JPH025367A - Combustion control device of catalytic burner for fuel cell - Google Patents

Combustion control device of catalytic burner for fuel cell

Info

Publication number
JPH025367A
JPH025367A JP63155582A JP15558288A JPH025367A JP H025367 A JPH025367 A JP H025367A JP 63155582 A JP63155582 A JP 63155582A JP 15558288 A JP15558288 A JP 15558288A JP H025367 A JPH025367 A JP H025367A
Authority
JP
Japan
Prior art keywords
gas
combustion
temperature
exhaust
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63155582A
Other languages
Japanese (ja)
Other versions
JP2533616B2 (en
Inventor
Isamu Osawa
勇 大澤
Atsushi Nishihara
淳 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP63155582A priority Critical patent/JP2533616B2/en
Publication of JPH025367A publication Critical patent/JPH025367A/en
Application granted granted Critical
Publication of JP2533616B2 publication Critical patent/JP2533616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To lengthen the life of combustion catalyst by controlling the flow of exhaust fuel gas such that a part of exhaust fuel gas is led to the first gas chamber and the remaining thereof, to the second gas chamber through a main supply line equipped with a flow control valve and the first combustion catalyst is not overheated. CONSTITUTION:A supply line 12 of exhaust fuel gas is constituted of a main supply line 22 connected to the first gas chamber 2 at the first combustion step 4 and a sub-supply line 23 branched from the main supply line 22 and connected to the second gas chamber 5 at the second combustion step 7, and the main line 22 is equipped with a flow control valve 24 to control the flow of fuel gas and the second gas chamber 5 is equipped with a sensor 25 to detect gas temperature, and further, a combustion catalyst layer 3 at the first combustion step 4 is equipped with a temperature setter 27 so as to prevent overheating, and the opening of the flow control valve 24 is controlled by an output signal given from the setter 27 and a detection signal given from the temperature sensor 25, and an adjuster 28 is provided so that the combustion gas temperature of the second gas chamber becomes a set temperature. Even if a load rapidly decreases, the temperature of the gas chamber 5 is controlled to a set temperature so that the combustion catalyst layer 3 having a poor durability at a high temperature becomes free from deterioration, and its life is lengthened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池から排出される排燃料ガスを排酸化
剤ガスにより燃焼触媒層で燃焼させて高温の燃焼ガスを
得る燃料電池用触媒燃焼器の燃焼制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a fuel cell catalyst for producing high-temperature combustion gas by burning exhaust fuel gas discharged from a fuel cell in a combustion catalyst layer using an exhaust oxidant gas. The present invention relates to a combustion control device for a combustor.

〔従来の技術〕[Conventional technology]

燃料電池は、燃料電極に水素を含有する燃料ガスを、ま
た酸化剤電極に酸素を含む空気のような酸化剤ガスを供
給することにより電池反応を行わせて発電するものであ
るが、この際燃料電極と酸化剤電極とから電池反応に寄
与しない未反応の水素と酸素とをそれぞれ含む排燃料ガ
スと排酸化剤ガスとが排出される。この排燃料ガスを排
酸化剤ガスにより燃焼して高温の燃焼ガスを得、この燃
焼ガスは燃料ガスとして水素に冨む改質ガスを製造する
燃料改質器における改質反応時に熱を与える熱媒体とし
て使用される。この場合、排燃料ガスを燃焼して高温の
燃焼ガスを得る方法として燃焼触媒層の触媒の下に燃焼
させる燃焼側?I装置を備えた触媒燃焼器が知られてい
る。
A fuel cell generates electricity by causing a cell reaction by supplying a fuel gas containing hydrogen to a fuel electrode and an oxidizing gas such as air containing oxygen to an oxidizing electrode. Exhaust fuel gas and exhaust oxidant gas containing unreacted hydrogen and oxygen, which do not contribute to the cell reaction, are discharged from the fuel electrode and the oxidizer electrode, respectively. This exhaust fuel gas is combusted with exhaust oxidant gas to obtain high-temperature combustion gas, and this combustion gas is used as fuel gas to produce heat during the reforming reaction in the fuel reformer that produces hydrogen-rich reformed gas. used as a medium. In this case, is there a way to obtain high-temperature combustion gas by burning the exhaust fuel gas under the catalyst in the combustion catalyst layer? Catalytic combustors with I devices are known.

第3図は従来の燃焼制御装置を備えた触媒燃焼器の系統
図である0図において、触媒燃焼器1は燃料と酸化剤と
が導かれる第1のガス室2と、ガス室2に取付けられる
燃料を酸化剤により触媒の下に燃焼させる燃焼触媒層3
とからなる第1の燃焼段4と、これに続いて燃料が燃焼
されるガス室5と燃焼触媒層6とからなる燃焼段7と、
さらにこれに続いて燃料が燃焼されるガス室8と燃焼触
媒層9とからなる燃焼段10とからなっている。
FIG. 3 is a system diagram of a catalytic combustor equipped with a conventional combustion control device. In FIG. A combustion catalyst layer 3 that burns the fuel under the catalyst using an oxidizer.
A first combustion stage 4 consisting of a first combustion stage 4, followed by a combustion stage 7 consisting of a gas chamber 5 in which fuel is combusted and a combustion catalyst layer 6,
Furthermore, following this, there is a combustion stage 10 consisting of a gas chamber 8 in which fuel is combusted and a combustion catalyst layer 9.

燃焼段4の燃焼触媒層3は高温耐久性は劣るが低温着火
性の良い、例えば白金系からなる触媒から形成され、次
段の燃焼段7の燃焼触媒層6と最終段の燃焼段10の燃
焼触媒層・9は、いずれも低温着火性は劣るが高温耐久
性の良い触媒、例えばパラジウム系からなる触媒から形
成されている。
The combustion catalyst layer 3 of the combustion stage 4 is formed from a catalyst made of, for example, platinum, which has poor high-temperature durability but good low-temperature ignitability. The combustion catalyst layer 9 is formed of a catalyst that has poor low-temperature ignitability but good high-temperature durability, such as a palladium-based catalyst.

11は最終の燃焼段の燃焼触媒層9で完全燃焼した高温
の燃焼ガスを導く燃焼室であり、例えば燃料改質器を構
成する炉容器内の燃焼室に相当する。
Reference numeral 11 denotes a combustion chamber that guides high-temperature combustion gas that has been completely combusted in the combustion catalyst layer 9 of the final combustion stage, and corresponds to, for example, a combustion chamber in a furnace vessel constituting a fuel reformer.

排燃料ガス供給系統12は図示しない燃料電池とガス室
2とを接続して設けられ、燃料電池の燃料電橋から排出
される未反応水素を含む排燃料ガスをガス室2に導いて
いる。また排酸化剤ガス供給系統13は三方流量制御弁
14を備えて燃料電池とガス室2とを接続して設けられ
、燃料電池の酸化剤電極から排出される未反応酸素を含
む排酸化剤ガスをガス室2に導いている。
The exhaust fuel gas supply system 12 is provided to connect a fuel cell (not shown) and the gas chamber 2, and guides exhaust fuel gas containing unreacted hydrogen discharged from the fuel bridge of the fuel cell to the gas chamber 2. Further, the exhaust oxidant gas supply system 13 is provided with a three-way flow control valve 14 and is provided to connect the fuel cell and the gas chamber 2, and the exhaust oxidant gas containing unreacted oxygen is discharged from the oxidizer electrode of the fuel cell. is led to gas chamber 2.

燃焼室11には燃焼触媒層9からの完全燃焼ガスの温度
を検出する温度センサ15が設けられている。
A temperature sensor 15 is provided in the combustion chamber 11 to detect the temperature of the completely combusted gas from the combustion catalyst layer 9.

16は燃焼室11の完全燃焼する燃焼ガスの温度を設定
する温度設定器である。!J1節器17は温度設定器1
6からの設定温度と温度センサ15からの検出温度との
偏差により三方流量制御弁14の開度を11mL。
Reference numeral 16 denotes a temperature setting device for setting the temperature of combustion gas to be completely combusted in the combustion chamber 11. ! J1 controller 17 is temperature setting device 1
The opening degree of the three-way flow control valve 14 is set to 11 mL based on the deviation between the set temperature from 6 and the temperature detected from the temperature sensor 15.

て排酸化剤ガスの流量を制御する。to control the flow rate of the exhaust oxidant gas.

このような構成により燃料電池からその負荷、すなわち
電池出力に対応して排出される排燃料ガスは排燃料ガス
供給系統12を経てガス室2に、また排酸化剤ガスは排
酸化剤ガス系統13を経てガス室2に供給され、排燃料
ガスは排酸化剤ガスにより燃料触媒層3で低温でも着火
して燃焼し、続いて燃焼段7の第2のガス室5を経て燃
焼触媒層6で燃焼が持続され、さらに続いて燃焼段10
のガス室8を経て燃焼触媒層9で燃焼され、燃焼ガスは
燃焼室11に排出される。この際、温度センサ15によ
り検出された燃焼室11の温度の出力信号と温度設定器
16で設定した設定温度の出力信号とは調節器17に入
力されてその偏差信号により三方流量制御弁14の開度
を調節し、排燃料ガスが設定温度で完全燃焼するように
ガス室2に供給する排酸化剤ガスの流量を制御している
。このようにして最終燃焼段の燃焼触媒層9から高温の
完全燃焼ガスが燃焼室11に排出される。なお三方流量
制御弁14により制御されて第1のガス室2に流れる流
量以外の余分の排酸化剤ガスは三方流量制御弁14の他
の弁口より管路18を経て外部に排出される。
With this configuration, the exhaust fuel gas discharged from the fuel cell corresponding to its load, that is, the cell output, passes through the exhaust gas supply system 12 to the gas chamber 2, and the exhaust oxidant gas is discharged from the exhaust oxidant gas system 13. The exhaust fuel gas is ignited and combusted in the fuel catalyst layer 3 by the exhaust oxidant gas even at low temperatures, and then passes through the second gas chamber 5 of the combustion stage 7 to the combustion catalyst layer 6. Combustion is sustained, followed by combustion stage 10
The combustion gas passes through the gas chamber 8 and is combusted in the combustion catalyst layer 9, and the combustion gas is discharged into the combustion chamber 11. At this time, the output signal of the temperature of the combustion chamber 11 detected by the temperature sensor 15 and the output signal of the set temperature set by the temperature setting device 16 are input to the regulator 17, and the difference signal is used to control the three-way flow control valve 14. The opening degree is adjusted to control the flow rate of the exhaust oxidant gas supplied to the gas chamber 2 so that the exhaust fuel gas is completely combusted at a set temperature. In this way, high-temperature complete combustion gas is discharged from the combustion catalyst layer 9 of the final combustion stage into the combustion chamber 11. Note that the excess exhaust oxidant gas other than the flow rate controlled by the three-way flow control valve 14 and flowing into the first gas chamber 2 is discharged to the outside through the pipe line 18 from another valve port of the three-way flow control valve 14.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

排燃料ガス中の水素量および排酸化剤ガス中の酸素量は
燃料電池に接続されている負荷、すなわち電池出力に左
右されるため、負荷が変動した場合、例えば負荷が増加
した場合、燃料電池で消費される水素量と酸素量が増加
するので、排燃料ガス中の水素量と排酸化剤ガス中の酸
素量が低下し、また負荷が減小した時には前述と逆の理
由で排燃料ガス中の水素量と排酸化剤ガス中の酸素量と
は増加する。し7たがって、負荷変動時、燃焼ガスの温
度を温度センサ15により検出して三方流量制御弁14
により排酸化剤ガスの流量を制御して触媒燃焼器に送り
、完全燃焼する設定温度に制御しても、負荷減小時には
各燃焼段の燃焼触媒層の温度が、定常負荷時の正常な温
度よりずれ、過熱される燃焼触媒層が生じるという問題
がある。
The amount of hydrogen in the exhaust fuel gas and the amount of oxygen in the exhaust oxidant gas depend on the load connected to the fuel cell, that is, the cell output, so if the load changes, for example if the load increases, the fuel cell As the amount of hydrogen and oxygen consumed in The amount of hydrogen in the gas and the amount of oxygen in the exhaust oxidant gas increase. Therefore, when the load fluctuates, the temperature of the combustion gas is detected by the temperature sensor 15 and the three-way flow control valve 14
Even if the flow rate of the exhaust oxidant gas is controlled and sent to the catalytic combustor to the set temperature for complete combustion, the temperature of the combustion catalyst layer of each combustion stage will be lower than the normal temperature under steady load when the load is reduced. There is a problem with the combustion catalyst layer becoming misaligned and becoming overheated.

第4図は燃料電池からの排燃料ガスと排酸化剤ガスを触
媒燃焼器lに送って各燃焼段の燃焼触媒層3,6.9で
排燃料ガスを燃焼した時の各燃焼段のガス室と燃焼触媒
層との温度分布を示すグラフであり、縦軸にガス室と燃
焼触媒層の位買を示し、横軸にガス室、燃焼触媒層の温
度をとって示している0図において破線30は燃料電池
の負荷が安定している時、また負荷が急増した場合の温
度分布、一方案!31は負荷が急減した時の温度分布で
あり、tl+ tt+ L 31 t4はそれぞれガス
室2ガス室5.ガス室8.燃焼室11の温度を示してい
る0図から負荷急減時ガス室5の温度1tが実線のよう
に上昇している、すなわち燃焼触媒層3の温度が上昇し
ていることが理解される。
Figure 4 shows the gases in each combustion stage when the exhaust fuel gas and exhaust oxidant gas from the fuel cell are sent to the catalytic combustor l and the exhaust fuel gas is combusted in the combustion catalyst layers 3 and 6.9 of each combustion stage. This is a graph showing the temperature distribution between the chamber and the combustion catalyst layer, where the vertical axis shows the position of the gas chamber and the combustion catalyst layer, and the horizontal axis shows the temperature of the gas chamber and the combustion catalyst layer. The broken line 30 shows the temperature distribution when the load on the fuel cell is stable and when the load suddenly increases. 31 is the temperature distribution when the load suddenly decreases, and tl+ tt+ L 31 t4 are respectively gas chamber 2 and gas chamber 5. Gas chamber8. It can be seen from Figure 0, which shows the temperature of the combustion chamber 11, that the temperature 1t of the gas chamber 5 increases as shown by the solid line when the load suddenly decreases, that is, the temperature of the combustion catalyst layer 3 increases.

ところで燃焼触媒層3は着火性は良いが高温耐久性が劣
るので、上記のように負荷の急減時における温度上昇は
燃焼触媒層3を劣化させるという問題がある。
By the way, the combustion catalyst layer 3 has good ignitability but poor high-temperature durability, so there is a problem that the temperature increase when the load suddenly decreases as described above deteriorates the combustion catalyst layer 3.

本発明の目的は、燃料電池からの排燃料ガスと排酸化剤
ガスを複数段の燃焼触媒層で燃焼させる際、燃料電池の
負荷変動時、特に負荷の急減時燃焼触媒層を過熱しない
燃料電池用触媒燃焼器の燃焼制御装置を提供することで
ある。
An object of the present invention is to provide a fuel cell that does not overheat the combustion catalyst layer when the load of the fuel cell fluctuates, especially when the load suddenly decreases, when exhaust fuel gas and exhaust oxidant gas from a fuel cell are combusted in multiple stages of combustion catalyst layers. An object of the present invention is to provide a combustion control device for a catalytic combustor.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば画成された
ガス室と、このガス室に導かれる燃料と酸化剤とにより
燃焼が行われる燃焼触媒層とからなる燃焼段を複数段直
列に取付けてなる触媒燃焼器であって、燃料電池から排
出される排燃料ガスを排燃料ガスの供給系統を経てガス
室に導き、−方排酸化剤ガスを排酸化剤ガスの供給系統
を経て触媒燃焼器の端部にある第1の燃焼段の第1のガ
ス室に導いて各燃焼段に導き、排燃料ガスを燃焼触媒層
で燃焼させ、最終段の燃焼段から出る燃焼ガスの温度が
あらかじめ設定された温度になるように徘酸化剤ガスの
触媒燃焼器への供給流量を制御する燃料電池用触媒燃焼
器の燃焼制御vL1において、前記排燃料ガスの供給系
統を燃料電池から第1の燃焼段の第1のガス室に接続す
る主供給系統と第1の燃焼段に続く第2の燃焼段の第2
のガス室に接続する副供給系統とで構成し、主供給系統
に排燃料ガスの流量を制御する排燃料ガス流量制御弁を
設け、さらに第2のガス室にこのガス室のガス温度を検
出する温度センサを設け、このセンサの検出温度が第1
の燃焼段の燃焼触媒層での排燃料ガスの燃焼によりこの
燃焼触媒層を過熱しないあらかじめ設定された温度にな
るように排燃料ガス流量制御弁の開度を制御する制御手
段を設けるものとする。
In order to solve the above problems, according to the present invention, a plurality of combustion stages each consisting of a defined gas chamber and a combustion catalyst layer in which combustion is performed by fuel and oxidizer introduced into the gas chamber are arranged in series. A catalytic combustor is equipped with a catalytic combustor, in which the exhaust fuel gas discharged from the fuel cell is guided to the gas chamber via the exhaust fuel gas supply system, and the exhaust oxidant gas is passed through the exhaust oxidant gas supply system to the catalyst. The exhaust fuel gas is introduced into the first gas chamber of the first combustion stage at the end of the combustor and guided to each combustion stage, where it is combusted in the combustion catalyst layer, and the temperature of the combustion gas exiting from the final combustion stage increases. In combustion control vL1 of a catalytic combustor for a fuel cell, which controls the flow rate of wandering oxidant gas supplied to the catalytic combustor so as to reach a preset temperature, the exhaust fuel gas supply system is connected from the fuel cell to the first The main supply system connecting to the first gas chamber of the combustion stage and the second gas chamber of the second combustion stage following the first combustion stage.
The main supply system is equipped with an exhaust fuel gas flow control valve that controls the flow rate of exhaust fuel gas, and the second gas chamber detects the gas temperature of this gas chamber. A temperature sensor is provided, and the temperature detected by this sensor is the first temperature sensor.
Control means shall be provided to control the opening degree of the exhaust gas flow rate control valve so that the combustion of the exhaust gas in the combustion catalyst layer of the combustion stage reaches a preset temperature that does not overheat the combustion catalyst layer. .

〔作用〕[Effect]

燃料電池から排出される排燃料ガスはその一部が排燃料
ガス流量制御弁を備えた主供給系統により第1の燃焼段
の第1のガス室に、またその残りが副供給系統により第
2の燃焼段の第2のガス室に導かれてその全量が触媒燃
焼器に流入して燃焼する。この際燃焼に与7/る触媒燃
焼器に流入する排酸化剖ガスの流量は排燃料ガスが触媒
燃焼器にて完全燃焼してこの触媒燃焼器から出る燃焼ガ
ス温度が設定温度になるように制御される。この場合、
第1のガス室に導かれる排燃料ガスは、第1の燃焼段の
燃焼触媒層で燃料電池からの前記流量制御されて流入す
る排酸化剤ガスにより燃焼する際生じる燃焼ガスの温度
、すなわち第2のガス室に設けられた温度センサによる
検出温度が第1の燃焼段の燃焼触媒層を燃焼により過熱
しないあらかじめ設定された温度になるように、制御手
段により制御される排燃料ガス流量制御弁の開度により
その流量が制御されて過剰空気燃焼する。そして第2の
ガス室に流入する排燃料ガスは第2の燃焼段以降の燃焼
触媒層で前記流量制御された排酸化剤ガスにより完全燃
焼して触媒燃焼器から高温の燃焼ガスが送出される。
A part of the exhaust fuel gas discharged from the fuel cell is sent to the first gas chamber of the first combustion stage through a main supply system equipped with an exhaust gas flow rate control valve, and the remainder is sent to the second gas chamber through a sub-supply system. The entire amount flows into the catalytic combustor and is combusted. At this time, the flow rate of the exhaust gas flowing into the catalytic combustor, which contributes to combustion, is adjusted so that the exhaust gas is completely combusted in the catalytic combustor and the temperature of the combustion gas exiting from the catalytic combustor reaches the set temperature. controlled. in this case,
The exhaust fuel gas introduced into the first gas chamber is combusted in the combustion catalyst layer of the first combustion stage by the exhaust oxidant gas flowing in while the flow rate is controlled from the fuel cell. an exhaust fuel gas flow rate control valve controlled by a control means so that the temperature detected by the temperature sensor provided in the second gas chamber is a preset temperature that does not overheat the combustion catalyst layer of the first combustion stage due to combustion; The flow rate is controlled by the opening degree of the cylinder, and excess air is combusted. Then, the exhaust fuel gas flowing into the second gas chamber is completely combusted by the exhaust oxidant gas whose flow rate is controlled in the combustion catalyst layer after the second combustion stage, and high-temperature combustion gas is sent out from the catalytic combustor. .

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による燃焼制御装置を備えた燃
料電池用触媒燃焼器の系統図である。なお、第1図にお
いて第3図の従来例と同一部品には同じ符号を付し、そ
の説明を省略する。
FIG. 1 is a system diagram of a catalytic combustor for a fuel cell equipped with a combustion control device according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 3 are given the same reference numerals, and their explanations will be omitted.

図において従来例と異なるのは燃料電池からの排燃料ガ
スの供給系統12を第1の燃焼段4の第1のガス室2に
接続する主供給系統22とこの主供給系統22から分岐
して第2の燃焼段7の第2のガス室力゛べ ←流量制御弁24を、また第2のガス室5にこのガス室
内のガス温度を検出する温度センサ25を設け、さらに
第1の燃焼段4の燃焼触媒113で排燃料ガスが燃焼触
媒層3を過熱しないように燃焼する温度をあらかじめ設
定する温度設定器27を設け、この温度設定器27から
の出力信号と温度センサ25からの検出温度信号とが入
力され、この偏差信号により排燃料ガス流量制御弁24
の開度を制御して第2のガス室の燃焼ガス温度が温度設
定器27の設定温度になるように制御する調節器28を
設けたごとである。
What is different from the conventional example in the figure is a main supply system 22 that connects the exhaust fuel gas supply system 12 from the fuel cell to the first gas chamber 2 of the first combustion stage 4, and a main supply system 22 that is branched from this main supply system 22. The second combustion stage 7 is provided with a second gas chamber power valve ←flow control valve 24, and the second gas chamber 5 is provided with a temperature sensor 25 for detecting the gas temperature in this gas chamber. A temperature setting device 27 is provided to set in advance the temperature at which exhaust fuel gas burns in the combustion catalyst 113 of stage 4 so as not to overheat the combustion catalyst layer 3, and an output signal from this temperature setting device 27 and a detection from the temperature sensor 25 are provided. A temperature signal is input, and this deviation signal causes the exhaust fuel gas flow rate control valve 24 to be
A regulator 28 is provided to control the opening degree of the combustion gas chamber so that the temperature of the combustion gas in the second gas chamber becomes the set temperature of the temperature setting device 27.

このような構成により燃料電池からその電池出力に見合
う排燃料ガスはその全量の一部が主供給系統22を経て
ガス室2に流入し、残りは副供給系統23を経てガス室
5に流入する。一方排酸化剤ガスは前述のように温度セ
ンサ15.温度設定器16゜!J1節器17を介して排
燃料ガスが燃焼触媒層で燃焼して燃焼触媒層9から排出
される完全燃焼する燃焼ガスの温度があらかじめ設定さ
れた温度に制御されるようにその流量が制御されてガス
室2に流入する。このように流入する排燃料ガスと排酸
化剤ガスとにより触媒燃焼器で下記のように燃焼が行わ
れる。
With this configuration, a part of the total amount of exhaust fuel gas corresponding to the cell output from the fuel cell flows into the gas chamber 2 via the main supply system 22, and the rest flows into the gas chamber 5 via the sub-supply system 23. . On the other hand, the exhaust oxidant gas is detected by the temperature sensor 15 as described above. Temperature setting device 16°! The flow rate of the exhaust fuel gas is controlled via the J1 moderator 17 so that the temperature of the completely combusted combustion gas discharged from the combustion catalyst layer 9 after being combusted in the combustion catalyst layer is controlled to a preset temperature. and flows into the gas chamber 2. Combustion is performed in the catalytic combustor with the exhaust fuel gas and exhaust oxidant gas flowing in as described below.

ガス室2に流入した排燃料ガスは、上記の流量制御され
た徘酸化剤ガスにより燃焼触媒層3で過剰空気燃焼する
燃焼ガス温度が温度設定器27で設定された燃焼触媒層
3を過熱しない温度になるように、調節a28からの温
度センサ25の検出温度と温度設定器27の設定温度と
の偏差信号により制御される排燃料ガス流量制御弁24
の開度によりその一流量が制御されて燃焼する。その燃
焼は燃焼ガスが燃焼触媒層3を過熱しない低い温度で行
われるため、非常に大きな空気過剰率の下で行われる過
剰空気燃焼となるが、触媒を使用しての燃焼であるため
失火するようなことはない。
Exhaust fuel gas that has flowed into the gas chamber 2 does not overheat the combustion catalyst layer 3 whose combustion gas temperature is set by the temperature setting device 27 due to the above-mentioned flow rate-controlled wandering oxidant gas. The exhaust fuel gas flow rate control valve 24 is controlled by a deviation signal between the temperature detected by the temperature sensor 25 and the set temperature of the temperature setting device 27 from the adjustment a28 so that the temperature
The amount of flow is controlled by the opening degree of the combustion chamber. The combustion is performed at a low temperature where the combustion gas does not overheat the combustion catalyst layer 3, resulting in excess air combustion performed under a very large excess air ratio, but since the combustion uses a catalyst, misfires occur. There is no such thing.

ガス室5に流入した排燃料ガスは燃焼触媒層6゜9で温
度設定器7で完全燃焼するあらかじめ設定された温度に
なるように前記流量制御された徘酸化剤ガスにより完全
燃焼し、燃焼触媒層9から高温の燃焼ガスが排出されて
燃焼室11に供給される。
The exhaust fuel gas that has flowed into the gas chamber 5 is completely combusted by the wandering oxidant gas whose flow rate is controlled so that the combustion catalyst layer 6°9 reaches a preset temperature for complete combustion by the temperature setting device 7. High temperature combustion gas is discharged from layer 9 and supplied to combustion chamber 11 .

このような燃焼制御方法により燃料電池の負荷が急凍し
た場合の触媒燃焼器1のガス室2,5゜8、燃焼触媒層
3.6.9および燃焼室11の温度は、第4図と同じ要
領で示した第2図の実線32で示す温度分布となり、燃
料電池の負荷が急減してもガス室5の温度は設定温度に
制御されるので、燃焼触媒層3は従来のように高温にな
らない、したがって低温着火性がよいが、高温耐久性の
劣る燃焼触媒層3の劣化が少なくなり、寿命が長くなる
The temperatures of the gas chamber 2,5°8, the combustion catalyst layer 3,6,9 and the combustion chamber 11 of the catalytic combustor 1 when the load of the fuel cell is suddenly frozen by such a combustion control method are as shown in Fig. 4. In the same way, the temperature distribution becomes as shown by the solid line 32 in FIG. Therefore, the combustion catalyst layer 3, which has good low-temperature ignitability but poor high-temperature durability, is less likely to deteriorate and has a longer life.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば燃料電
池からの排燃料ガスをその一部は流量制御弁を備えた主
供給系統により第1の燃焼段の第1のガス室へ、残りは
副供給系統により第2の燃焼段の第2のガス室へ導き、
第1のガス室へ流入する排燃料ガスの流量を第1の燃焼
段の燃焼触媒層での過剰空気燃焼による燃焼ガスの1度
が第1の燃焼段の燃焼触媒層を過熱しないあらかじめ設
定された温度になるように制御したことにより、触媒燃
焼器から高温の燃焼ガスが得られるとともに燃料電池の
負荷の急減があった場合でも第1の燃焼段の燃焼触媒層
は高温にならないので、複数段の燃焼段からなる燃焼触
媒層の特定の燃焼触媒層の異常な温度上昇がなくなり、
このため燃焼触媒層の劣化が少なくなり、寿命が長くな
るという効果がある。
As is clear from the above description, according to the present invention, part of the exhaust fuel gas from the fuel cell is supplied to the first gas chamber of the first combustion stage through a main supply system equipped with a flow rate control valve, and the remaining part is supplied to the first gas chamber of the first combustion stage. is led to the second gas chamber of the second combustion stage by a sub-supply system,
The flow rate of the exhaust fuel gas flowing into the first gas chamber is set in advance so that the degree of combustion gas due to excess air combustion in the combustion catalyst layer of the first combustion stage does not overheat the combustion catalyst layer of the first combustion stage. By controlling the temperature to a certain temperature, high-temperature combustion gas can be obtained from the catalytic combustor, and even if there is a sudden decrease in the load on the fuel cell, the combustion catalyst layer in the first combustion stage will not reach a high temperature. Abnormal temperature rise in a specific combustion catalyst layer of the combustion catalyst layer consisting of multiple combustion stages is eliminated.
This has the effect of reducing deterioration of the combustion catalyst layer and lengthening its life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による燃焼器m装置を備えた燃
料電池用触媒燃焼器の系統図、第2図は第1図の触媒燃
焼器の燃焼時の温度分布を示すグ、iL:;(−−II
I)j−ドJ1−一ノラフ  3図は従来の燃焼制御装
置を備えた燃料1:触媒燃焼器、2=第1のガス室、3
.69:燃焼触媒層、4:第1の燃焼段、5:第2のガ
ス室、7:第2の燃焼段、8:ガス室、lO:燃境膜、
11:燃焼室、12:排燃料ガス供給系統、13:排酸
化剤ガス供給系統、22:主供給系統、23:副供給系
統、24:排燃料ガス流量制御弁、25:温度センサ、
27:温度設定器、2日:調節器。 □を温度 第4図 第 図
Fig. 1 is a system diagram of a catalytic combustor for a fuel cell equipped with a combustor m device according to an embodiment of the present invention, and Fig. 2 shows the temperature distribution during combustion of the catalytic combustor of Fig. 1. ;(--II
I) J-Do J1-1 Noraf 3 Figure 3 shows a fuel equipped with a conventional combustion control device 1: catalytic combustor, 2 = first gas chamber, 3
.. 69: Combustion catalyst layer, 4: First combustion stage, 5: Second gas chamber, 7: Second combustion stage, 8: Gas chamber, lO: Combustion film,
11: Combustion chamber, 12: Exhaust fuel gas supply system, 13: Exhaust oxidant gas supply system, 22: Main supply system, 23: Sub supply system, 24: Exhaust fuel gas flow rate control valve, 25: Temperature sensor,
27: Temperature setter, 2nd: Adjuster. □ Temperature Figure 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)画成されたガス室と、このガス室に導かれる燃料と
酸化剤とにより燃焼が行われる燃焼触媒層とからなる燃
焼段を複数段直列に取付けてなる触媒燃焼器であって、
燃料電池から排出される排燃料ガスを排燃料ガスの供給
系統を経てガス室に導き、一方排酸化剤ガスを排酸化剤
ガスの供給系統を経て触媒燃焼器の端部にある第1の燃
焼段の第1のガス室に導いて各燃焼段に導き、排燃料ガ
スを燃焼触媒層で燃焼させ、最終段の燃焼段から出る燃
焼ガスの温度があらかじめ設定された温度になるように
排酸化剤ガスの触媒燃焼器への供給流量を制御する燃料
電池用触媒燃焼器の燃焼制御装置において、前記排燃料
ガス供給系統を燃料電池から第1のガス室に接続する主
供給系統と第1の燃焼段に続く第2の燃焼段の第2のガ
ス室に接続する副供給系統とで構成し、主供給系統に排
燃料ガスの流量を制御する排燃料ガス流量制御弁を設け
、さらに第2のガス室にこのガス室のガス温度を検出す
る温度センサを設け、このセンサの検出温度が第1の燃
焼段の燃焼触媒層での排燃料ガスの燃焼によりこの燃焼
触媒層を過熱しないあらかじめ設定された温度になるよ
うに排燃料ガス流量制御弁の開度を制御する制御手段を
設けたことを特徴とする燃料電池用触媒燃焼器の燃焼制
御装置。
1) A catalytic combustor comprising a plurality of combustion stages installed in series, each consisting of a defined gas chamber and a combustion catalyst layer in which combustion is performed by fuel and oxidizer introduced into the gas chamber,
Exhaust fuel gas discharged from the fuel cell is guided to the gas chamber via the exhaust fuel gas supply system, while exhaust oxidant gas is passed through the exhaust oxidant gas supply system to the first combustion chamber at the end of the catalytic combustor. The exhaust fuel gas is introduced into the first gas chamber of the stage and guided to each combustion stage, where it is combusted in the combustion catalyst layer, and the exhaust gas is oxidized so that the temperature of the combustion gas coming out of the final combustion stage reaches a preset temperature. A combustion control device for a catalytic combustor for a fuel cell that controls the supply flow rate of agent gas to a catalytic combustor, which includes a main supply system that connects the exhaust gas supply system from the fuel cell to a first gas chamber; The main supply system is provided with an exhaust fuel gas flow rate control valve for controlling the flow rate of exhaust fuel gas, and the main supply system is provided with an exhaust fuel gas flow rate control valve that controls the flow rate of exhaust fuel gas. A temperature sensor is provided in the gas chamber to detect the gas temperature in the gas chamber, and the temperature detected by this sensor is set in advance to prevent the combustion catalyst layer of the first combustion stage from overheating due to combustion of exhaust fuel gas in the combustion catalyst layer. 1. A combustion control device for a catalytic combustor for a fuel cell, comprising a control means for controlling the opening degree of an exhaust gas flow rate control valve so that the temperature reaches a certain temperature.
JP63155582A 1988-06-23 1988-06-23 Combustion control device for catalytic combustor for fuel cell Expired - Fee Related JP2533616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155582A JP2533616B2 (en) 1988-06-23 1988-06-23 Combustion control device for catalytic combustor for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155582A JP2533616B2 (en) 1988-06-23 1988-06-23 Combustion control device for catalytic combustor for fuel cell

Publications (2)

Publication Number Publication Date
JPH025367A true JPH025367A (en) 1990-01-10
JP2533616B2 JP2533616B2 (en) 1996-09-11

Family

ID=15609194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155582A Expired - Fee Related JP2533616B2 (en) 1988-06-23 1988-06-23 Combustion control device for catalytic combustor for fuel cell

Country Status (1)

Country Link
JP (1) JP2533616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026214A1 (en) * 1996-12-10 1998-06-18 La Corporation De L'ecole Polytechnique Process and apparatus for gas phase exothermic reactions
WO2006061963A1 (en) * 2004-12-08 2006-06-15 Nissan Motor Co., Ltd. System for detecting abnormality of catalytic burner
JP2014017211A (en) * 2012-07-11 2014-01-30 Miura Co Ltd Fuel cell system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543717B2 (en) 2000-02-18 2004-07-21 日産自動車株式会社 Catalytic combustor
KR20230146245A (en) * 2022-04-12 2023-10-19 주식회사 에코마스터 Catalytic combustor for fuel cell system off-gas and fuel cell apparatus including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026214A1 (en) * 1996-12-10 1998-06-18 La Corporation De L'ecole Polytechnique Process and apparatus for gas phase exothermic reactions
US5941697A (en) * 1996-12-10 1999-08-24 La Corporation De L'ecole Polytechnique Gaz Metropolitain Process and apparatus for gas phase exothermic reactions
WO2006061963A1 (en) * 2004-12-08 2006-06-15 Nissan Motor Co., Ltd. System for detecting abnormality of catalytic burner
JP2014017211A (en) * 2012-07-11 2014-01-30 Miura Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2533616B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP3196549B2 (en) Power generation system with fuel reformer
JP5416347B2 (en) Solid oxide fuel cell power generation system and startup method thereof
KR100647850B1 (en) Fuel cell system and its control method
US8048577B2 (en) Hydrogen generator with a combustor with a control unit
KR100623572B1 (en) Fuel reforming system and warmup method thereof
EA013477B1 (en) Fuel cell system and method for the operation of a reformer
KR20120068012A (en) Method for generating a gas which may be used for startup and shutdown of a fuel cell
JP2002087802A (en) Fuel reforming device
KR100502865B1 (en) Control for catalytic combustor
JP2001155754A (en) Solid electrolyte fuel cell, and its start up method
JP2009054477A (en) Fuel cell system, and operation method thereof
JPH07296834A (en) Fuel cell power plant and operating method for reformer of plant
JP5825830B2 (en) Fuel cell system
JPH025367A (en) Combustion control device of catalytic burner for fuel cell
JP2004196600A (en) Hydrogen generating apparatus to be used for fuel cell and starting method
JPH11130403A (en) Method for controlling temperature of reformer for fuel cell
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPH01298651A (en) Combustion controlling device for catalyst combustor for fuel cell
US20060057444A1 (en) Fuel processing apparatus and method and fuel cell power generation system
JP2543986B2 (en) Catalytic combustion type gas turbine combustor
JP2006164786A (en) Abnormality detection device of catalytic combustor
JP2004196584A (en) Method of stopping hydrogen production apparatus and fuel cell system operation
JP4278366B2 (en) Fuel processing apparatus, fuel processing method, and fuel cell power generation system
JP2021038121A (en) Hydrogen utilization system
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees