JPH0763614A - Optical measurement device - Google Patents

Optical measurement device

Info

Publication number
JPH0763614A
JPH0763614A JP22944093A JP22944093A JPH0763614A JP H0763614 A JPH0763614 A JP H0763614A JP 22944093 A JP22944093 A JP 22944093A JP 22944093 A JP22944093 A JP 22944093A JP H0763614 A JPH0763614 A JP H0763614A
Authority
JP
Japan
Prior art keywords
radiation
radiant energy
rotating sector
temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22944093A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Motohiko Kitazawa
元彦 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP22944093A priority Critical patent/JPH0763614A/en
Publication of JPH0763614A publication Critical patent/JPH0763614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure temperature or the other optical characteristics by a small device. CONSTITUTION:Radiation energy from a radiation source 1 is divided into radiation energies having different irradiation areas by means of a rotary sector 3 having a plurality of different openings and the energies are applied to an object 5 to be measured. The radiation energies from the object 5 are made incident on a radiation detector 7 and the outputs thereof are made incident on a computing means 8. The emissivity, temperature and the other optical characteristics of the object 5 are calculated by utilizing the combination of the outputs corresponding to the openings of the rotary sector 3 in accordance with the surface condition or the like of the object 5 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、放射率の影響を除去
した測定物体の温度あるいはその他の性状を測定する光
学的測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring device for measuring the temperature or other properties of a measuring object in which the influence of emissivity is removed.

【0002】[0002]

【従来の技術】出願人は、たとえば特公昭62−259
72号公報で比較熱板(補助熱源、放射源)と測定物体
との距離を変化させたときの出力変化から放射率や温度
を測定する方法を提案している。
2. Description of the Related Art The applicant has, for example, Japanese Patent Publication No. 62-259.
Japanese Patent Laid-Open No. 72-72 proposes a method of measuring the emissivity and temperature from the output change when the distance between the comparative hot plate (auxiliary heat source, radiant source) and the measurement object is changed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、比較熱
板を駆動させると装置が大型なものになり、応答時間が
遅く、かつ、測定物体と装置との空間距離を大きくでき
ない等の問題があった。
However, when the comparative heating plate is driven, the device becomes large in size, the response time is slow, and the spatial distance between the measuring object and the device cannot be increased. .

【0004】この発明の目的は以上の点に鑑み、より簡
単な装置で、精度良く温度あるいは測定物体の表面あら
さその他の光学的性状を測定する光学的測定装置を提供
することである。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide an optical measuring device which is a simpler device and accurately measures temperature, surface roughness of a measuring object and other optical properties.

【0005】[0005]

【課題を解決するための手段】この発明は、測定物体に
放射エネルギーを放出する放射源と、この放射源からの
放射エネルギーの照射面積を変化させるための複数の異
なった開口を有し回転する回転セクタと、この回転セク
タを介して測定物体を照射し反射した放射源からの放射
エネルギーを検出する放射検出器と、この放射検出器の
出力のうち前記回転セクタの異なった開口についての出
力信号の組合せを用いて測定物体の温度またはその他の
光学的性状を演算する演算手段とを備えるようにした光
学的測定装置である。
SUMMARY OF THE INVENTION The present invention rotates with a radiant source that emits radiant energy to a measurement object and a plurality of different apertures for varying the area of irradiation of the radiant energy from the radiant source. A rotating sector, a radiation detector for detecting radiation energy from a radiation source which irradiates a measuring object through the rotating sector, and output signals of the radiation detector for different apertures of the rotating sector. The optical measuring device is provided with a calculating means for calculating the temperature or other optical property of the measurement object using the combination of.

【0006】[0006]

【実施例】図1は、この発明の一実施例を示す構成説明
図である。図において、1は光源のような放射源で、こ
の放射源1から放出される放射エネルギーはレンズ2で
集光され、モータMで回転する図2のような異なった開
口3a、3b、3c、3d、3e、3fを有し回転する
回転セクタ(チョッパ)3に結像され、異なった照射面
積の放射エネルギーとされ、レンズ4を介し測定物体5
に照射される。測定物体5を反射した放射エネルギーお
よび測定物体5からの放射エネルギーはレンズ6で集光
され、放射検出器7で検出され、その出力信号はマイク
ロコンピュータを主体とする演算手段8で種々の演算が
なされ、測定物体5の放射率、温度、表面あらさ等の光
学的性状の測定演算がなされる。また、回転セクタ3の
温度は必要に応じ図示しないセンサで測定され、各開口
のタイミングも切欠30a、30b、…を光で検出する
ような同期検出器30で検出され、演算手段8で放射検
出器7の各出力を分離、測定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a structural explanatory view showing an embodiment of the present invention. In the figure, reference numeral 1 is a radiation source such as a light source, and the radiant energy emitted from this radiation source 1 is collected by a lens 2 and rotated by a motor M, which have different apertures 3a, 3b, 3c, as shown in FIG. An image is formed on a rotating sector (chopper) 3 having 3d, 3e, and 3f to form radiant energy of different irradiation areas, and a measuring object 5 is passed through a lens 4.
Is irradiated. The radiant energy reflected from the measuring object 5 and the radiant energy from the measuring object 5 are collected by the lens 6 and detected by the radiation detector 7, and the output signal thereof is subjected to various calculations by the calculating means 8 mainly composed of a microcomputer. Then, measurement calculation of optical properties such as emissivity, temperature, and surface roughness of the measurement object 5 is performed. Further, the temperature of the rotating sector 3 is measured by a sensor (not shown) if necessary, and the timing of each opening is also detected by a synchronous detector 30 which detects the cutouts 30a, 30b, ... Each output of the instrument 7 is separated and measured.

【0007】測定物体5の放射率をε、温度をT、放射
源1の放射エネルギーをEr、温度Tの黒体相当の放射
エネルギーをE(T)とする。
It is assumed that the emissivity of the measuring object 5 is ε, the temperature is T, the radiant energy of the radiant source 1 is Er, and the radiant energy corresponding to a black body at the temperature T is E (T).

【0008】回転セクタ3が回転すると異なった照射面
積の放射エネルギーが順次測定物体5に照射投光される
が、開口がないときの放射検出器7の出力をEo、任意
の異なった面積S1、S2をもつ開口についての出力E
1、E2(S1の方がS2より大きい開口とする)は、
次式となる。
When the rotating sector 3 rotates, radiant energies of different irradiation areas are sequentially projected onto the measuring object 5, but the output of the radiation detector 7 when there is no aperture is Eo, and an arbitrary different area S1, Output E for an aperture with S2
1, E2 (S1 is an opening larger than S2)
It becomes the following formula.

【0009】 Eo=εE(T) (1) E1=εE(T)+F1(1−ε)S1・Er (2) E2=εE(T)+F2(1−ε)S2・Er (3) ここで、F1、F2は放射源1からの放射エネルギーが
測定物体5で反射して放射検出器7に入射する物体表面
の散乱に関係する寄与率である。つまり(1)式の右辺
第1項は測定物体5自体からの放射エネルギー、
(2)、(3)式の第1項は測定物体5からの放射エネ
ルギー、第2項は放射源1の放射エネルギーErが各々
開口の面積分S1、S2分が測定物体5に照射され、そ
の表面で散乱されて寄与率F1、F2で放射検出器7に
入射する割合である。
Eo = εE (T) (1) E1 = εE (T) + F1 (1-ε) S1 · Er (2) E2 = εE (T) + F2 (1-ε) S2 · Er (3) where , F1 and F2 are contribution factors related to the scattering of the radiant energy from the radiation source 1 on the surface of the object which is reflected by the measuring object 5 and enters the radiation detector 7. That is, the first term on the right side of the equation (1) is the radiant energy from the measurement object 5 itself,
The first term of the equations (2) and (3) is the radiant energy from the measuring object 5, and the second term is the radiant energy Er of the radiation source 1 irradiating the measuring object 5 with the areas S1 and S2 of the openings, respectively. It is the ratio of being scattered on the surface and being incident on the radiation detector 7 at the contribution rates F1 and F2.

【0010】ここで、(2)、(3)式を辺々差し引く
と次式が得られる。
Here, by subtracting the expressions (2) and (3) from each other, the following expression is obtained.

【0011】E1−E2=(1−ε)(F1・S1−F
2・S2)Er これにより ε=1−(E1−E2)/{(F1・S1−F2・S2)Er} (4) となる。ここで、D=F1・S1−F2・S2とおき、
このDが分ればE1、E2は測定量、S1,S2,Er
は既知なので放射率εが求まる。これは次式から求め
る。
E1−E2 = (1−ε) (F1 · S1−F
2 · S2) Er Thus, ε = 1− (E1−E2) / {(F1 · S1−F2 · S2) Er} (4). Here, D = F1 · S1−F2 · S2,
If this D is known, E1 and E2 are measured quantities, S1, S2, Er
Is known, the emissivity ε can be obtained. This is calculated from the following formula.

【0012】(2)式から(1)式、(3)式から
(1)式を減算すると次式がえられる。
By subtracting the equation (1) from the equation (2) and the equation (1) from the equation (3), the following equation is obtained.

【0013】E1−Eo=F1(1−ε)S1・Er E2−Eo=F2(1−ε)S2・Er その比Rをとると次式が得られる。E1-Eo = F1 (1-.epsilon.) S1.Er E2-Eo = F2 (1-.epsilon.) S2.Er By taking the ratio R, the following equation is obtained.

【0014】 R=(E2−Eo)/(E1−Eo) =F2・S2/F1・S1 (5) ここでD=F1・S1−F2・S2とR=F2・S2/
F1・S1との関係は、図3で示すようにD=f(R)
で所定の関数関係にあることが実験的に見い出された。
たとえばDは、 D=aR2 +bR+C の2次式で与えられる(a、b、cは係数)。
R = (E2-Eo) / (E1-Eo) = F2 / S2 / F1 / S1 (5) where D = F1 / S1-F2 / S2 and R = F2 / S2 /
The relationship with F1 and S1 is D = f (R) as shown in FIG.
It was experimentally found that there is a predetermined functional relationship with.
For example, D is given by a quadratic equation of D = aR 2 + bR + C (a, b, and c are coefficients).

【0015】つまり、RからDが求まり、(4)式の右
辺のその他の値は、測定等で求まるので放射率εを求め
ることができる。
That is, since D is obtained from R and the other values on the right side of the equation (4) are obtained by measurement or the like, the emissivity ε can be obtained.

【0016】そして、たとえば(1)式より、 E(T)=Eo/ε (6) であるから、この(6)式に放射率ε等を代入し、測定
物体5の温度が求まる。
Since, for example, E (T) = Eo / ε (6) is obtained from the equation (1), the emissivity ε or the like is substituted into the equation (6) to obtain the temperature of the measuring object 5.

【0017】つまり、測定時、あらかじめ、図3で示す
ように、測定により求めたDとRとの関数関係D=f
(R)、および放射源1の放射エネルギーEr等を演算
手段8のメモリに記憶する。
That is, at the time of measurement, as shown in FIG. 3, the functional relationship between D and R obtained by measurement D = f in advance.
(R), the radiant energy Er of the radiation source 1 and the like are stored in the memory of the calculating means 8.

【0018】次に測定時、回転セクタ3を回転すると、
閉時の出力Eo、種々の開口についての出力E1、E
2、…の信号が得られ、(1)、(2)、(3)式の信
号を用い、(4)式で放射率ε、(6)式で温度Tを求
めることができる。
Next, at the time of measurement, when the rotating sector 3 is rotated,
Output Eo when closed, outputs E1, E for various openings
Signals of 2, ... Are obtained, and the emissivity ε can be obtained by the equation (4) and the temperature T can be obtained by the equation (6) using the signals of the equations (1), (2), and (3).

【0019】ここで、測定物体5の表面の鏡面性が強い
場合、その表面で反射される放射エネルギーの指向性が
強く、回転セクタ3の小さな開口の組合せ、たとえば開
口3eと3fを用いればよい。また、拡散性の強い場
合、逆に、回転セクタ3の大きな開口についての組合
せ、たとえば開口3aと3bを用いるなどすればよい。
Here, when the surface of the measurement object 5 has a strong specularity, the directivity of the radiant energy reflected by the surface is strong and a combination of small openings of the rotating sector 3, for example, openings 3e and 3f may be used. . On the other hand, when the diffusion property is strong, conversely, a combination of large openings of the rotating sector 3, for example, the openings 3a and 3b may be used.

【0020】また、前述の(5)式のR=F2・S2/
F1・S1を用い、表面あらさの基準板についての測定
値Roを求め、これによりR/Roの演算を行って正規
化し表面あらさを求めることもできる。
Further, R = F2 · S2 // in the above equation (5)
It is also possible to obtain the measured value Ro of the surface roughness reference plate by using F1 · S1, and then calculate R / Ro to normalize and obtain the surface roughness.

【0021】図4は、この発明の他の一実施例を示し、
第1図と同一符号は同等の構成要素を示し、放射源1か
らの放射エネルギーは、レンズ2で集光されモータMで
回転する図2のような複数の開口を有する回転セクタ3
に結像し放射エネルギーの照射面積を変化させ、ハーフ
ミラー41を介し、レンズ4で測定物体5に照射され
る。測定物体5からの放射エネルギーは、ハーフミラー
41で反射し、放射検出器7に入射し、その出力は演算
手段8に入力され、回転セクタ3の同期検出器30の同
期信号により分離され、上述と同様の演算がなされ、放
射率ε、温度T、その他の光学的性状の測定がなされ
る。
FIG. 4 shows another embodiment of the present invention,
The same reference numerals as those in FIG. 1 denote the same components, and the radiant energy from the radiant source 1 is condensed by the lens 2 and rotated by the motor M. The rotating sector 3 has a plurality of openings as shown in FIG.
Then, the irradiation area of the radiant energy is changed, and the measuring object 5 is irradiated with the lens 4 through the half mirror 41. The radiant energy from the measurement object 5 is reflected by the half mirror 41 and is incident on the radiation detector 7, the output of which is input to the calculating means 8 and separated by the synchronization signal of the synchronization detector 30 of the rotating sector 3, The same calculation as above is performed, and the emissivity ε, the temperature T, and other optical properties are measured.

【0022】図5は、他の一実施例を示し、第1図と同
一符号は同等の構成要素を示し、光源1からの放射エネ
ルギーはレンズ2で集光され、モータMで回転する図2
のような複数の開口を有する回転セクタ3に結像し放射
エネルギーの照射面積を変化させ、レンズ4、ミラー4
10で測定物体5に投光される。測定物体5を反射した
放射エネルギーは凹面鏡42で集光され、凸面鏡43で
反射され、凹面鏡42の開口40を通り、放射検出器7
に入射され、同期検出器30の同期信号によりその出力
信号は演算出力8で分離され、上述と同様な演算がなさ
れ、放射率ε、温度T、その他の光学的性状の測定がな
される。
FIG. 5 shows another embodiment, in which the same reference numerals as those in FIG. 1 show the same components, and the radiant energy from the light source 1 is collected by the lens 2 and rotated by the motor M.
Image is formed on the rotating sector 3 having a plurality of apertures such as shown in FIG.
At 10 the light is projected onto the measuring object 5. The radiant energy reflected by the measurement object 5 is collected by the concave mirror 42, reflected by the convex mirror 43, passes through the opening 40 of the concave mirror 42, and the radiation detector 7
The output signal is separated by the calculation output 8 by the synchronization signal of the synchronization detector 30, the same calculation as described above is performed, and the emissivity ε, the temperature T, and other optical properties are measured.

【0023】以上、光学系は種々のものが考えられ、上
記のものに限定されるものではない。また、上記の例で
は、回転セクタ3は投光用のレンズの結像面においた
が、任意の位置、たとえば集光用のレンズの前に置いて
も同様の効果が得られる。
As described above, various optical systems are conceivable, and the optical system is not limited to the above. Further, in the above example, the rotating sector 3 is placed on the image forming surface of the light projecting lens, but the same effect can be obtained by placing it at an arbitrary position, for example, in front of the light collecting lens.

【0024】[0024]

【発明の効果】以上述べたように、この発明は、異った
開口を有する回転セクタを介し測定するようにしたもの
で、回転セクタは高速回転するので放射率、温度、表面
あらさその他の光学的性状の測定が小型、コンパクトな
構成で応答性良く測定することができる。また、測定物
体の表面状態に応じた開口信号を組み合せて測定するよ
うにしているので、表面あらさのの影響を受けにくく、
高精度の測定が可能となる。
As described above, according to the present invention, the measurement is performed through the rotating sector having different apertures. Since the rotating sector rotates at a high speed, emissivity, temperature, surface roughness, and other optics are measured. The physical properties can be measured with a small and compact structure and with high responsiveness. In addition, since the aperture signal is measured in combination according to the surface condition of the measurement object, it is less likely to be affected by the surface roughness,
Highly accurate measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成説明図である。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【図2】この発明の一実施例を示す構成説明図である。FIG. 2 is a structural explanatory view showing an embodiment of the present invention.

【図3】この発明の一実施例を示す動作説明図である。FIG. 3 is an operation explanatory diagram showing an embodiment of the present invention.

【図4】この発明の他の一実施例を示す構成説明図であ
る。
FIG. 4 is a structural explanatory view showing another embodiment of the present invention.

【図5】この発明の他の一実施例を示す構成説明図であ
る。
FIG. 5 is a structural explanatory view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 放射源 2、4、6 レンズ 3 回転セクタ 5 測定物体 7、71、72 放射検出器 8 演算手段 DESCRIPTION OF SYMBOLS 1 Radiation source 2, 4, 6 Lens 3 Rotation sector 5 Measuring object 7, 71, 72 Radiation detector 8 Computation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定物体に放射エネルギーを放出する放射
源と、この放射源からの放射エネルギーの照射面積を変
化させるための複数の異なった開口を有し回転する回転
セクタと、この回転セクタを介して測定物体を照射し反
射した放射源からの放射エネルギーを検出する放射検出
器と、この放射検出器の出力のうち前記回転セクタの異
なった開口についての出力信号の組合せを用いて測定物
体の温度またはその他の光学的性状を演算する演算手段
とを備えたことを特徴とする光学的測定装置。
1. A radiant source that emits radiant energy to a measurement object, a rotating sector having a plurality of different openings for changing an irradiation area of the radiant energy from the radiant source, and the rotating sector. Of the measuring object using a combination of a radiation detector for radiating the measuring object via the radiation energy from the radiation source reflected and the output signal of the output of the radiation detector for different apertures of the rotating sector. An optical measuring device comprising: a calculating means for calculating temperature or other optical properties.
JP22944093A 1993-08-23 1993-08-23 Optical measurement device Pending JPH0763614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22944093A JPH0763614A (en) 1993-08-23 1993-08-23 Optical measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944093A JPH0763614A (en) 1993-08-23 1993-08-23 Optical measurement device

Publications (1)

Publication Number Publication Date
JPH0763614A true JPH0763614A (en) 1995-03-10

Family

ID=16892258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944093A Pending JPH0763614A (en) 1993-08-23 1993-08-23 Optical measurement device

Country Status (1)

Country Link
JP (1) JPH0763614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080790A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Reference light source device for radiation thermometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080790A (en) * 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology Reference light source device for radiation thermometer

Similar Documents

Publication Publication Date Title
US3631526A (en) Apparatus and methods for eliminating interference effect errors in dual-beam infrared measurements
US6541287B2 (en) Temperature measuring method and apparatus, measuring method for the thickness of the formed film, measuring apparatus for the thickness of the formed film thermometer for wafers
US6780657B2 (en) Temperature measuring method and apparatus, measuring method for the thickness of the formed film, measuring apparatus for the thickness of the formed film thermometer for wafers
JPH0694604A (en) Spectral photographing device using two interferometer
JPS62232506A (en) Apparatus for measuring thickness of surface layer
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
WO1999040389A1 (en) Method and apparatus for making absolute range measurements
JPH0763614A (en) Optical measurement device
JPH0663848B2 (en) How to measure the surface temperature of an object
JPH0521412B2 (en)
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
US4985858A (en) Method and apparatus for temperature determination
JP2803218B2 (en) Non-contact thermometer
JPH0548405B2 (en)
JP3093239B2 (en) Semiconductor wafer heat treatment apparatus and heat treatment method
JP3205084B2 (en) Method and apparatus for measuring film thickness of coating material
JP3192461B2 (en) Optical measuring device
JP2924754B2 (en) Optical differential velocity meter
JPH063364B2 (en) Film thickness measurement method
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JP3309537B2 (en) Fourier transform spectrophotometer
JPH0448230A (en) Emissivity measuring instrument
JPH02223832A (en) Temperature measuring method
JPH06221925A (en) Radiation thermometer
JP2815808B2 (en) Radiation thermometer