formed boost compressor/gas turbine control device
US5806299A (en) Process and apparatus for quickly switching over from premix combustion to diffusion combustion in a gas turbine
JPS62218628A (en) Fuel control device for double gas fuel combustion turbine
GB2114778A (en) Methods of and apparatus for controlling the residual oxygen content of waste gases of blower- type firing installations
JP3836604B2 (en) Gas turbine fuel gas decompression and heating system
JPS62174539A (en) Gas turbine controller
JPS597722A (en) Catalytic combustor of gas turbine
JPH10212976A (en) Gas turbine combustor
EP4102134A1 (en) Method for controlling the operation of a gas boiler
JPS61255225A (en) Control system for fuel gas in gas turbine
JPS6113531B2 (en)
JPS5671714A (en) Combustion controlling apparatus
JPH07166891A (en) Gas turbine control device
JPH0133962Y2 (en)
JPS60192837A (en) Double fuel oil system for gas turbine
JPH041259B2 (en)
JPS6226366A (en) Fuel oil feeding device
JP2537782B2 (en) Combustion device
JPH08247550A (en) Hot water-supply heater
JP3605138B2 (en) Ignition switching method for gas turbine device
JPH11117769A (en) Fuel oil control device for gas turbine oil combustion chamber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term