JPH076402B2 - Coal gasification power plant - Google Patents
Coal gasification power plantInfo
- Publication number
- JPH076402B2 JPH076402B2 JP3334087A JP3334087A JPH076402B2 JP H076402 B2 JPH076402 B2 JP H076402B2 JP 3334087 A JP3334087 A JP 3334087A JP 3334087 A JP3334087 A JP 3334087A JP H076402 B2 JPH076402 B2 JP H076402B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- gas turbine
- gas
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭ガス化発電プラントに係り、特に、ガスタ
ービンの安定燃料を確保するのに好適な石炭ガス化発電
プラントに関する。Description: TECHNICAL FIELD The present invention relates to a coal gasification power generation plant, and more particularly to a coal gasification power generation plant suitable for securing a stable fuel for a gas turbine.
従来、石炭ガス化発電プラントでは、その一般的な設備
構成として、ガス化炉一缶に対し、ガスタービン発電設
備一機という一機一缶方式であり、その負荷制御法とし
ては、所望の発電出力値に対する実出力値の偏差をガス
化炉の燃料流量信号系へのフイードバツク、若しくはガ
スタービン燃料流量信号へのフイードバツク、及び、そ
れらを組み合わせた協調制御系へのフイードバツクとい
う、既に確立された制御手法を適用した場合の検討がな
されている。なお、この種の装置として関連するものに
は、例えば、米国特許第198059号(特開昭57−97023号
公報)が挙げられる。Conventionally, in a coal gasification power generation plant, the general equipment configuration is a one-machine-one system with one gasification furnace and one gas turbine power generation facility. The deviation of the actual output value from the output value has already been established as the feedback to the gas flow rate signal system of the gasifier, the feedback to the gas turbine fuel flow rate signal, and the feedback to the coordinated control system that combines them. Investigations are being made when the method is applied. A related device of this type is, for example, US Pat. No. 198059 (JP-A-57-97023).
上記従来技術では、ガスタービン燃料としての石炭ガス
の圧力変動抑制法は、単に一機一缶方式における圧力調
整弁の制御に委ねられているのみで、特に、系統上の工
夫による圧力調整,カロリー調整という観点からの考慮
がされておらず、例えば、ガスタービンリードのモード
での運転中にガス化炉での燃焼状態が不安定になり、燃
料ガス圧力が上昇した場合、ガスタービン入口圧力調整
弁を絞り込んで圧力損失を持たせようとしても、圧力調
整弁の調整範囲外に逸脱してしまう程の大きな変動とな
り得ること、また同時にガス化炉での燃焼不安定化によ
り、ガス化ガス中の組成割合が変化し、単位ガス流量の
保有する熱量が変動し、ガスタービン燃焼器での燃焼状
態の変動の結果、ガスタービン出力も大きく変動する可
能性があるという根本的な問題があつた。更に石炭ガス
をガスタービン燃料とする場合、従来のLNG燃料等に比
べ、発熱量で十分の一程度であるため、燃料ガス流量を
十倍程度にする必要があり、燃料ガス配管径もそれに見
合つた径とする必要があるため、圧力調整弁,燃料流量
調整弁の弁ストロークが非常に大きくなるという欠点が
あつた。In the above-mentioned conventional technique, the method for suppressing the pressure fluctuation of coal gas as gas turbine fuel is simply entrusted to the control of the pressure regulating valve in the one-machine one-can system. It is not considered from the viewpoint of adjustment.For example, when the combustion state in the gasification furnace becomes unstable and the fuel gas pressure rises during operation in the mode of the gas turbine lead, the gas turbine inlet pressure adjustment Even if the valve is narrowed down to have pressure loss, the fluctuation can be large enough to deviate from the adjustment range of the pressure adjustment valve, and at the same time, combustion instability in the gasification furnace may cause instability in the gasification gas. The composition ratio of the gas changes, the amount of heat held by the unit gas flow rate fluctuates, and the fluctuation of the combustion state in the gas turbine combustor may result in a large fluctuation in the gas turbine output. This problem has been made. Furthermore, when coal gas is used as a gas turbine fuel, the calorific value is about one tenth that of conventional LNG fuel, etc., so it is necessary to increase the fuel gas flow rate to about 10 times, and the fuel gas pipe diameter is also commensurate with that. Since it is necessary to make the diameter smaller, the valve stroke of the pressure control valve and the fuel flow rate control valve becomes very large.
本発明の目的は、上記不具合を解消、若しくは、極力避
けることにある。An object of the present invention is to eliminate the above problems or to avoid them as much as possible.
上記目的は、まず、石炭ガス化炉を多缶(炉)構成と
し、ガス化炉出口を共有ヘツダ配管で連絡することで各
ガス化炉出力をその圧力,組成のなまし効果を得ること
により達成される。The purpose of the above is to first obtain a coal gasifier with a multi-can (furnace) configuration and connect the gasifier outlet with a shared header pipe so that each gasifier output has an effect of moderating its pressure and composition. To be achieved.
次に、多缶構成のガス化炉の一部のガス化炉出口圧力設
定を、他缶よりΔPだけ高く設定しておき、ガス化炉出
口にΔPだけの圧損を持たせた圧力調整弁を設け、共有
ヘツダ配管部圧力としては他缶と同じ圧力となるような
系統構成とし、ヘツダ部圧力調整を圧力調整弁で行わ
せ、ガスタービン入口圧力を調整範囲から逸脱させない
ようにすることで達成される。Next, a gasification furnace outlet pressure setting of a part of the multi-can gasification furnace is set to be higher than that of other cans by ΔP, and a pressure control valve having a pressure loss of ΔP at the gasification furnace outlet is set. Achieved by establishing a system configuration so that the shared header piping pressure is the same as that of other cans, and controlling the header pressure with a pressure control valve so that the gas turbine inlet pressure does not deviate from the control range. To be done.
また、多缶構成のガス化炉各々の出口部に圧力調整弁を
設け、共有ヘツダ部の圧力とその設定値、及び各圧力の
調整弁の前圧により、圧力調整弁を制御し、ガスタービ
ン入口の圧力調整弁の制御範囲に入るよう、ヘツダ部圧
力を調整することでも達成される。In addition, a pressure control valve is provided at the outlet of each gasification furnace with a multi-can structure, and the pressure control valve is controlled by the pressure of the shared header and its set value, and the pre-pressure of the control valve at each pressure. It is also achieved by adjusting the head pressure so that it falls within the control range of the inlet pressure adjusting valve.
ガス化炉の多缶構成にすることは、その個々のガス化炉
単体の出力の、通常の汽力発電所のボイラから発生する
上記の温度,蒸気のように均質性を持つたものになりに
くいという不安定要因を極力排するために考案したもの
であり、個々のガス化炉出口を共有ヘツダで連絡するこ
とにより、個々の変動を抑性するなまし効果を得ること
ができる。このなまし効果は、圧力と石炭ガスの熱量の
両方に表われ、ガスタービン入口燃料性状が均質化され
る。The multi-can configuration of the gasifier makes it difficult for the output of each individual gasifier to have homogeneity like the above-mentioned temperature and steam generated from the boiler of an ordinary steam power plant. This is devised to eliminate such unstable factors as much as possible, and by connecting individual gasifier outlets with a shared header, it is possible to obtain a moderating effect that suppresses individual fluctuations. This annealing effect appears in both the pressure and the heat quantity of the coal gas, and the gas turbine inlet fuel properties are homogenized.
次に、このなまし効果に加え、多缶構成のガス化炉の一
部のガス化炉の出口設定圧を他缶より高くし、その後流
に設けられた圧力調整弁での圧力損失を、通常時に他缶
との圧力偏差分だけ設定しておき、共有ヘツダ部圧力が
低下した時には、圧力調整弁を開方向に、上昇時には、
閉方向に、その弁の絞りを調整することで、ガスタービ
ン入口の圧力調整弁の制御範囲に収めるようにする。こ
れは、共有ヘツダ部圧力の設定値からの偏差をガス化炉
への燃料供給信号に反映させた結果の応答時間遅れが大
きいことへの対策でもある。この方法による具体的な制
御方法として、まず、ガスタービン入口圧力調整弁の制
御範囲を規定圧力設定値からの偏差の値と単位時間当た
りの増減、即ち、圧力変化率により規定し、その規定値
に達する以前に弁動作の開始点を設けておく。その后の
圧力値の回復による弁操作終了点としては、弁動作開始
時の圧力、若しくは、更に、規定圧力値に近い値として
おき、弁のハンチングを防ぐ等の処置を施す。Next, in addition to this smoothing effect, the outlet set pressure of a part of the gasifier of the multi-can configuration is set higher than that of the other cans, and the pressure loss in the pressure regulating valve provided in the subsequent flow is Normally, only the pressure deviation from other cans is set, and when the shared header pressure drops, the pressure control valve opens and when it rises,
The throttle of the valve is adjusted in the closing direction so that it falls within the control range of the pressure adjusting valve at the gas turbine inlet. This is also a countermeasure against a large response time delay as a result of reflecting the deviation of the shared header pressure from the set value on the fuel supply signal to the gasifier. As a concrete control method by this method, first, the control range of the gas turbine inlet pressure regulating valve is defined by the value of the deviation from the specified pressure set value and the increase / decrease per unit time, that is, the pressure change rate, and the specified value The starting point of valve operation is set before reaching. After that, the valve operation end point due to the recovery of the pressure value is set to the pressure at the start of the valve operation or a value closer to the specified pressure value, and measures such as hunting of the valve are taken.
また、なまし効果に加え、多缶構成のガス化炉の各々の
出口に圧力調整弁を設け、共有ヘツダ部の実圧とその設
定圧との偏差、及び、各圧力調整弁前圧とから圧力調整
弁を制御し、共有ヘツダ部圧力をガスタービン入口圧力
調整弁の制御範囲に収める方法では、多缶構成のガス化
炉の各々は同一仕様となり、その出口圧力調整弁の具体
的な制御方法としては、まず、ガスタービン入口圧力調
整弁の制御範囲を、前記と同様に、規定圧力設定値から
の偏差の値と圧力変化率により規定し、その規定値に達
する以前に弁動作の開始点を設けておく。その時に操作
する弁の選択は、共有ヘツダ圧力の逸脱方向と同方向に
逸脱したガス化炉出口圧力調整弁を選ぶ。即ち、共有ヘ
ツダ圧力が上昇し、弁動作開始点に達した場合、ほとん
ど時間遅れなく、弁動作開始点相当圧力に達しているガ
ス化炉出口圧が存在し、圧力調整弁を閉方向に操作す
る。弁操作終了点は、前述と同様に、弁操作開始点圧力
若しくは、更に、規定共有ヘヅタ圧力値に近い値に設定
する。In addition to the effect of smoothing, a pressure adjusting valve is provided at each outlet of the gasification furnace having a multi-can structure, and the difference between the actual pressure of the shared header and its set pressure and the pressure before each pressure adjusting valve are adjusted. In the method of controlling the pressure adjustment valve and keeping the shared header pressure within the control range of the gas turbine inlet pressure adjustment valve, each gasification furnace with a multi-can configuration has the same specifications, and specific control of the outlet pressure adjustment valve is performed. As a method, first, similarly to the above, the control range of the gas turbine inlet pressure regulating valve is defined by the value of the deviation from the specified pressure set value and the pressure change rate, and the valve operation is started before reaching the specified value. Make a point. The valve to be operated at that time is selected to be a gasifier outlet pressure adjusting valve that deviates in the same direction as the deviation direction of the shared header pressure. That is, when the shared header pressure rises and reaches the valve operation start point, there is almost no time delay and there is a gasifier outlet pressure that has reached the valve operation start point equivalent pressure, and the pressure control valve is operated in the closing direction. To do. The valve operation end point is set to the valve operation start point pressure or a value closer to the specified shared hedder pressure value, as described above.
このように系統を構成し、更に、圧力調整弁を操作する
事により、少しずつ異なる性状で出てくる石炭ガスが温
度,圧力,組成の各面で均質化される。By constructing the system in this way and further operating the pressure regulating valve, the coal gas emerging with slightly different properties is homogenized in terms of temperature, pressure and composition.
第1図において、石炭ガス化炉1で発生した石炭ガス
は、ガス精製装置2で精製され共有ヘツダ配管9に導か
れる。その後、ガスタービン入口圧力調整弁4及び燃料
流量調整弁5を経てガスタービンユニツト6で燃焼し、
燃焼ガスによりタービン発電機を駆動する。本実施例で
は、多缶構成のガス化炉1のうち一部のガス化炉の出口
圧力を他缶より高く設定し、ガス化炉の後流で共有ヘツ
ダ配管前に圧力調整弁3を設け、通常時はその弁での圧
力損失により、共有ヘツダ部圧力を他缶と同一の値とし
ている。この弁3の調整機能は、共有ヘツダ若しくは共
有ヘツダ後でガスタービン入口圧力調整弁4の前の圧力
発信器8により検出した圧力値により制御装置10を介
し、圧力調整弁3を操作する。この弁の操作法として
は、第3図及び第4図に示すように、共有ヘツダ部圧力
をガスタービン入口圧力調整弁4の制御範囲に収めるべ
く制御する。即ち、ガスタービン入口圧力調整弁4の制
御可能範囲として、上限値P3と下限値P4を設定し、その
範囲内に圧力調整弁3の操作開始点P1及びP2を設定す
る。また、ガスタービン入口圧力調整弁4のもう一つの
制御可能範囲として圧力の時間微分値による制限動作を
設ける。これは、第4図に示すように、愛力の突変的変
化でガスタービン入口圧力調整弁の機能を阻害すること
を防止するための弁操作である。In FIG. 1, the coal gas generated in the coal gasification furnace 1 is purified by the gas refining device 2 and guided to the shared header pipe 9. After that, it burns in the gas turbine unit 6 through the gas turbine inlet pressure adjusting valve 4 and the fuel flow rate adjusting valve 5,
Combustion gas drives a turbine generator. In this embodiment, the outlet pressure of some of the gasifiers 1 of the multi-can configuration is set higher than that of other cans, and the pressure regulating valve 3 is provided in the downstream of the gasifier and before the shared header pipe. Normally, the common header pressure is set to the same value as other cans due to the pressure loss at the valve. This adjusting function of the valve 3 operates the pressure adjusting valve 3 via the control device 10 by the pressure value detected by the pressure transmitter 8 in front of the gas turbine inlet pressure adjusting valve 4 after the shared header or after the shared header. As a method of operating this valve, as shown in FIGS. 3 and 4, the shared header pressure is controlled so as to fall within the control range of the gas turbine inlet pressure adjusting valve 4. That is, the upper limit value P 3 and the lower limit value P 4 are set as the controllable range of the gas turbine inlet pressure adjusting valve 4, and the operation starting points P 1 and P 2 of the pressure adjusting valve 3 are set within the range. Further, as another controllable range of the gas turbine inlet pressure adjusting valve 4, a limiting operation by a time differential value of pressure is provided. As shown in FIG. 4, this is a valve operation for preventing the function of the gas turbine inlet pressure adjusting valve from being hindered by a sudden change in love power.
次に、第2図の場合について述べる。これは、第1図と
同様に、ガス化炉1で発生した石炭ガスを精製装置2で
精製し、圧力調整弁3を経て共有ヘツダ配管9に連絡
し、ガスタービン入口圧力調整弁4,燃料流量調整弁5を
介し、ガスタービンで燃焼させる系統構成であるが、各
ガス化炉出口に圧力調整弁3を持ち、共有ヘツダまでの
系統は互いに同一仕様である。ここでの圧力調整弁3の
操作方法としては、例えば、第3の点Qのように共有ヘ
ツダ圧力が圧力調整弁の開方向操作開始圧力P2まで低下
した場合、各ガス化炉出口に設けられた圧力発信器7の
検出値のうちP0からの逸脱方向に寄与している圧力調整
弁3を開方向に操作する。ただし、この時の圧力発信器
7の検出値が圧力調整弁の制御範囲外、即ち、弁最大開
度としても、ガスタービン入口圧力回復の機能を発揮で
きない時は、圧力発信器7の検出値のうち、P0からの逸
脱方向に寄与していない調整弁3を開方向に操作する。
この制御の意図は、変動したガス化炉出力に対しては、
それ自信の回復機能を持ち、もし、回復を待つ間に共有
ヘツダ圧が制御範囲外となる可能性が出た時には、他缶
が後備的に制御を行うということである。また、第4図
に示すように、共有ヘツダ部圧力の時間微分値による制
御も、上述した第3図による制御と同様の弁操作を行
う。第2図の系統構成とした場合の概略の制御移統図を
第5図に示す。第5図では、共有ヘツダ部圧力P0、各ガ
ス化炉出口の圧力P1,P2,P3より、それらの検出値を基に
第2図における圧力調整弁3の操作までの制御信号の流
れを模式的に表わす。操作弁の選択回路9の働きについ
ては、上述したとおりである。Next, the case of FIG. 2 will be described. This is the same as in FIG. 1, in which the coal gas generated in the gasification furnace 1 is purified by the refining device 2, and is communicated to the shared header pipe 9 via the pressure regulating valve 3, and the gas turbine inlet pressure regulating valve 4, fuel The system configuration is such that combustion is performed in the gas turbine via the flow rate adjustment valve 5, but the systems up to the shared header have the pressure adjustment valve 3 at each gasification furnace outlet and have the same specifications. As a method of operating the pressure adjusting valve 3 here, for example, when the shared header pressure drops to the opening direction operation start pressure P 2 of the pressure adjusting valve as at the third point Q, the pressure adjusting valve 3 is provided at each gasification furnace outlet. The pressure regulating valve 3 which contributes to the deviation from P 0 among the detected values of the pressure transmitter 7 thus operated is operated in the opening direction. However, when the detected value of the pressure transmitter 7 at this time is out of the control range of the pressure regulating valve, that is, when the function of recovering the gas turbine inlet pressure cannot be exerted even with the valve maximum opening, the detected value of the pressure transmitter 7 Among them, the regulating valve 3 that does not contribute to the direction of deviation from P 0 is operated in the opening direction.
The intention of this control is that for varying gasifier power,
It has a self-recovery function, and if there is a possibility that the shared header pressure will be out of the control range while waiting for recovery, another can will perform control in a retroactive manner. Further, as shown in FIG. 4, the control by the time differential value of the shared head section pressure also performs the same valve operation as the control by FIG. 3 described above. FIG. 5 shows a schematic control transfer diagram in the case of the system configuration of FIG. In FIG. 5, based on the shared header pressure P 0 and the pressures P 1 , P 2 and P 3 at the outlets of the gasification furnaces, the control signals up to the operation of the pressure regulating valve 3 in FIG. The flow of is schematically shown. The operation of the operation valve selection circuit 9 is as described above.
本実施例によれば、多缶構成の石炭ガス化炉の出口で共
有ヘツダで連絡することにより、各ガス化炉からの石炭
ガスが混合され、均圧,均熱化されることで、ガスター
ビン燃料の均質化が図れ、更に、圧力調整弁3を追加
し、ガス圧力の制御を行うことで、ガスタービンの制御
性が向上する。According to the present embodiment, the coal gas from each gasification furnace is mixed by contacting with the shared header at the outlet of the coal gasification furnace having a multi-can configuration, and the gas is pressure-equalized and temperature-equalized. The turbine fuel can be homogenized, and by further adding the pressure adjusting valve 3 to control the gas pressure, the controllability of the gas turbine is improved.
本発明によれば、石炭ガス化発電プラントにおける石炭
ガス化炉の燃料不安定性に基づく石炭ガス性状の均質化
を図ることができる。According to the present invention, it is possible to homogenize coal gas properties based on fuel instability of a coal gasification furnace in a coal gasification power plant.
第1図,第2図は本発明の一実施例の系統図、第3図は
第1図及び第2図の系統構成の場合の石炭ガス圧力の変
動と各設定値との関係を示す図、第4図は第1図及び第
2図の系統構成の場合の石炭ガス圧力の時間微分値の変
動と各設定値の関係を示す例図、第5図は第2図の系統
構成の場合の制御系の概要を示す図である。 1……ガス化炉、2……ガス精製装置、3……圧力調整
弁、4……ガスタービン入口圧力調整弁、5……ガスタ
ービン燃料流量調整弁、6……ガスタービンユニツト、
7及び8……圧力発信器、9……共有ヘツダ配管、10…
…制御装置(以上第1図及び第2図)。1 and 2 are system diagrams of an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between fluctuations in coal gas pressure and respective set values in the case of the system configurations of FIGS. 1 and 2. FIG. 4 is an example diagram showing the relationship between the fluctuation of the time differential value of the coal gas pressure and each set value in the case of the system configuration of FIGS. 1 and 2, and FIG. 5 is the case of the system configuration of FIG. It is a figure which shows the outline of the control system of FIG. 1 ... Gasification furnace, 2 ... Gas purification device, 3 ... Pressure adjusting valve, 4 ... Gas turbine inlet pressure adjusting valve, 5 ... Gas turbine fuel flow rate adjusting valve, 6 ... Gas turbine unit,
7 and 8 ... Pressure transmitter, 9 ... Shared header piping, 10 ...
... Control device (above FIGS. 1 and 2).
Claims (1)
るガスタービン発電プラントにおいて、 前記石炭ガス化炉を多缶構成とし、炉出口を共有ヘツダ
配管で連絡したことを特徴とする石炭ガス化発電プラン
ト。1. A gas turbine power plant using coal gas from a coal gasification furnace as a main fuel, wherein the coal gasification furnace has a multi-can structure, and the furnace outlet is connected by a shared header pipe. Gasification power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3334087A JPH076402B2 (en) | 1987-02-18 | 1987-02-18 | Coal gasification power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3334087A JPH076402B2 (en) | 1987-02-18 | 1987-02-18 | Coal gasification power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63201327A JPS63201327A (en) | 1988-08-19 |
JPH076402B2 true JPH076402B2 (en) | 1995-01-30 |
Family
ID=12383836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3334087A Expired - Fee Related JPH076402B2 (en) | 1987-02-18 | 1987-02-18 | Coal gasification power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH076402B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6408296B2 (en) * | 2014-08-13 | 2018-10-17 | 出光興産株式会社 | Coal gasification complex system and control method thereof |
-
1987
- 1987-02-18 JP JP3334087A patent/JPH076402B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63201327A (en) | 1988-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6655152B2 (en) | Fuel control system for multiple burners | |
CN101021182B (en) | Reduce compress control method and the system of gas turbine fuel supply pressure requirements | |
EP0198502A1 (en) | Method of and apparatus for controlling fuel of gas turbine | |
NO952860L (en) | Method and apparatus for preventing parameter drift in gas turbines | |
JPS61130729A (en) | Process heater control | |
US3393965A (en) | System for stabilizing the supply of air to an ignitor | |
JPH076402B2 (en) | Coal gasification power plant | |
JPS60542B2 (en) | Fuel viscosity compensation gas turbine fuel control device | |
JPH05187271A (en) | Control method for gas turbine combustor | |
US6199362B1 (en) | Method of controlling and regulating a power plant, and power plant for implementing the method | |
JPH063148B2 (en) | Dual gas fuel fired gas turbine fuel control system | |
JPH0996227A (en) | Pressure controller of gasification plant | |
JPS628605B2 (en) | ||
JPS632776Y2 (en) | ||
JP2001329863A (en) | Combustion device for gas turbine and fuel supply method for gas turbine | |
JPS61255225A (en) | Control system for fuel gas in gas turbine | |
JPH10232016A (en) | Fuel feed control method of multi-fuel fired boiler and apparatus thereof | |
JPH0412329Y2 (en) | ||
JPH0318082B2 (en) | ||
JPH0412330Y2 (en) | ||
US1674793A (en) | Furnace | |
JPH1047609A (en) | Steam temperature control method of boiler | |
JPH0429922B2 (en) | ||
JPS6067724A (en) | Double gas fuel controller | |
JPS61107007A (en) | Method of controlling temperature of steam of steam superheater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |