JPH0763096A - Air-fuel ratio controller of internal combustion engine - Google Patents
Air-fuel ratio controller of internal combustion engineInfo
- Publication number
- JPH0763096A JPH0763096A JP21390893A JP21390893A JPH0763096A JP H0763096 A JPH0763096 A JP H0763096A JP 21390893 A JP21390893 A JP 21390893A JP 21390893 A JP21390893 A JP 21390893A JP H0763096 A JPH0763096 A JP H0763096A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- lean
- nox
- emission amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関の空燃比制御装
置に関し、詳しくは、目標空燃比が理論空燃比よりもリ
ーンな空燃比に設定される運転条件において、NOx排
出量の増大を回避し、また、最大限の燃費性能を発揮さ
せ得る技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly, to an increase in NOx emission amount under operating conditions in which a target air-fuel ratio is set to a leaner air-fuel ratio than a stoichiometric air-fuel ratio. In addition, the present invention relates to a technology capable of maximizing fuel efficiency.
【0002】[0002]
【従来の技術】従来、機関からのNOx排出量を抑制す
る技術としては、例えば実開昭63−108543号公
報に開示されるようなものがある。前記公報に開示され
る燃料噴射制御においては、排気中の酸素濃度を検出す
る酸素センサの出力が排気中のNOx濃度によってシフ
トすることを利用し、加速直後の高負荷時にNOx濃度
の増大が検知されたときに空燃比をリッチ化させ、加速
直後におけるNOx排出量を減少させるようにしてい
る。2. Description of the Related Art Conventionally, as a technique for suppressing the NOx emission amount from an engine, there is one disclosed in, for example, Japanese Utility Model Laid-Open No. 63-108543. In the fuel injection control disclosed in the above publication, the fact that the output of an oxygen sensor that detects the oxygen concentration in the exhaust gas shifts according to the NOx concentration in the exhaust gas is utilized to detect an increase in the NOx concentration during high load immediately after acceleration. At this time, the air-fuel ratio is made rich, and the NOx emission amount immediately after acceleration is reduced.
【0003】[0003]
【発明が解決しようとする課題】ところで、特開昭59
−7741号公報に開示される空燃比制御方法のよう
に、機関の目標空燃比が、機関負荷や冷却水温度などの
運転条件に応じて理論空燃比と該理論空燃比よりも大幅
にリーンな空燃比(例えば空燃比=22)との間で切り換
え制御される構成のものが知られている。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
As in the air-fuel ratio control method disclosed in Japanese Patent Application Laid-Open No. 77741, the target air-fuel ratio of the engine is significantly leaner than the theoretical air-fuel ratio and the theoretical air-fuel ratio depending on operating conditions such as engine load and cooling water temperature. A configuration is known in which switching control is performed between an air-fuel ratio (for example, air-fuel ratio = 22).
【0004】かかるリーン空燃比制御においては、NO
x排出量が許容レベル以下となり、かつ、燃焼の不安定
化によるサージトルクの発生が許容レベル以下となるよ
うな空燃比を目標空燃比として初期設定する(図11参
照)。ところが、前記リーン空燃比状態(酸素過剰雰囲
気)でNOxの転化を行う所謂リーンNOx触媒を備え
た構成では、かかるリーンNOx触媒の劣化により、ま
た、機関の点火時期,圧縮比の変化などによる機関から
のNOx排出量の増大変化により、定常的なNOx排出
量の増大がリーン空燃比制御状態で発生する可能性があ
り、リーン燃焼状態では、HC,COの濃度が十分に小
さいことから、かかるNOxの増大が問題となる。In such lean air-fuel ratio control, NO
The air-fuel ratio is set as the target air-fuel ratio such that the x emission amount is below the allowable level and the generation of surge torque due to instability of combustion is below the allowable level (see FIG. 11). However, in a configuration including a so-called lean NOx catalyst that performs NOx conversion in the lean air-fuel ratio state (excess oxygen atmosphere), the engine is deteriorated due to such lean NOx catalyst, and due to changes in the ignition timing and the compression ratio of the engine. There is a possibility that a steady increase in the NOx emission amount may occur in the lean air-fuel ratio control state due to the increase change in the NOx emission amount from the fuel cell. In the lean combustion state, the concentration of HC and CO is sufficiently small. The increase of NOx becomes a problem.
【0005】ここで、前記実開昭63−108543号
公報に開示される技術では、前述のリーン空燃比燃焼状
態における定常的なNOx排出量の増大を検知すること
はできず、従って、NOx排出量が増大してもこれに対
処することができず、リーン空燃比運転条件で多量のN
Oxが排出されてしまう惧れがあった。更に、前記実開
昭63−108543号公報では、燃料噴射量の増量補
正によってNOx排出量の低減を図っており、前記リー
ン空燃比を目標空燃比とする場合には、空燃比のリーン
化方向がNOx濃度の減少方向となるが、その減少変化
割合が少なく、また、かかるリーン方向がサージトルク
の増大方向にも一致するため(図11参照)、リーン燃焼
状態でNOx濃度を低下させる方向に燃料噴射量を補正
してもNOx低減を図ることは困難であるという問題も
あった。In the technique disclosed in Japanese Utility Model Laid-Open No. 63-108543, it is not possible to detect a steady increase in the NOx emission amount in the lean air-fuel ratio combustion state, and therefore the NOx emission amount is not detected. Even if the amount increases, this cannot be dealt with, and a large amount of N is generated under lean air-fuel ratio operating conditions.
There was a fear that Ox would be discharged. Further, in Japanese Utility Model Laid-Open No. 63-108543, the NOx emission amount is reduced by correcting the increase of the fuel injection amount, and when the lean air-fuel ratio is set to the target air-fuel ratio, the leaning direction of the air-fuel ratio is set. Is the direction of decreasing the NOx concentration, but the decreasing change rate is small, and the lean direction also coincides with the increasing direction of the surge torque (see FIG. 11). Therefore, the NOx concentration decreases in the lean combustion state. There is also a problem that it is difficult to reduce NOx even if the fuel injection amount is corrected.
【0006】また、上記のようなリーン空燃比領域で
は、NOx排出量が許容レベル以下となっている状態で
は、なるべくリーン化を進めて燃費性能を向上させるこ
とが望まれるが、前述のようにリーン化を進めると燃焼
が不安定になって大きなサージトルクを発生させてしま
う惧れがあるため、従来では、経時変化等があっても大
きなサージトルが発生しないように予め余裕を見込んで
リッチ側にリーン目標空燃比を設定するようにしてあ
り、燃費性能を最大限に発揮させることができないとい
う問題もあった。Further, in the lean air-fuel ratio range as described above, it is desired to promote leanness as much as possible to improve the fuel consumption performance when the NOx emission amount is below the allowable level. Since combustion may become unstable and large surge torque may be generated when leaning is advanced, in the past, even if there is a change with time etc., a margin is prepared in advance so that a large surge torque does not occur. Since the lean target air-fuel ratio is set in, there is also a problem that fuel efficiency cannot be maximized.
【0007】本発明は上記問題点に鑑みなされたもので
あり、リーン目標空燃比が設定される運転条件におい
て、NOx排出量の増大を回避でき、また、NOx排出
量を抑制しつつ最大限の燃費性能が得られるようにする
ことを目的とする。The present invention has been made in view of the above problems, and under operating conditions in which a lean target air-fuel ratio is set, an increase in NOx emission amount can be avoided, and the maximum NOx emission amount can be suppressed while being suppressed. The purpose is to obtain fuel efficiency.
【0008】[0008]
【課題を解決するための手段】そのため本発明にかかる
内燃機関の空燃比制御装置は、図1に示すように構成さ
れる。図1において、排気浄化触媒は、機関の排気通路
に介装され少なくとも排気中のNOxを転化する触媒で
あり、この排気浄化触媒の下流側には、排気中のNOx
濃度を検出するNOxセンサを設けてある。Therefore, an air-fuel ratio control system for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, an exhaust purification catalyst is a catalyst that is interposed in an exhaust passage of an engine and converts at least NOx in exhaust gas. NOx in exhaust gas is provided downstream of the exhaust purification catalyst.
An NOx sensor for detecting the concentration is provided.
【0009】また、リーン燃焼制御手段は、所定のリー
ン燃焼運転領域において理論空燃比よりもリーンな空燃
比を目標空燃比として機関吸入混合気の空燃比を制御す
る。また、機関の吸入空気量を検出する吸入空気量検出
手段が設けられており、NOx排出量演算手段は、該吸
入空気量検出手段で検出された吸入空気量と前記NOx
センサで検出されたNOx濃度とに基づいて所定時間当
たりのNOx排出量を演算する。Further, the lean combustion control means controls the air-fuel ratio of the engine intake air-fuel mixture with the air-fuel ratio leaner than the stoichiometric air-fuel ratio as the target air-fuel ratio in the predetermined lean combustion operation region. Further, an intake air amount detecting means for detecting an intake air amount of the engine is provided, and the NOx emission amount calculating means is provided with the intake air amount detected by the intake air amount detecting means and the NOx.
The NOx emission amount per predetermined time is calculated based on the NOx concentration detected by the sensor.
【0010】そして、空燃比変更手段は、前記リーン燃
焼制御手段によりリーン空燃比に制御されているときに
前記NOx排出量演算手段で演算された所定時間当たり
のNOx排出量が、所定の基準排出量を越えると判別し
たときに、前記所定のリーン燃焼運転領域における目標
空燃比を変化させる。ここで、前記排気浄化触媒が三元
触媒作用を有する触媒である場合は、前記所定時間当た
りのNOx排出量が所定の基準排出量を越えると判別し
たときに、前記所定のリーン燃焼運転領域における目標
空燃比を前記リーン空燃比から理論空燃比に切り換える
よう構成すると良い。The air-fuel ratio changing means determines the NOx emission amount per predetermined time period calculated by the NOx emission amount calculating means when the lean air-fuel ratio is controlled by the lean combustion control means. When it is determined that the amount exceeds the target amount, the target air-fuel ratio in the predetermined lean combustion operation region is changed. Here, when the exhaust purification catalyst is a catalyst having a three-way catalytic action, when it is determined that the NOx emission amount per the predetermined time exceeds the predetermined reference emission amount, in the predetermined lean combustion operation region. The target air-fuel ratio may be switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio.
【0011】また、機関の出力変動を検出する出力変動
検出手段を設けると共に、前記リーン燃焼制御手段によ
りリーン空燃比に制御されているときに前記NOx排出
量演算手段で演算された所定時間当たりのNOx排出量
が、所定の基準排出量以下であると判別したときに、前
記所定のリーン燃焼運転領域における目標リーン空燃比
を前記出力変動検出手段で検出される出力変動が許容レ
ベルを越えない範囲でリーン化させる出力変動による空
燃比変更手段を設けて構成することが好ましい。Further, an output fluctuation detecting means for detecting an output fluctuation of the engine is provided, and when the lean air-fuel ratio is controlled to the lean air-fuel ratio by the lean combustion control means, a predetermined time period calculated by the NOx emission amount calculating means is calculated. When it is determined that the NOx emission amount is equal to or less than a predetermined reference emission amount, the target lean air-fuel ratio in the predetermined lean combustion operation region is within a range in which the output fluctuation detected by the output fluctuation detecting means does not exceed an allowable level. It is preferable to provide an air-fuel ratio changing means depending on the output variation that makes the engine lean.
【0012】更に、前記所定の基準排出量を、機関運転
条件に基づいて可変設定する基準排出量可変設定手段を
設けて構成すると良い。Further, it is preferable to provide a reference emission amount variable setting means for variably setting the predetermined reference emission amount based on engine operating conditions.
【0013】[0013]
【作用】かかる構成の空燃比制御装置によると、所定の
リーン燃焼運転領域においてリーン空燃比に制御されて
いるときの所定時間当たりのNOx排出量が基準排出量
を越えるようになると、前記リーン燃焼運転領域におけ
る目標空燃比の変更が行われ、かかる空燃比の変更によ
ってNOx排出量の低減が図れる。According to the air-fuel ratio control device having such a configuration, when the NOx emission amount per predetermined time exceeds the reference emission amount when the lean air-fuel ratio is controlled in the predetermined lean combustion operation region, the lean combustion is performed. The target air-fuel ratio is changed in the operating region, and the NOx emission amount can be reduced by changing the air-fuel ratio.
【0014】特に、排気浄化触媒が三元触媒作用を有し
ているときには、前記目標空燃比の変更をリーン空燃比
から理論空燃比への変更とすれば、理論空燃比燃焼と三
元触媒作用との組み合わせによってNOxを含む排気有
害成分を高い転化率で浄化して排気性状の改善を図れ
る。また、初期設定されたリーン空燃比で運転させても
NOx排出量が基準排出量を越えないような場合には、
通常にリーン空燃比に制御するが、このときに機関の出
力変動を検出し、かかる出力変動が許容レベルを越えな
い範囲で前記リーン目標空燃比をリーン化させる。即
ち、リーン空燃比領域では、リーン化を進めると燃費向
上を果たせるが、逆に燃焼が不安定になるので、機関の
出力変動を監視しながら、リーン化を進めることで、許
容レベルを越える出力変動の発生を回避しつつ、最大限
にリーン化を進めることができるようにした。In particular, when the exhaust purification catalyst has a three-way catalytic action, if the target air-fuel ratio is changed from the lean air-fuel ratio to the stoichiometric air-fuel ratio, the theoretical air-fuel ratio combustion and the three-way catalytic action are performed. By combining with, exhaust harmful components including NOx can be purified at a high conversion rate to improve exhaust properties. Also, if the NOx emission amount does not exceed the reference emission amount even if the engine is operated at the initially set lean air-fuel ratio,
Normally, the lean air-fuel ratio is controlled, but at this time, the output fluctuation of the engine is detected, and the lean target air-fuel ratio is made lean in a range in which the output fluctuation does not exceed the allowable level. That is, in the lean air-fuel ratio region, fuel efficiency can be improved by promoting leaning, but on the contrary, combustion becomes unstable, so by advancing leaning while monitoring output fluctuation of the engine, output exceeding the allowable level can be achieved. We have made it possible to maximize leanness while avoiding fluctuations.
【0015】更に、演算されるNOx排出量を判別する
ための基準排出量を機関運転条件に基づいて可変設定す
ることで、NOx排出量の判別精度を高め、真に必要な
ときに限って空燃比の変更を行わせることが可能とな
る。Further, the reference emission amount for discriminating the calculated NOx emission amount is variably set based on the engine operating condition, whereby the discriminating accuracy of the NOx emission amount is improved, and only when it is truly necessary, the empty amount is obtained. It is possible to change the fuel ratio.
【0016】[0016]
【実施例】以下に本発明の実施例を説明する。実施例の
システム構成を示す図2において、V型内燃機関1の各
気筒には、エアクリーナ2,スロットル弁3,吸気マニ
ホールド4を介して空気が吸引される。前記吸気マニホ
ールド4の各ブランチ部には、それぞれ電磁式の燃料噴
射弁5が設けられている。EXAMPLES Examples of the present invention will be described below. In FIG. 2 showing the system configuration of the embodiment, air is sucked into each cylinder of the V-type internal combustion engine 1 through an air cleaner 2, a throttle valve 3 and an intake manifold 4. An electromagnetic fuel injection valve 5 is provided at each branch of the intake manifold 4.
【0017】機関1からの排気は、排気マニホールド6
a,6bによって片バンク毎に集められた後、それぞれ
排気管7a,7bによってマフラ8に導かれる。前記排
気管7a,7bには、それぞれに触媒コンバータ(排気
浄化触媒)9a,9bが介装されている。前記触媒コン
バータ9a,9bは、理論空燃比付近でNOx,HC,
COを同時に高い転化率で浄化する三元触媒作用と、酸
素過剰状態(希薄空燃比燃焼状態)でNOxを還元(転
化)するリーンNOx触媒作用との両方を有するもので
ある。Exhaust gas from the engine 1 is exhausted from an exhaust manifold 6
After being collected for each bank by a and 6b, they are guided to the muffler 8 by exhaust pipes 7a and 7b, respectively. Catalytic converters (exhaust gas purification catalysts) 9a and 9b are provided in the exhaust pipes 7a and 7b, respectively. The catalytic converters 9a, 9b are configured to reduce NOx, HC, and
It has both a three-way catalytic action for simultaneously purifying CO at a high conversion rate and a lean NOx catalytic action for reducing (converting) NOx in an oxygen excess state (lean air-fuel ratio combustion state).
【0018】コントロールユニット10は、マイクロコン
ピュータを内蔵し、各種センサからの検出信号に基づい
て後述のように燃料噴射弁5による燃料噴射量Ti(噴
射パルス幅)を演算し、該燃料噴射量Tiに基づいて燃
料噴射弁5を開駆動制御することで、機関1への燃料供
給を電子制御する。尚、本実施例の機関は、所定の運転
領域においては、理論空燃比よりも大幅にリーンな空燃
比(例えば22)で燃焼させる所謂希薄燃焼機関であり、
前記リーン燃焼運転領域以外では、理論空燃比を目標空
燃比として燃焼を行わせ、加速性能等を確保するように
なっている。The control unit 10 has a built-in microcomputer, calculates a fuel injection amount Ti (injection pulse width) by the fuel injection valve 5 based on detection signals from various sensors, and calculates the fuel injection amount Ti. The fuel supply to the engine 1 is electronically controlled by controlling the open drive of the fuel injection valve 5 based on The engine of this embodiment is a so-called lean burn engine that burns at an air-fuel ratio (for example, 22) that is significantly leaner than the stoichiometric air-fuel ratio in a predetermined operating range.
Except for the lean combustion operation region, combustion is performed with the stoichiometric air-fuel ratio as the target air-fuel ratio to ensure acceleration performance and the like.
【0019】前記各種センサとしては、スロットル弁3
の上流側で機関1の吸入空気量Qaを検出する吸入空気
量検出手段としてのエアフローメータ11、カム軸から機
関回転信号を取り出すクランク角センサ12、機関1の冷
却水温度Twを検出する水温センサ13、排気マニホール
ド6a,6bの集合部にそれぞれ設けられて各バンク毎
に排気中の酸素濃度を検出する酸素センサ14a,14b、
スロットル弁3の開度を検出するポテンショメータ式の
スロットルセンサ15が設けられている。The various sensors include a throttle valve 3
Upstream, the air flow meter 11 as an intake air amount detecting means for detecting the intake air amount Qa of the engine 1, a crank angle sensor 12 for extracting an engine rotation signal from a cam shaft, and a water temperature sensor for detecting a cooling water temperature Tw of the engine 1. 13. Oxygen sensors 14a and 14b, which are respectively provided in the collecting portion of the exhaust manifolds 6a and 6b and detect the oxygen concentration in the exhaust gas for each bank,
A potentiometer-type throttle sensor 15 for detecting the opening of the throttle valve 3 is provided.
【0020】更に、各触媒コンバータ9a,9bにはそ
れぞれその下流側にNOxセンサ16a,16bが設けられ
ている。前記NOxセンサ16a,16bは、半導体式のA
g0.04V2 O5 の薄膜型センサである。かかるNOxセ
ンサは、NOxのセンサ表面への吸着により図3に示す
ように抵抗値が変化する公知のセンサである。Further, each of the catalytic converters 9a and 9b is provided with NOx sensors 16a and 16b on the downstream side thereof. The NOx sensors 16a and 16b are semiconductor type A
It is a thin film type sensor of g 0.04 V 2 O 5 . This NOx sensor is a known sensor whose resistance value changes as shown in FIG. 3 due to the adsorption of NOx on the sensor surface.
【0021】尚、17はアイドル時の吸入空気量を調整す
るためのコントロールバルブであり、スロットル弁3を
バイパスして設けられたバイパス通路18を介して機関1
に供給される補助空気量を調整する。ここで、前記コン
トロールユニット10による燃料噴射制御の構成を簡略化
して図4のブロック図に示してある。Reference numeral 17 is a control valve for adjusting the intake air amount at the time of idling, and the engine 1 is provided through a bypass passage 18 which bypasses the throttle valve 3.
Adjust the amount of auxiliary air supplied to the. Here, the structure of the fuel injection control by the control unit 10 is simplified and shown in the block diagram of FIG.
【0022】図4に示すように、コントロールユニット
10は、クランク角センサ12及びエアフローメータ11の検
出信号に基づいて基本燃料噴射量Tpを演算する基本燃
料噴射量演算手段Aとしての機能、NOxセンサ16a,
16b及びエアフローメータ11の検出信号に基づいてNO
x排出量を演算するNOx排出量演算手段Bとしての機
能、前記基本燃料噴射量演算手段A及びNOx排出量演
算手段Bによる演算結果と水温センサ13の検出信号とに
基づいて最終的な燃料噴射量Tiを演算する噴射量演算
手段C(リーン燃焼制御手段及び空燃比変更手段として
の機能を含む)としての機能、更に、該噴射量演算手段
Cで演算された燃料噴射量Tiに基づいて燃料噴射弁5
を駆動制御する噴射弁駆動制御手段Dとしての機能を有
する。As shown in FIG. 4, the control unit
Reference numeral 10 is a function as a basic fuel injection amount calculation means A for calculating the basic fuel injection amount Tp based on the detection signals of the crank angle sensor 12 and the air flow meter 11, the NOx sensor 16a,
NO based on the detection signals of 16b and the air flow meter 11
The function as the NOx emission amount calculation means B for calculating the x emission amount, the final fuel injection based on the calculation results by the basic fuel injection amount calculation means A and the NOx emission amount calculation means B, and the detection signal of the water temperature sensor 13. A function as an injection amount calculation unit C (including a function as a lean combustion control unit and an air-fuel ratio changing unit) that calculates the amount Ti, and further, a fuel based on the fuel injection amount Ti calculated by the injection amount calculation unit C Injection valve 5
It has a function as an injection valve drive control means D for driving and controlling.
【0023】次に、図5のフローチャートに従って、前
記図4に示す構成に従って行われる燃料噴射制御(空燃
比制御)の様子を詳細に説明する。図5のフローチャー
トにおいて、P1では、エアフローメータ11の検出信号
に基づいて機関1の吸入空気量Qaを検出する。次い
で、P2では、クランク角センサ12の検出信号に基づい
て機関回転数Neを検出する。Next, the state of fuel injection control (air-fuel ratio control) performed according to the configuration shown in FIG. 4 will be described in detail with reference to the flowchart of FIG. In the flowchart of FIG. 5, at P1, the intake air amount Qa of the engine 1 is detected based on the detection signal of the air flow meter 11. Next, at P2, the engine speed Ne is detected based on the detection signal of the crank angle sensor 12.
【0024】そして、P3では、前記機関回転数Neと
吸入空気量Qaとに基づいて前記燃料噴射弁5における
基本噴射量(基本噴射パルス幅)Tp=K×Qa/Ne
(Kは噴射弁5の流量特性に対応する比例定数であ
る。)を演算する。尚、上記P3で演算される基本噴射
量Tpは、理論空燃比相当量として演算されるものとす
る。At P3, the basic injection amount (basic injection pulse width) Tp = K × Qa / Ne in the fuel injection valve 5 is calculated based on the engine speed Ne and the intake air amount Qa.
(K is a proportional constant corresponding to the flow rate characteristic of the injection valve 5.) is calculated. The basic injection amount Tp calculated in P3 is calculated as a stoichiometric air-fuel ratio equivalent amount.
【0025】次のP4では、水温センサ13の検出信号に
基づいて冷却水温度Twを検出する。そして、P5で
は、前記P4で検出した冷却水温度Twが所定温度(例
えば70℃)を越えているか否かを判別する。ここで、前
記冷却水温度Twは、本実施例においてリーン燃焼を行
わせる運転領域を判別するためのパラメータである。
尚、冷却水温度Twの他に、機関負荷,機関回転数Ne
などに基づいてリーン燃焼領域を判別させる構成として
も良い。At the next P4, the cooling water temperature Tw is detected based on the detection signal of the water temperature sensor 13. Then, in P5, it is determined whether or not the cooling water temperature Tw detected in P4 exceeds a predetermined temperature (for example, 70 ° C.). Here, the cooling water temperature Tw is a parameter for determining an operation region in which lean combustion is performed in this embodiment.
In addition to the cooling water temperature Tw, the engine load and the engine speed Ne
The lean combustion region may be determined based on the above.
【0026】冷却水温度Twが所定温度以下である場合
にリーン燃焼を実行させると、機関運転の安定度が大き
く悪化するため、P17へ進み、前記P3で演算された基
本燃料噴射量Tpに基づいて理論空燃比(=14.6)を目
標空燃比とする燃料噴射量Tiの演算を行わせる。前記
P17における燃料噴射量Tiの演算は、冷却水温度Tw
に応じて補正係数や加速増量補正係数などを含んで設定
される各種補正係数COEFや、噴射弁5の電源である
バッテリ電圧に基づき噴射弁5の無効噴射時間を補正す
るために設定される補正分Tsなどによって、P3で演
算された基本燃料噴射量Tpを補正して行われる(Ti
=Tp×COEF+Ts)。If lean combustion is executed when the cooling water temperature Tw is lower than a predetermined temperature, the stability of engine operation is greatly deteriorated. Therefore, the routine proceeds to P17, where the basic fuel injection amount Tp calculated in P3 is used. Then, the fuel injection amount Ti with the stoichiometric air-fuel ratio (= 14.6) as the target air-fuel ratio is calculated. The calculation of the fuel injection amount Ti in P17 is performed by the cooling water temperature Tw.
Various correction coefficients COEF that are set by including a correction coefficient and an acceleration increase correction coefficient, etc., and a correction set to correct the invalid injection time of the injection valve 5 based on the battery voltage that is the power source of the injection valve The basic fuel injection amount Tp calculated in P3 is corrected by the amount Ts or the like (Ti
= Tp x COEF + Ts).
【0027】一方、P5で冷却水温度Twが所定温度を
越えていると判別された場合には、リーン燃焼可能な運
転領域であると判断され、この場合にはP6へ進み、前
記P3で演算された基本燃料噴射量Tpに基づいて、初
期設定されたリーン目標空燃比(本実施例では22)を目
標空燃比とする燃料噴射量Tiの演算(Ti=(14.6/
22)×Tp×COEF+Ts)を行わせる。On the other hand, when it is determined at P5 that the cooling water temperature Tw exceeds the predetermined temperature, it is determined that the operating range is in the lean combustion mode. In this case, the process proceeds to P6 and the operation is performed at P3. Based on the calculated basic fuel injection amount Tp, calculation of the fuel injection amount Ti with the initially set lean target air-fuel ratio (22 in this embodiment) as the target air-fuel ratio (Ti = (14.6 /
22) × Tp × COEF + Ts).
【0028】次のP7では、タイマによる計測時間Tm
が所定時間(例えば4秒)以上となっているか否かを判
別させる。そして、計測時間Tmが所定時間以上となっ
ているときには、P8で計測時間Tmをゼロリセットし
てからP9へ進む。P9では、NOxセンサ16a,16b
の出力VRn,VLnを測定し、P10では、かかる出力
VRn,VLnの平均値VAn(=(VRn+VLn)/2)を演
算する。At the next P7, the time measured by the timer Tm
Is determined for a predetermined time (for example, 4 seconds) or more. When the measured time Tm is equal to or longer than the predetermined time, the measured time Tm is reset to zero at P8, and then the process proceeds to P9. In P9, the NOx sensors 16a, 16b
Of the outputs V Rn and V Ln are measured, and at P10, an average value V An (= (V Rn + V Ln ) / 2) of the outputs V Rn and V Ln is calculated.
【0029】尚、出力の添字のnは、測定タイミングに
対応する値を示すものとする。次のP11では、前記平均
値VAnの移動平均値KVAnを、以下の式に従って演算す
る。 KVAn=(79/80)×KVAn-1+(1/80)×VAn 上記演算式で、KVAn-1は移動平均値KVAnの前回値で
ある。また、本実施例では、図5のフローチャートに示
すプログラムが50ms毎に割込み実行される設定となっ
ており、また、4秒間の濃度平均値を求めるから、濃度
検出値のデータ数は4sec /50ms=80となるため、上記
の重み係数を用いている。The subscript n of the output indicates a value corresponding to the measurement timing. At the next P11, the moving average value KV An of the average value V An is calculated according to the following equation. KV An = (79/80) × KV An-1 + (1/80) × V An In the above equation, KV An-1 is the previous value of the moving average value KV An . Further, in the present embodiment, the program shown in the flowchart of FIG. 5 is set to be interrupted every 50 ms, and since the density average value for 4 seconds is calculated, the number of data of density detection values is 4 sec / 50 ms. = 80, the above weighting coefficient is used.
【0030】また、P12では、P11と同様にして、吸入
空気量Qaの移動平均値KQaを以下の式に従って演算
する。 KQa=(79/80)×KQa-1+(1/80)×Qa P13では、前記計測時間Tmに本プログラムの実行周期
50msを加算して計測時間Tmのカウントアップを行わ
せる。Further, in P12, the moving average value KQa of the intake air amount Qa is calculated in accordance with the following equation, as in P11. KQa = (79/80) × KQa −1 + (1/80) × Qa In P13, in the measurement time Tm, the execution cycle of this program
Add 50 ms to count up the measurement time Tm.
【0031】次のP14では、前記P13におけるカウント
アップの結果、計測時間TmがNOx排出量の演算周期
である4秒を越えたか否かを判別する。計測時間Tmが
4秒未満である場合には、NOx濃度の移動平均値KV
An及び吸入空気量Qaの移動平均値KQaの演算結果に
基づいてNOx排出量を演算させることなく、そのまま
本プログラムを終了させる。At the next P14, as a result of the count-up at P13, it is judged whether or not the measured time Tm exceeds 4 seconds which is the calculation cycle of the NOx emission amount. When the measurement time Tm is less than 4 seconds, the moving average value KV of the NOx concentration
The present program is terminated without calculating the NOx emission amount based on the calculation result of An and the moving average value KQa of the intake air amount Qa.
【0032】一方、計測時間Tmが4秒を越えた場合に
は、P15へ進み、NOx排出量を判別させるための基準
排出量S/Lを、予め機関回転数Neと基本燃料噴射量
Tpとに基づき複数に区分される運転領域毎に前記基準
排出量S/Lを記憶したマップ(図6参照)を参照する
ことで求める。尚、前記基準排出量S/Lは、運転条件
毎のNOx排出量の許容レベルに対応させてあり、この
ようにして基準排出量S/Lを機関運転条件に応じて可
変設定することで、後述する目標空燃比の変更が真に必
要な場合に限って行われるようにできる。前記P15の機
能が、本実施例における基準排出量可変設定手段に相当
する。On the other hand, when the measured time Tm exceeds 4 seconds, the routine proceeds to P15, where the reference emission amount S / L for discriminating the NOx emission amount is previously set to the engine speed Ne and the basic fuel injection amount Tp. It is determined by referring to a map (see FIG. 6) in which the reference emission amount S / L is stored for each of the operation regions divided into a plurality of regions based on the above. The reference emission amount S / L is made to correspond to the allowable level of NOx emission amount for each operating condition, and thus the reference emission amount S / L is variably set according to the engine operating condition. The target air-fuel ratio, which will be described later, can be changed only when it is truly necessary. The function of P15 corresponds to the reference emission amount variable setting means in this embodiment.
【0033】次のP16では、前記NOx濃度の移動平均
値KVAnと吸入空気量Qaの移動平均値KQaとを乗算
して求められるNOx排出量(=KVAn×KQa)、即
ち、4秒間におけるNOx排出量と、前記基準排出量S
/Lとを比較する。ここで、NOx濃度の検出結果と吸
入空気量Qaとから予測演算されたNOx排出量が、基
準排出量S/L以下であると判別された場合には、NO
x排出量が許容レベル内にあることを示すから、リーン
空燃比燃焼を継続させるべく、本プログラムをそのまま
終了させる。At the next P16, the NOx emission amount (= KV An × KQa) obtained by multiplying the moving average value KV An of the NOx concentration by the moving average value KQa of the intake air amount Qa, that is, in 4 seconds. NOx emission amount and the reference emission amount S
Compare with / L. Here, if it is determined that the NOx emission amount predicted and calculated from the detection result of the NOx concentration and the intake air amount Qa is equal to or less than the reference emission amount S / L, NO
Since it indicates that the x emission amount is within the allowable level, this program is ended as it is in order to continue the lean air-fuel ratio combustion.
【0034】一方、前記予測演算されたNOx排出量
が、基準排出量S/Lを越えると判別された場合には、
このままリーン空燃比燃焼を継続させると、許容レベル
を越える量のNOxが排出されてしまうことになるの
で、P17へ進み、理論空燃比を目標空燃比とする燃料噴
射量Tiの演算を行わせ、本来のリーン燃焼運転領域に
おいて理論空燃比を目標空燃比とする噴射制御に切り換
える。On the other hand, if it is determined that the predicted NOx emission amount exceeds the reference emission amount S / L,
If the lean air-fuel ratio combustion is continued as it is, NOx in an amount exceeding the allowable level will be emitted, so the routine proceeds to P17, in which the fuel injection amount Ti with the theoretical air-fuel ratio as the target air-fuel ratio is calculated, The injection control is switched to the stoichiometric air-fuel ratio as the target air-fuel ratio in the original lean combustion operation region.
【0035】即ち、リーン燃焼運転領域において、触媒
コンバータ9a,9bにおけるリーンNOx触媒作用の
低下や、リーン燃焼状態における機関からのNOx排出
量の増大などによって、許容レベルを越える量のNOx
が排出されるようになると、リーン燃焼運転領域での目
標空燃比を理論空燃比よりもリーンな空燃比から理論空
燃比に切り換え、理論空燃比による燃焼と三元触媒作用
との組み合わせで、NOxを含めた排気有害成分を高い
転化率で転化させて、良好な排気性状が得られるように
するものである。That is, in the lean combustion operation region, the amount of NOx exceeding the allowable level is reduced due to a decrease in lean NOx catalytic action in the catalytic converters 9a and 9b and an increase in NOx emission amount from the engine in the lean combustion state.
When the exhaust gas becomes exhausted, the target air-fuel ratio in the lean-burn operation region is switched from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio, and combustion by the stoichiometric air-fuel ratio and three-way catalytic action are combined to generate NOx. It is intended to obtain good exhaust gas properties by converting exhaust gas harmful components including the above at a high conversion rate.
【0036】従って、リーン燃焼を行わせてもNOx排
出量が許容レベルを越えることがないような条件のとき
には、リーン燃焼によって良好な燃費性能を得ることが
でき、また、かかるリーン燃焼でNOx排出量が許容レ
ベルを越えるようになると、理論空燃比への切り換えを
行って、良好な排気性状を維持できるようになる。とこ
ろで、上記実施例では、NOx濃度と機関の吸入空気量
とから予測演算されたNOx排出量が基準排出量を下回
るときには、初期設定されたリーン空燃比を目標空燃比
としてリーン燃焼を行わせる構成としたが、同じリーン
燃焼状態であっても、目標リーン空燃比のリーン化を進
めることで、燃費性能をより向上させることができる。
しかしながら、リーン化を進めると、燃焼がより不安定
になって大きなサージトルクを発生させてしまう惧れが
ある(図11参照)。Therefore, under the condition that the NOx emission amount does not exceed the allowable level even if the lean combustion is performed, good fuel economy performance can be obtained by the lean combustion, and the NOx emission can be achieved by the lean combustion. When the amount exceeds the permissible level, the stoichiometric air-fuel ratio is switched to maintain good exhaust properties. By the way, in the above embodiment, when the NOx emission amount predicted and calculated from the NOx concentration and the intake air amount of the engine is lower than the reference emission amount, the lean combustion is performed with the initially set lean air-fuel ratio as the target air-fuel ratio. However, even in the same lean combustion state, the fuel efficiency can be further improved by promoting the lean lean target air-fuel ratio.
However, as the lean system progresses, there is a fear that combustion becomes more unstable and a large surge torque is generated (see Fig. 11).
【0037】そこで、サージトルクの発生を抑止しつ
つ、目標リーン空燃比のリーン化を進めることができる
ようにした第2実施例を以下に説明する。図7のブロッ
ク図は、第2実施例における前記コントロールユニット
10による燃料噴射制御の構成を簡略化して示す図であ
る。この図7においては、前述の第1実施例に対応する
図4の構成ブロック図に対して、クランク角センサ12の
出力に基づいて機関の出力変動(安定度)を検出する出
力変動検出手段Eを追加して構成され、噴射演算手段C
は、NOx排出量演算手段B,基本燃料噴射量演算手段
A,出力変動検出手段E及び水温センサ13の出力に基づ
いて噴射量を演算するようになっている。尚、第2実施
例において、出力変動による空燃比変更手段としての機
能は、図7に示す噴射量演算手段Cに含まれることにな
る。Therefore, a second embodiment will be described below in which the target lean air-fuel ratio can be made leaner while suppressing the generation of surge torque. The block diagram of FIG. 7 shows the control unit in the second embodiment.
FIG. 3 is a diagram showing a simplified configuration of fuel injection control by 10. In FIG. 7, an output fluctuation detecting means E for detecting an output fluctuation (stability) of the engine based on the output of the crank angle sensor 12 is added to the configuration block diagram of FIG. 4 corresponding to the first embodiment described above. And an injection calculation means C
Is configured to calculate the injection amount based on the outputs of the NOx emission amount calculation means B, the basic fuel injection amount calculation means A, the output fluctuation detection means E, and the water temperature sensor 13. Incidentally, in the second embodiment, the function as the air-fuel ratio changing means due to the output fluctuation is included in the injection amount calculating means C shown in FIG.
【0038】次に、第2実施例における噴射量制御(空
燃比制御)の詳細を、図8のフローチャートに従って説
明する。図8のフローチャートにおいて、P21では、エ
アフローメータ11の検出信号に基づいて機関1の吸入空
気量Qaを検出する。次いで、P22では、クランク角セ
ンサ12の検出信号に基づいて機関回転数Neを検出す
る。Next, details of the injection amount control (air-fuel ratio control) in the second embodiment will be described with reference to the flowchart of FIG. In the flowchart of FIG. 8, at P21, the intake air amount Qa of the engine 1 is detected based on the detection signal of the air flow meter 11. Next, at P22, the engine speed Ne is detected based on the detection signal of the crank angle sensor 12.
【0039】そして、P23では、前記機関回転数Neと
吸入空気量Qaとに基づいて前記燃料噴射弁5における
基本噴射量(基本噴射パルス幅)Tp=K×Qa/Ne
(Kは噴射弁5の流量特性に対応する比例定数であ
る。)を演算する。尚、上記P23で演算される基本噴射
量Tpは、理論空燃比相当量として演算されるものとす
る。At P23, the basic injection amount (basic injection pulse width) Tp = K × Qa / Ne in the fuel injection valve 5 is calculated based on the engine speed Ne and the intake air amount Qa.
(K is a proportional constant corresponding to the flow rate characteristic of the injection valve 5.) is calculated. The basic injection amount Tp calculated in P23 is calculated as the theoretical air-fuel ratio equivalent amount.
【0040】次のP24では、基本燃料噴射量Tpの単位
時間当たりの変化量ΔTpの絶対値が所定値以下である
か否を判別する。前記変化量ΔTpの絶対値が所定値を
越える場合には、機関の加減速運転時であると判別さ
れ、この場合には、P38へ進んで、前記P23で演算され
た基本燃料噴射量Tpに基づいて理論空燃比(=14.6)
を目標空燃比とする燃料噴射量Ti(=Tp×COEF
+Ts)の演算を行わせる。At the next P24, it is determined whether or not the absolute value of the variation ΔTp of the basic fuel injection amount Tp per unit time is less than or equal to a predetermined value. When the absolute value of the change amount ΔTp exceeds a predetermined value, it is determined that the engine is in acceleration / deceleration operation. In this case, the routine proceeds to P38, where the basic fuel injection amount Tp calculated in P23 is set. Based on the theoretical air-fuel ratio (= 14.6)
Fuel injection amount Ti (= Tp × COEF
+ Ts) is calculated.
【0041】即ち、第2実施例では、機関の加減速運転
時には、理論空燃比を目標空燃比として制御するもので
あり、また、リーン燃焼運転を定常運転時に限定するこ
とで、空燃比のリーン化による燃焼安定性の悪化を判別
できるようにしてある。P24で変化量ΔTpから機関が
定常運転状態であると判別されたときには、P25へ進
み、水温センサ13の検出信号に基づいて冷却水温度Tw
を検出する。That is, in the second embodiment, the stoichiometric air-fuel ratio is controlled as the target air-fuel ratio during the acceleration / deceleration operation of the engine, and the lean combustion operation is limited to the steady operation so that the lean air-fuel ratio is lean. The deterioration of the combustion stability due to the combustion is discriminated. When it is determined at P24 that the engine is in the steady operation state from the change amount ΔTp, the routine proceeds to P25, where the cooling water temperature Tw is detected based on the detection signal of the water temperature sensor 13.
To detect.
【0042】そして、P26では、前記P25で検出した冷
却水温度Twが所定温度(例えば70℃)を越えているか
否かを判別する。冷却水温度Twが所定温度以下である
場合にリーン燃焼を実行させると、機関運転の安定度が
大きく悪化するため、P38へ進み、前記P23で演算され
た基本燃料噴射量Tpに基づいて理論空燃比(=14.6)
を目標空燃比とする燃料噴射量Tiの演算を行わせる。Then, in P26, it is determined whether or not the cooling water temperature Tw detected in P25 exceeds a predetermined temperature (for example, 70 ° C.). If lean combustion is executed when the cooling water temperature Tw is lower than or equal to a predetermined temperature, the stability of engine operation is greatly deteriorated. Therefore, the routine proceeds to P38, and the theoretical empty amount is calculated based on the basic fuel injection amount Tp calculated in P23. Fuel ratio (= 14.6)
Is calculated as the target air-fuel ratio.
【0043】一方、P26で冷却水温度Twが所定温度を
越えていると判別された場合には、リーン燃焼可能な運
転領域であると判断され、この場合にはP27へ進み、前
記P23で演算された基本燃料噴射量Tp(理論空燃比相
当値)に基づいて、初期設定されたリーン空燃比(本実
施例では22)を目標空燃比とする燃料噴射量Tiの演算
(Ti=(14.6/22)×Tp×COEF×βn+Ts)
を行わせる。On the other hand, when it is determined at P26 that the cooling water temperature Tw exceeds the predetermined temperature, it is determined that the operating region is in the lean combustion mode. In this case, the process proceeds to P27 and the operation is performed at P23. Based on the calculated basic fuel injection amount Tp (theoretical air-fuel ratio equivalent value), calculation of the fuel injection amount Ti with the initially set lean air-fuel ratio (22 in this embodiment) as the target air-fuel ratio (Ti = (14.6 / 22) x Tp x COEF x βn + Ts)
To perform.
【0044】尚、前記演算式におけるβn(初期値=1.
0 )は、初期設定されたリーン目標空燃比(=22)を修
正するための係数であり、後述するようにリーン燃焼状
態における出力変動の検出結果に基づいて可変設定され
るようになっている。次のP28からP37までにおけるN
Ox排出量の推定演算は、前述の図5のフローチャート
におけるP7〜P16と同様であるので、ここでは説明を
省略する。It should be noted that βn (initial value = 1.
0) is a coefficient for correcting the initially set lean target air-fuel ratio (= 22), and is variably set based on the output variation detection result in the lean combustion state, as will be described later. . N from next P28 to P37
The estimation calculation of the Ox emission amount is the same as that of P7 to P16 in the flowchart of FIG. 5 described above, and thus the description thereof is omitted here.
【0045】P37で、推定演算されたNOx排出量(=
KVAn×KQa)と前記基準排出量S/Lとを比較し、
NOx排出量が基準排出量を上回るときには、P38へ進
んで、リーン燃焼領域における目標空燃比を強制的に理
論空燃比に切り換えて、NOx排出量の低下を図る。一
方、P37で、推定演算されたNOx排出量(=KVAn×
KQa)が前記基準排出量S/L以下であると判別され
たときには、そのままリーン燃焼を継続させ得る状態で
あるが、本実施例では、次にP39へ進む。In P37, the estimated NOx emission amount (=
KV An × KQa) and the standard emission amount S / L are compared,
When the NOx emission amount exceeds the reference emission amount, the routine proceeds to P38, where the target air-fuel ratio in the lean combustion region is forcibly switched to the stoichiometric air-fuel ratio to reduce the NOx emission amount. On the other hand, in P37, the estimated NOx emission amount (= KV An ×
When it is determined that KQa) is equal to or less than the reference emission amount S / L, it is in a state where the lean combustion can be continued as it is, but in the present embodiment, the process proceeds to P39.
【0046】P39では、クランク角センサ12の出力によ
り回転変動(ωn)を演算する。図9に示すように、各
気筒の爆発サイクル中の最大回転数(最大回転速度)と
最小回転数(最小回転速度)との差Δωは図示トルクの
値(出力変動)に相関し、前記差Δωの標準偏差σΔω
に基づいて図10に示すように機関の安定度を判別し得
る。At P39, the rotation fluctuation (ωn) is calculated from the output of the crank angle sensor 12. As shown in FIG. 9, the difference Δω between the maximum rotation speed (maximum rotation speed) and the minimum rotation speed (minimum rotation speed) during the explosion cycle of each cylinder is correlated with the indicated torque value (output fluctuation), and the difference Standard deviation of Δω σΔω
Based on the above, the stability of the engine can be determined as shown in FIG.
【0047】そこで、P40では、前記標準偏差σΔωと
所定値とを比較し、所定値を上回るとき、即ち、機関の
出力変動が大きい不安定状態のときには、前記リーン空
燃比を目標空燃比とする噴射量の演算(P27)で用いる
係数βnを所定値Δβだけ大きくして、空燃比をリッチ
側に修正する。かかるリッチ修正によって燃焼を安定化
させ、機関運転の安定度が確保できるようにする。Therefore, at P40, the standard deviation σΔω is compared with a predetermined value, and when it exceeds the predetermined value, that is, when the output fluctuation of the engine is large and unstable, the lean air-fuel ratio is set as the target air-fuel ratio. The coefficient βn used in the calculation of the injection amount (P27) is increased by a predetermined value Δβ to correct the air-fuel ratio to the rich side. The rich correction stabilizes the combustion and ensures the stability of engine operation.
【0048】一方、P40で、前記標準偏差σΔωが所定
値以下であると判別されたとき、即ち、機関の出力変動
が十分に小さな安定状態のときには、前記係数βnを所
定値Δβだけ小さくして、空燃比をリーン側に修正する
ことで、リーン化を進めて燃費性能の向上を図る。上記
の係数βnの制御によって、許容レベルを越える出力変
動が発生することを回避しつつ、最大限に目標リーン空
燃比をリーン化させることができる。On the other hand, when it is judged at P40 that the standard deviation σΔω is less than or equal to the predetermined value, that is, when the output fluctuation of the engine is in a sufficiently small stable state, the coefficient βn is reduced by the predetermined value Δβ. , By modifying the air-fuel ratio to the lean side, we will promote leanness and improve fuel efficiency. By controlling the coefficient βn, it is possible to make the target lean air-fuel ratio lean to the maximum while avoiding the occurrence of output fluctuation exceeding the allowable level.
【0049】このように、上記第2実施例では、リーン
燃焼領域で理論空燃比への切り換えを行わなくても、N
Ox排出量が十分に低いときには、そのときの出力変動
から更にリーン化を進めることができるか否かを判別
し、出力変動が許容レベルを越えるぎりぎりまでリーン
化を進めて、最大限の燃費性能を引き出せるようにして
ある。As described above, in the second embodiment described above, even if the stoichiometric air-fuel ratio is not switched in the lean combustion region,
When the amount of Ox emission is sufficiently low, it is judged from the output fluctuation at that time whether or not the lean conversion can be further advanced, and the lean conversion is advanced until the output fluctuation exceeds the allowable level to maximize the fuel efficiency. So that you can pull out.
【0050】尚、機関の出力変動の検出は、上記の回転
数による方法に限定されるものではなく、筒内圧やトル
クセンサで検出される出力軸トルクなどをパラメータと
して検出しても良く、公知の種々の出力変動検出方法を
用いることができる。It should be noted that the detection of the engine output fluctuation is not limited to the method based on the rotational speed described above, and the cylinder internal pressure or the output shaft torque detected by the torque sensor may be detected as a parameter. It is possible to use the various output fluctuation detection methods described above.
【0051】[0051]
【発明の効果】以上説明したように、本発明によると、
リーン燃焼運転領域でNOxが許容量を越えて排出され
ることを回避でき、排気性状を良好に維持できる一方、
出力変動からリーン目標空燃比を修正することで、NO
x排出量及び出力変動を抑制しつつリーン化を進めて、
燃費性能を改善できるという効果がある。As described above, according to the present invention,
It is possible to prevent NOx from being emitted in excess of the allowable amount in the lean combustion operation region, and to maintain good exhaust properties,
By correcting the lean target air-fuel ratio from the output fluctuation, NO
x Promoting leanness while suppressing emissions and output fluctuations,
This has the effect of improving fuel efficiency.
【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing the basic configuration of the present invention.
【図2】実施例のシステム構成を示す概略図。FIG. 2 is a schematic diagram showing a system configuration of an embodiment.
【図3】NOxセンサの特性を示す線図。FIG. 3 is a diagram showing characteristics of a NOx sensor.
【図4】第1実施例の構成を示すブロック図。FIG. 4 is a block diagram showing the configuration of the first embodiment.
【図5】第1実施例の噴射制御を示すフローチャート。FIG. 5 is a flowchart showing injection control of the first embodiment.
【図6】NOx基準排出量を記憶したマップを示す図。FIG. 6 is a diagram showing a map that stores NOx standard emission amounts.
【図7】第2実施例の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of a second embodiment.
【図8】第2実施例の噴射制御を示すフローチャート。FIG. 8 is a flowchart showing injection control of the second embodiment.
【図9】回転変動の様子を示す線図。FIG. 9 is a diagram showing how the rotation changes.
【図10】回転変動と機関安定度との関係を示す線図。FIG. 10 is a diagram showing a relationship between rotational fluctuation and engine stability.
【図11】NOx濃度,サージトルク,空燃比の関係を示
す線図。FIG. 11 is a diagram showing the relationship between NOx concentration, surge torque, and air-fuel ratio.
1 内燃機関 5 燃料噴射弁 9a,9b 触媒コンバータ(排気浄化触媒) 10 コントロールユニット 11 エアフローメータ 12 クランク角センサ 13 水温センサ 16a,16b NOxセンサ 1 Internal Combustion Engine 5 Fuel Injection Valve 9a, 9b Catalytic Converter (Exhaust Gas Purification Catalyst) 10 Control Unit 11 Air Flow Meter 12 Crank Angle Sensor 13 Water Temperature Sensor 16a, 16b NOx Sensor
Claims (4)
中のNOxを転化する排気浄化触媒と、 所定のリーン燃焼運転領域において理論空燃比よりもリ
ーンな空燃比を目標空燃比として機関吸入混合気の空燃
比を制御するリーン燃焼制御手段と、 前記排気浄化触媒の下流側で排気中のNOx濃度を検出
するNOxセンサと、 機関の吸入空気量を検出する吸入空気量検出手段と、 該吸入空気量検出手段で検出された吸入空気量と前記N
Oxセンサで検出されたNOx濃度とに基づいて所定時
間当たりのNOx排出量を演算するNOx排出量演算手
段と、 前記リーン燃焼制御手段によりリーン空燃比に制御され
ているときに前記NOx排出量演算手段で演算された所
定時間当たりのNOx排出量が、所定の基準排出量を越
えると判別したときに、前記所定のリーン燃焼運転領域
における目標空燃比を変化させる空燃比変更手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。1. An exhaust purification catalyst which is provided in an exhaust passage of an engine and which converts at least NOx in exhaust gas, and an engine intake mixing which uses an air-fuel ratio leaner than a theoretical air-fuel ratio as a target air-fuel ratio in a predetermined lean combustion operation region. Lean combustion control means for controlling the air-fuel ratio of air; NOx sensor for detecting the NOx concentration in the exhaust gas downstream of the exhaust purification catalyst; intake air amount detection means for detecting the intake air amount of the engine; The intake air amount detected by the air amount detecting means and the N
NOx emission amount calculation means for calculating the NOx emission amount per predetermined time based on the NOx concentration detected by the Ox sensor; and the NOx emission amount calculation when the lean air-fuel ratio is controlled by the lean combustion control means. An air-fuel ratio changing means for changing the target air-fuel ratio in the predetermined lean combustion operation range when it is determined that the NOx emission amount per predetermined time calculated by the means exceeds a predetermined reference emission amount. An air-fuel ratio control device for an internal combustion engine, which is configured.
触媒であって、前記空燃比変更手段が、前記所定時間当
たりのNOx排出量が所定の基準排出量を越えると判別
したときに、前記所定のリーン燃焼運転領域における目
標空燃比を前記リーン空燃比から理論空燃比に切り換え
ることを特徴とする請求項1記載の内燃機関の空燃比制
御装置。2. The exhaust purification catalyst is a catalyst having a three-way catalytic action, and when the air-fuel ratio changing means determines that the NOx emission amount per the predetermined time exceeds a predetermined reference emission amount, The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the target air-fuel ratio in the predetermined lean combustion operation region is switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio.
段と、 前記リーン燃焼制御手段によりリーン空燃比に制御され
ているときに前記NOx排出量演算手段で演算された所
定時間当たりのNOx排出量が、所定の基準排出量以下
であると判別したときに、前記所定のリーン燃焼運転領
域における目標リーン空燃比を前記出力変動検出手段で
検出される出力変動が許容レベルを越えない範囲でリー
ン化させる出力変動による空燃比変更手段と、 を設けたことを特徴とする請求項1又は2のいずれかに
記載の内燃機関の空燃比制御装置。3. An output fluctuation detecting means for detecting an output fluctuation of the engine, and NOx emission per predetermined time period calculated by the NOx emission amount calculating means when the lean air-fuel ratio is controlled by the lean combustion control means. When it is determined that the amount is less than or equal to a predetermined reference emission amount, the target lean air-fuel ratio in the predetermined lean combustion operation region is lean within a range in which the output fluctuation detected by the output fluctuation detecting means does not exceed an allowable level. 3. An air-fuel ratio control device for an internal combustion engine according to claim 1, further comprising:
基づいて可変設定する基準排出量可変設定手段を設けた
ことを特徴とする請求項1,2又は3のいずれかに記載
の内燃機関の空燃比制御装置。4. The internal combustion engine according to claim 1, further comprising a reference emission amount variable setting means for variably setting the predetermined reference emission amount based on engine operating conditions. Air-fuel ratio control system for engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21390893A JPH0763096A (en) | 1993-08-30 | 1993-08-30 | Air-fuel ratio controller of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21390893A JPH0763096A (en) | 1993-08-30 | 1993-08-30 | Air-fuel ratio controller of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0763096A true JPH0763096A (en) | 1995-03-07 |
Family
ID=16647024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21390893A Pending JPH0763096A (en) | 1993-08-30 | 1993-08-30 | Air-fuel ratio controller of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0763096A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0814248A2 (en) * | 1996-06-21 | 1997-12-29 | Ngk Insulators, Ltd. | Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means |
EP0936349A2 (en) † | 1998-02-12 | 1999-08-18 | Nissan Motor Company, Limited | Method and system for diagnosing deterioration of NOx catalyst |
EP1134396A1 (en) * | 2000-03-17 | 2001-09-19 | Ford Global Technologies, Inc., A subsidiary of Ford Motor Company | Method and apparatus for measuring lean-burn engine emissions |
KR100405689B1 (en) * | 2001-03-13 | 2003-11-14 | 기아자동차주식회사 | The equipment of decreasing exhaust fumes using nox sensor and the method thereof |
KR100517040B1 (en) * | 2001-10-15 | 2005-09-26 | 도요다 지도샤 가부시끼가이샤 | Exhaust gas purification system for internal combustion engine |
-
1993
- 1993-08-30 JP JP21390893A patent/JPH0763096A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0814248A2 (en) * | 1996-06-21 | 1997-12-29 | Ngk Insulators, Ltd. | Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means |
EP0814248A3 (en) * | 1996-06-21 | 1999-10-06 | Ngk Insulators, Ltd. | Method of controlling an engine exhaust gas system and method of detecting deterioration of catalyst/adsorbing means |
EP0936349A2 (en) † | 1998-02-12 | 1999-08-18 | Nissan Motor Company, Limited | Method and system for diagnosing deterioration of NOx catalyst |
EP0936349B2 (en) † | 1998-02-12 | 2009-12-16 | Nissan Motor Company, Limited | Method and system for diagnosing deterioration of NOx catalyst |
EP1134396A1 (en) * | 2000-03-17 | 2001-09-19 | Ford Global Technologies, Inc., A subsidiary of Ford Motor Company | Method and apparatus for measuring lean-burn engine emissions |
KR100405689B1 (en) * | 2001-03-13 | 2003-11-14 | 기아자동차주식회사 | The equipment of decreasing exhaust fumes using nox sensor and the method thereof |
KR100517040B1 (en) * | 2001-10-15 | 2005-09-26 | 도요다 지도샤 가부시끼가이샤 | Exhaust gas purification system for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4466008B2 (en) | Engine fuel injection control device | |
JPH0417747A (en) | Air-fuel ratio control system of internal combustion engine | |
JP3868693B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2985578B2 (en) | Air-fuel ratio control device for lean burn engine | |
JPH07229439A (en) | Air-fuel ratio control device of internal combustion engine | |
JPH0763096A (en) | Air-fuel ratio controller of internal combustion engine | |
US6609510B2 (en) | Device and method for controlling air-fuel ratio of internal combustion engine | |
JP2946379B2 (en) | Air-fuel ratio feedback control device for internal combustion engine | |
JP2623926B2 (en) | Catalytic converter device for internal combustion engine | |
JP4155662B2 (en) | Three-way catalyst oxygen storage control device | |
JP3826997B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2001304018A (en) | Air/fuel ratio control device for internal combustion engine | |
JP2521039B2 (en) | Engine air-fuel ratio control device | |
JP3488982B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3767062B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2000130221A (en) | Fuel injection control device of internal combustion engine | |
JP3531183B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0996230A (en) | Control device for internal combustion engine | |
JP4636214B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH08144802A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH0617660B2 (en) | Air-fuel ratio controller for internal combustion engine | |
JP4072412B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3528315B2 (en) | Engine air-fuel ratio control device | |
JP3879342B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH06200809A (en) | Air-fuel ratio control device of internal combustion engine |