JP3488982B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP3488982B2
JP3488982B2 JP25024592A JP25024592A JP3488982B2 JP 3488982 B2 JP3488982 B2 JP 3488982B2 JP 25024592 A JP25024592 A JP 25024592A JP 25024592 A JP25024592 A JP 25024592A JP 3488982 B2 JP3488982 B2 JP 3488982B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
conversion efficiency
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25024592A
Other languages
Japanese (ja)
Other versions
JPH06101541A (en
Inventor
国章 沢本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25024592A priority Critical patent/JP3488982B2/en
Publication of JPH06101541A publication Critical patent/JPH06101541A/en
Application granted granted Critical
Publication of JP3488982B2 publication Critical patent/JP3488982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比制御装
置に関し、詳しくは、機関吸入混合気の空燃比を理論空
燃比とリーン空燃比とに切り換え制御する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to a device for switching the air-fuel ratio of an engine intake air-fuel mixture between a stoichiometric air-fuel ratio and a lean air-fuel ratio.

【0002】[0002]

【従来の技術】この種の空燃比制御装置としては、従
来、例えば特開昭58−48746号公報及び特開昭5
9−7741号公報に開示されるようなものがある。前
記各公報に開示される空燃比制御装置及び方法では、機
関吸入混合気を機関運転条件に応じて理論空燃比とリー
ン空燃比(例えば空燃比20〜23)とに切り換え制御する
ときに、空燃比が急変することに伴って出力トルクが急
変し、車両にショックを生じるという不具合を解消すべ
く、理論空燃比とリーン空燃比との切り換え時に空燃比
を段階的に変化させるようにしている。
2. Description of the Related Art Conventionally, air-fuel ratio control devices of this type have been disclosed in, for example, Japanese Patent Application Laid-Open Nos.
There is one disclosed in Japanese Patent Publication No. 9-7741. In the air-fuel ratio control device and method disclosed in the above publications, when the engine intake air-fuel mixture is controlled to be switched between the stoichiometric air-fuel ratio and the lean air-fuel ratio (for example, air-fuel ratio 20 to 23) according to engine operating conditions, In order to solve the problem that the output torque suddenly changes due to the sudden change in the fuel ratio, which causes a shock to the vehicle, the air-fuel ratio is changed stepwise when the stoichiometric air-fuel ratio and the lean air-fuel ratio are switched.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来の空燃比制御においては、排気浄化用触媒として理
論空燃比よりもリーンになると急激にNOx転換効率が
低下する一般的な三元触媒やNOxの還元機能がない酸
化触媒を前提としているため、図26に示すように、理論
空燃比からリーン空燃比に移行させるときには、触媒に
よるNOxの浄化が期待できず、NOx排出量が最大と
なる空燃比を通過することになる。従って、空燃比の切
り換え速度を切り換えショック緩和のために遅くする
と、NOx排出量が大きくなるため、ショック発生によ
る運転性の悪化を犠牲にしても、空燃比の切り換え速度
はある程度速くしなければならないという問題があっ
た。
However, in the above-mentioned conventional air-fuel ratio control, a general three-way catalyst or NOx in which the NOx conversion efficiency sharply decreases as the exhaust purification catalyst becomes leaner than the stoichiometric air-fuel ratio. As shown in FIG. 26, when the theoretical air-fuel ratio is changed to the lean air-fuel ratio, NOx purification by the catalyst cannot be expected and the NOx emission amount becomes maximum as shown in FIG. It will pass the fuel ratio. Therefore, if the switching speed of the air-fuel ratio is slowed down to alleviate the switching shock, the NOx emission amount increases, so the switching speed of the air-fuel ratio must be increased to some extent even at the expense of the deterioration of drivability due to the shock occurrence. There was a problem.

【0004】ここで、リーン空燃比領域でNOx還元機
能が大幅に低下する従来の三元触媒の代わりに、排気中
に酸素がたくさんあっても(リーン燃焼時であっても)
NOxをある程度還元できる触媒(以下、リーンNOx
触媒という。)を用いる場合には、図26に示すように、
触媒入口でNOx量が最大となる空燃比状態であって
も、触媒の還元機能によってNOxの排出量を抑えるこ
とができるから、理論空燃比からリーン空燃比へ比較的
遅い速度で切り換えても、NOx排出量が大幅に増大し
てしまうことがなく、リーン領域でNOx転換効率が急
減する一般的な三元触媒や酸化触媒を用いる場合に比べ
空燃比切り換え時にトルクをゆっくり変化させてショッ
ク発生を防止することが可能である。
Here, instead of the conventional three-way catalyst whose NOx reduction function is greatly reduced in the lean air-fuel ratio region, even if a large amount of oxygen is present in the exhaust gas (even during lean combustion).
A catalyst that can reduce NOx to some extent (hereinafter, lean NOx
It is called a catalyst. ) Is used, as shown in FIG.
Even in the air-fuel ratio state in which the NOx amount is maximum at the catalyst inlet, the NOx emission amount can be suppressed by the reducing function of the catalyst, so even if the theoretical air-fuel ratio is switched to the lean air-fuel ratio at a relatively slow speed, Compared to the case of using a general three-way catalyst or oxidation catalyst in which the NOx conversion efficiency decreases sharply in the lean range without significantly increasing the NOx emission amount, the torque is changed slowly at the time of switching the air-fuel ratio, and the shock is generated. It is possible to prevent.

【0005】尚、前記リーンNOx触媒としては、触媒
の母体としてゼオライトを用い、ゼオライトに吸着した
HCによりNOX を還元するものが知られている。とこ
ろが、前記リーンNOx触媒であっても、機関運転条件
によってその転換効率が大きく変化するから、転換効率
の良い運転条件に適合させて空燃比切り換えの速度を比
較的遅く設定してあると、転換効率が悪い運転条件にお
いてNOxの排出量が増大し、逆に、転換効率が悪い運
転条件でもNOxの排出量が大幅に増大しないように切
り換え速度を比較的速く設定すると、切り換え時のトル
ク急変によってショックが発生するという問題が発生す
る。
[0005] Incidentally, as the lean NOx catalyst, using zeolite as a matrix for catalysts, which reducing the NO X is known by the HC adsorbed on the zeolite. However, even with the lean NOx catalyst, the conversion efficiency greatly changes depending on the engine operating conditions. Therefore, if the air-fuel ratio switching speed is set to be relatively slow by adapting to the operating conditions with good conversion efficiency, the conversion will be changed. If the switching speed is set relatively high so that the NOx emission amount increases under inefficient operating conditions and conversely the NOx emission amount does not increase significantly even under operating conditions with poor conversion efficiency, a sudden torque change may occur during switching. There is a problem of shock.

【0006】本発明は上記問題点に鑑みなされたもので
あり、機関吸入混合気の空燃比を理論空燃比とリーン空
燃比とに切り換え制御する装置において、空燃比切り換
え時におけるトルク急変によるショック発生の回避と、
NOx排出量の抑制とを、触媒転換効率の変化に影響さ
れずに高い次元で両立させることができる空燃比制御装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and in an apparatus for controlling the air-fuel ratio of the engine intake air-fuel mixture to switch between the stoichiometric air-fuel ratio and the lean air-fuel ratio, a shock is generated due to a sudden change in torque when the air-fuel ratio is switched. Avoidance of
It is an object of the present invention to provide an air-fuel ratio control device capable of achieving both high NOx control and suppression of NOx emission amount without being affected by changes in catalyst conversion efficiency.

【0007】[0007]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の空燃比制御装置は、機関排気通路に排気浄化
用の触媒を備える一方、機関吸入混合気の空燃比を、機
関運転条件に応じて理論空燃比とリーン空燃比とに切り
換え制御する内燃機関の空燃比制御装置であって、図1
又は図2に示すように構成される。
Therefore, an air-fuel ratio control system for an internal combustion engine according to the present invention is provided with a catalyst for purifying exhaust gas in an engine exhaust passage, while changing the air-fuel ratio of an engine intake air-fuel mixture according to engine operating conditions. An air-fuel ratio control device for an internal combustion engine, which controls switching between a stoichiometric air-fuel ratio and a lean air-fuel ratio,
Alternatively, it is configured as shown in FIG.

【0008】図1において、転換効率検出手段は、触媒
のNOx転換効率に相当するパラメータを検出する。ま
た、切り換え速度制御手段は、転換効率検出手段で検出
された触媒のNOx転換効率に応じて理論空燃比とリー
ン空燃比との間の切り換え速度を可変制御する。ここ
で、前記転換効率検出手段で検出された触媒のNOx転
換効率に応じて前記リーン空燃比に対応する運転条件に
おける空燃比を可変設定するリーン空燃比可変手段を設
けて構成すると良い。
In FIG. 1, the conversion efficiency detecting means detects a parameter corresponding to the NOx conversion efficiency of the catalyst. The switching speed control means variably controls the switching speed between the stoichiometric air-fuel ratio and the lean air-fuel ratio according to the NOx conversion efficiency of the catalyst detected by the conversion efficiency detecting means. Here, it is preferable to provide lean air-fuel ratio varying means for variably setting the air-fuel ratio under the operating condition corresponding to the lean air-fuel ratio according to the NOx conversion efficiency of the catalyst detected by the conversion efficiency detecting means.

【0009】また、前記NOx転換効率に相当するパラ
メータとして、触媒における排気の通過流速と触媒床温
度とにそれぞれ相当するパラメータを検出するよう構成
すると良い。前記NOx転換効率に相当するパラメータ
としては、触媒における排気の通過流速と機関温度とに
それぞれ相当するパラメータを検出する構成としても良
い。
Further, as the parameters corresponding to the NOx conversion efficiency, it is preferable to detect parameters corresponding to the exhaust passage velocity and the catalyst bed temperature in the catalyst. As the parameters corresponding to the NOx conversion efficiency, parameters corresponding to the exhaust passage velocity in the catalyst and the engine temperature may be detected.

【0010】前記触媒における排気の通過流速に相当す
るパラメータとしては、機関の吸入空気量を検出すれば
良い。一方、図2において、NOx排出総量推定手段
は、空燃比の切り換えを行ったときの触媒出口でのNO
x排出総量を推定する。そして、NOx量による切り換
え制御手段は、NOx排出総量推定手段で推定されたN
Ox排出総量に応じて理論空燃比とリーン空燃比との間
の切り換え速度を可変制御する。
The intake air amount of the engine may be detected as a parameter corresponding to the exhaust passage velocity of the catalyst. On the other hand, in FIG. 2, the total NOx emission amount estimating means is configured to output NO at the catalyst outlet when the air-fuel ratio is switched.
x Estimate total emissions. The switching control means based on the NOx amount is the N estimated by the total NOx emission amount estimating means.
The switching speed between the stoichiometric air-fuel ratio and the lean air-fuel ratio is variably controlled according to the total amount of discharged Ox.

【0011】ここで、前記NOx排出総量推定手段が、
前記触媒のNOx転換効率に相当するパラメータを検出
する転換効率検出手段と、機関の吸入空気量を検出する
吸入空気量検出手段と、空燃比に応じたNOx濃度推定
値を設定するNOx濃度設定手段と、を含んで構成さ
れ、前記検出された吸入空気量及び転換効率と空燃比に
応じたNOx濃度推定値とに基づいてNOx排出総量を
推定するよう構成すると良い。
Here, the total NOx emission amount estimating means is
Conversion efficiency detecting means for detecting a parameter corresponding to NOx conversion efficiency of the catalyst, intake air amount detecting means for detecting an intake air amount of the engine, and NOx concentration setting means for setting a NOx concentration estimated value according to an air-fuel ratio. It is preferable that the total NOx emission amount is estimated based on the detected intake air amount and conversion efficiency and the NOx concentration estimated value according to the air-fuel ratio.

【0012】また、前記NOx量による切り換え制御手
段が、前記推定されたNOx排出総量に基づいて切り換
え時のNOx排出総量が所定量以下となる最長切り換え
時間を設定し、この切り換え時間内で徐々に空燃比を変
化させるよう構成することが好ましい。
Further, the switching control means based on the NOx amount sets a longest switching time at which the total NOx emission amount at the time of switching becomes a predetermined amount or less based on the estimated total NOx emission amount, and gradually within this switching time. It is preferable that the air-fuel ratio is changed.

【0013】[0013]

【作用】かかる構成の空燃比制御装置によると、触媒の
NOx転換効率に応じて理論空燃比とリーン空燃比との
間の空燃比切り換え速度が可変制御されるから、転換効
率が悪化し切り換え時のNOx排出量が多くなる条件の
ときには切り換え速度を速くし、逆に、転換効率が高く
NOx排出量を抑制できる場合には切り換え速度を遅く
してトルクが急変することを回避し得るようになる。
According to the air-fuel ratio control device having such a configuration, the air-fuel ratio switching speed between the stoichiometric air-fuel ratio and the lean air-fuel ratio is variably controlled according to the NOx conversion efficiency of the catalyst. The switching speed is increased under the condition that the NOx emission amount increases, and conversely, when the conversion efficiency is high and the NOx emission amount can be suppressed, the switching speed is reduced to avoid the sudden change of the torque. .

【0014】また、リーン空燃比に対応する運転条件に
おける空燃比を、NOxの転換効率に応じて可変設定す
れば、NOx排出量を所定量以下に抑制しつつ、安定燃
焼を図ることが可能となる。また、NOxの転換効率
は、触媒床温度又はこの触媒床温度に相関する機関温度
と、触媒における排気の通過流速とによって変化するか
ら、これらに相当するパラメータを検出することで、転
換効率の変化を精度良く検出できる。
Further, if the air-fuel ratio under the operating condition corresponding to the lean air-fuel ratio is variably set according to the conversion efficiency of NOx, it is possible to achieve stable combustion while suppressing the NOx emission amount to a predetermined amount or less. Become. Further, since the NOx conversion efficiency changes depending on the catalyst bed temperature or the engine temperature that correlates with the catalyst bed temperature and the exhaust passage velocity in the catalyst, the conversion efficiency changes by detecting parameters corresponding to these. Can be accurately detected.

【0015】前記触媒における排気の通過流速に相当す
るパラメータとしては、検出が容易な吸入空気量のデー
タを用いることができる。一方、空燃比切り換え制御時
のNOxの排出総量を推定し、これに応じて空燃比切り
換え速度を可変制御すれば、切り換え時のNOx排出総
量を所定量以下に抑制しつつ空燃比の切り換えを制御で
きるようになる。
As the parameter corresponding to the exhaust gas passage velocity in the catalyst, data of the intake air amount, which can be easily detected, can be used. On the other hand, if the total amount of NOx emissions during the air-fuel ratio switching control is estimated and the air-fuel ratio switching speed is variably controlled accordingly, the switching of the air-fuel ratio is controlled while suppressing the total amount of NOx emissions during the switching below a predetermined amount. become able to.

【0016】ここで、NOx排出総量は、触媒のNOx
転換効率と、吸入空気量と、空燃比に応じたNOx濃度
推定値とに基づいて推定することができ、これによっ
て、そのときのNOx転換効率に対応して高精度な排出
量推定が行える。また、前記推定されたNOx排出総量
に基づいて切り換え時のNOx排出総量が所定量以下と
なる最長切り換え時間を設定することで、空燃比切り換
え時のNOx排出量を抑制しつつ、長い切り換え時間を
確保して運転性の向上を図れる。
Here, the total NOx emission amount is the NOx of the catalyst.
It can be estimated based on the conversion efficiency, the intake air amount, and the NOx concentration estimated value corresponding to the air-fuel ratio, and thereby, highly accurate emission amount estimation can be performed corresponding to the NOx conversion efficiency at that time. Further, by setting the longest switching time at which the total NOx emission amount at the time of switching becomes equal to or less than the predetermined amount based on the estimated total NOx emission amount, a long switching time can be achieved while suppressing the NOx emission amount at the time of switching the air-fuel ratio. It can be secured and the drivability can be improved.

【0017】[0017]

【実施例】以下に本発明の実施例を説明する。実施例の
システム構成を示す図3において、V型内燃機関1の各
気筒には、エアクリーナ2,スロットル弁3,吸気マニ
ホールド4を介して空気が吸引される。前記吸気マニホ
ールド4の各ブランチ部には、それぞれ電磁式のインジ
ェクタ5が設けられている。
EXAMPLES Examples of the present invention will be described below. In FIG. 3 showing the system configuration of the embodiment, air is sucked into each cylinder of the V-type internal combustion engine 1 through an air cleaner 2, a throttle valve 3 and an intake manifold 4. An electromagnetic injector 5 is provided at each branch of the intake manifold 4.

【0018】機関1からの排気は、排気マニホールド6
a,6bによって片バンク毎に集められた後、それぞれ
排気管7a,7bによってマフラ8に導かれる。前記排
気管7a,7bには、それぞれに触媒9a,9bが介装
されている。前記触媒9a,9bは、触媒の母体として
ゼオライトを用い、ゼオライトに吸着したHCによりN
X を還元するものであり、かかるNOx還元機能によ
って排気中に酸素がたくさん存在するリーン燃焼時であ
っても、図26に示すように、NOx排出量を抑えること
ができるリーンNOx触媒である。
Exhaust gas from the engine 1 is exhausted from an exhaust manifold 6
After being collected for each bank by a and 6b, they are guided to the muffler 8 by exhaust pipes 7a and 7b, respectively. Catalysts 9a and 9b are provided in the exhaust pipes 7a and 7b, respectively. The catalysts 9a and 9b use zeolite as a base material of the catalyst and are
O X is a what reduction, even during lean combustion oxygen is present a lot in the exhaust by such NOx reduction function, as shown in FIG. 26, is a lean NOx catalyst capable of suppressing NOx emissions .

【0019】コントロールユニット10は、マイクロコン
ピュータを内蔵し、各種センサからの検出信号に基づい
て後述のようにインジェクタ5による燃料噴射量Tiを
演算し、該燃料噴射量Tiに基づいてインジェクタ5を
開駆動制御することで、機関1への燃料供給を電子制御
する。前記各種センサとしては、スロットル弁3の上流
側で機関1の吸入空気量Qaを検出するエアフローメー
タ11(吸入空気量検出手段)、カム軸から回転信号を取
り出すクランク角センサ12、機関1の冷却水温度Tw
(機関温度に相当するパラメータ)を検出する冷却水温
度センサ13、排気マニホールド6a,6bの集合部にそ
れぞれ設けられて各バンク毎に排気中の酸素濃度を検出
する酸素センサ14a,14b、スロットル弁3の開度を検
出するポテンショメータ式のスロットルセンサ15、各触
媒9a,9bの出口温度Te(触媒床温度に相当するパ
ラメータ)を検出する触媒温度センサ16a,16bが設け
られている。
The control unit 10 has a built-in microcomputer, calculates the fuel injection amount Ti by the injector 5 as described later based on the detection signals from various sensors, and opens the injector 5 based on the fuel injection amount Ti. The fuel supply to the engine 1 is electronically controlled by the drive control. As the various sensors, an air flow meter 11 (intake air amount detecting means) for detecting an intake air amount Qa of the engine 1 on the upstream side of the throttle valve 3, a crank angle sensor 12 for extracting a rotation signal from a cam shaft, and a cooling of the engine 1. Water temperature Tw
A cooling water temperature sensor 13 for detecting (a parameter corresponding to the engine temperature), oxygen sensors 14a, 14b provided in a collective portion of the exhaust manifolds 6a, 6b for detecting the oxygen concentration in the exhaust for each bank, and a throttle valve A potentiometer type throttle sensor 15 for detecting the opening degree of 3 and catalyst temperature sensors 16a, 16b for detecting the outlet temperature Te (parameter corresponding to the catalyst bed temperature) of each catalyst 9a, 9b are provided.

【0020】尚、17はアイドル時の吸入空気量を調整す
るためのコントロールバルブであり、スロットル弁3を
バイパスして設けられたバイパス通路18を介して機関1
に供給される空気量を調整する。ここで、本実施例の電
子制御燃料噴射装置の構成を簡略化して図4のブロック
図に示してある。
Reference numeral 17 is a control valve for adjusting the amount of intake air at the time of idling, and the engine 1 is provided through a bypass passage 18 which bypasses the throttle valve 3.
Adjust the amount of air supplied to the. Here, the configuration of the electronically controlled fuel injection device of the present embodiment is simplified and shown in the block diagram of FIG.

【0021】前記図4に示すように、コントロールユニ
ット10は、エアフローメータ11で検出された吸入空気量
Qと、クランク角センサ12からの出力信号に基づいて演
算される機関回転数Nとに基づいて基本燃料噴射量Tp
を演算する基本噴射量演算手段としての機能、更に、前
記基本燃料噴射量Tpに対して冷却水温度Tw等の運転
条件に応じて種々の補正を施して最終的な燃料噴射量T
iを演算し、該演算結果をインジェクタ5に出力する噴
射量演算手段としての機能とを備えている。
As shown in FIG. 4, the control unit 10 is based on the intake air amount Q detected by the air flow meter 11 and the engine speed N calculated based on the output signal from the crank angle sensor 12. And basic fuel injection amount Tp
Of the basic fuel injection amount Tp, and further, various corrections are made to the basic fuel injection amount Tp in accordance with the operating conditions such as the cooling water temperature Tw to obtain the final fuel injection amount T.
It has a function as an injection amount calculation means for calculating i and outputting the calculation result to the injector 5.

【0022】また、本実施例では、図5に示すように、
基本燃料噴射量Tpで代表される機関負荷と機関回転数
Nとによって区分される運転領域上で、機関吸入混合気
の空燃比を理論空燃比(空燃比=14.6)に制御する理論
空燃比領域と、理論空燃比よりも大幅にリーンな空燃比
(例えば空燃比=22)に制御するリーン空燃比領域とに
分けられており、現在の運転条件がいずれの領域に該当
するかを判別し、該当領域の設定空燃比に見合った燃料
噴射量が演算されるようになっている。
Further, in this embodiment, as shown in FIG.
A theoretical air-fuel ratio region that controls the air-fuel ratio of the engine intake air-fuel mixture to the theoretical air-fuel ratio (air-fuel ratio = 14.6) in the operating region that is divided by the engine load represented by the basic fuel injection amount Tp and the engine speed N. And a lean air-fuel ratio region in which the air-fuel ratio is significantly leaner than the stoichiometric air-fuel ratio (for example, air-fuel ratio = 22), and it is determined which region the current operating conditions correspond to, A fuel injection amount corresponding to the set air-fuel ratio in the relevant region is calculated.

【0023】ここで、前記理論空燃比領域とリーン空燃
比領域との間で運転条件の移動があった場合に、オン・
オフ的に空燃比を切り換えるのではなく、ある時間内で
徐々に切り換えることによって、空燃比の切り換えに伴
う機関出力トルクの急変を抑制するようにしてあり、前
記切り換え時間を、吸入空気流量Q,触媒出口温度T
e,冷却水温度Twによって可変設定する空燃比切り換
え時間設定手段としての機能がコントロールユニット10
に備えられている。
Here, when there is a change in operating conditions between the stoichiometric air-fuel ratio region and the lean air-fuel ratio region, it is turned on.
The air-fuel ratio is not switched off, but is gradually switched within a certain period of time so as to suppress a sudden change in the engine output torque due to the switching of the air-fuel ratio. Catalyst outlet temperature T
e, the control unit 10 functions as an air-fuel ratio switching time setting means that is variably set according to the cooling water temperature Tw.
Is equipped with.

【0024】即ち、本実施例の機関1に備えられた触媒
は、リーン空燃比であってもNOx還元機能を発揮する
から、比較的ゆっくりした速度で空燃比を切り換えて
も、NOx排出量が大幅に増大することがないが、運転
条件によっては転換効率が低下し、高効率に適合する切
りえ時間ではNOx排出量を増大させてしまう。そこ
で、以下に説明するように、転換効率の変化に応じた切
り換え時間(切り換え速度)を可変して、NOx排出量
の抑制と運転性の向上とを高い次元で両立させるように
している。
That is, the catalyst provided in the engine 1 of the present embodiment exerts the NOx reducing function even with a lean air-fuel ratio, so that the NOx emission amount is reduced even if the air-fuel ratio is switched at a relatively slow speed. Although it does not increase significantly, the conversion efficiency decreases depending on the operating conditions, and the NOx emission amount increases at the switching time suitable for high efficiency. Therefore, as described below, the switching time (switching speed) according to the change in the conversion efficiency is varied so that the suppression of the NOx emission amount and the improvement of the drivability are made compatible at a high level.

【0025】上記の空燃比切り換え時間設定手段の機能
が本実施例における特徴点であり、以下に前記空燃比切
り換え時間設定手段の詳細をフローチャートを参照しつ
つ説明する。第1実施例を示す図6及び図7のフローチ
ャートに示すプログラムは、10ms毎に割込み実行され
るプログラムである。
The function of the air-fuel ratio switching time setting means is a feature of this embodiment, and the details of the air-fuel ratio switching time setting means will be described below with reference to the flow chart. The program shown in the flow charts of FIGS. 6 and 7 showing the first embodiment is a program that is interrupted every 10 ms.

【0026】まず、P1では、エアフローメータ11によ
り吸入空気量Qaが測定される。次のP2では、クラン
ク角センサ12からの出力信号により機関回転数Nが測定
される。そして、P3では、吸入空気量Qaと機関回転
数Nとに基づいて、理論空燃比相当の基本燃料噴射量T
p(←K×Qa/N;Kは定数)を計算する。
First, at P1, the air flow meter 11 measures the intake air amount Qa. At the next P2, the engine speed N is measured by the output signal from the crank angle sensor 12. Then, at P3, based on the intake air amount Qa and the engine speed N, the basic fuel injection amount T equivalent to the theoretical air-fuel ratio is obtained.
Calculate p (← K × Qa / N; K is a constant).

【0027】P4では、前記基本燃料噴射量Tpと機関
回転数Nとに基づいて、リーン空燃比領域を決定する
(図5参照)。P5では、最新の基本燃料噴射量Tpと
機関回転数Nとが、リーン空燃比領域に含まれる運転条
件であるか否かを判別する。そして、リーン空燃比領域
に該当する場合には、P6へ進み、理論空燃比領域から
リーン空燃比領域への切り換え時であるか、換言すれ
ば、理論空燃比領域からリーン空燃比領域への移行初回
であるか否かを判別する。
At P4, the lean air-fuel ratio region is determined based on the basic fuel injection amount Tp and the engine speed N (see FIG. 5). At P5, it is determined whether or not the latest basic fuel injection amount Tp and the engine speed N are operating conditions included in the lean air-fuel ratio region. If it falls within the lean air-fuel ratio region, the routine proceeds to P6, and it is time to switch from the stoichiometric air-fuel ratio region to the lean air-fuel ratio region, in other words, shift from the stoichiometric air-fuel ratio region to the lean air-fuel ratio region. It is determined whether it is the first time.

【0028】移行初回であるときには、P7へ進み、空
燃比切り換え制御の最大時間(この場合1sec)をカウン
トするための切り換えタイマTaのイニシャライズ(T
aに対して1secをセット)を行い、カウントダウン
に備える。次のP8では、触媒温度センサ16a,16bに
より、触媒出口温度Teを検出する。ここで、触媒出口
温度Teのデータは、それぞれのセンサ16a,16bから
出力されるが、これらのデータの平均値、又は、両者の
比較によって大きい方又は小さい方のデータを、以下の
処理に用いる触媒出口温度Teとすれば良い。
If it is the first transition, the routine proceeds to P7, where the switching timer Ta for counting the maximum time (1 sec in this case) of the air-fuel ratio switching control is initialized (T
1 sec is set for a) to prepare for the countdown. At P8, the catalyst outlet temperature Te is detected by the catalyst temperature sensors 16a and 16b. Here, the data of the catalyst outlet temperature Te is output from the respective sensors 16a and 16b, and the average value of these data or the larger or smaller data obtained by comparing the two is used for the following processing. The catalyst outlet temperature Te may be used.

【0029】次のP9では、前記触媒出口温度Teと吸
入空気量Qaとに基づいて、空燃比を理論空燃比からリ
ーン空燃比に徐々に切り換えるための切り換え時間Tc
を設定する(図13参照)。前記切り換え時間Tcは、吸
入空気流量Qaと触媒出口温度Teとに対応して、例え
ば図8に示すように可変設定される。前記図8の切り換
え時間Tcの傾向は、触媒9a,9bにおけるNOx転
換効率の変化に対応して設定されている。
At the next P9, a switching time Tc for gradually switching the air-fuel ratio from the stoichiometric air-fuel ratio to the lean air-fuel ratio based on the catalyst outlet temperature Te and the intake air amount Qa.
(See Figure 13). The switching time Tc is variably set as shown in FIG. 8, corresponding to the intake air flow rate Qa and the catalyst outlet temperature Te. The tendency of the switching time Tc in FIG. 8 is set corresponding to the change in the NOx conversion efficiency of the catalysts 9a and 9b.

【0030】即ち、本実施例の触媒9a,9bは、ゼオ
ライトに吸着したHCによりリーン雰囲気中であっても
NOX を還元するものであるため、図9に示すように、
理論空燃比よりもリーンな空燃比領域(排気中の酸素濃
度が高い領域)でも、NOxの転換効率を比較的高く維
持することができるが、図10,図11に示すように、その
ときの空間速度S/V,触媒出口温度Teによって、同
じ空燃比状態であってもそのNOx転換効率ηNOは大き
く変化し、空間速度S/Vが遅く、触媒出口温度Teが
高いときほど高い転換効率を示すようになる。
That is, since the catalysts 9a and 9b of the present example reduce NO X by the HC adsorbed on the zeolite even in a lean atmosphere, as shown in FIG.
Even in an air-fuel ratio region leaner than the theoretical air-fuel ratio (a region where the oxygen concentration in the exhaust gas is high), the NOx conversion efficiency can be kept relatively high, but as shown in FIGS. Depending on the space velocity S / V and the catalyst outlet temperature Te, the NOx conversion efficiency η NO greatly changes even in the same air-fuel ratio state, and as the space velocity S / V becomes slower and the catalyst outlet temperature Te becomes higher, the conversion efficiency becomes higher. Will be shown.

【0031】前記空間速度S/Vとは、所定の表面積,
体積を通過する排気流速であり、これはそのときの吸入
空気量Qaに対応するから、前記通過流速のデータとし
て吸入空気量Qaのデータを代表させることができる。
従って、所定空燃比状態における触媒9a,9bのNO
x転換効率ηNOは、図12に示すように、そのときの吸入
空気量Qaと触媒出口温度Teとに基づいて推定するこ
とができ、このようにして吸入空気量Qaと触媒出口温
度Teとから推定される転換効率ηNOに対応して、前記
図8に示すような切り換え時間Tcを設定してある。
The space velocity S / V means a predetermined surface area,
It is the exhaust flow velocity passing through the volume, which corresponds to the intake air amount Qa at that time, so that the intake air amount Qa data can be represented as the passage flow velocity data.
Therefore, the NO of the catalysts 9a and 9b in the predetermined air-fuel ratio state
As shown in FIG. 12, the x conversion efficiency η NO can be estimated based on the intake air amount Qa and the catalyst outlet temperature Te at that time, and thus the intake air amount Qa and the catalyst outlet temperature Te The switching time Tc as shown in FIG. 8 is set in correspondence with the conversion efficiency η NO estimated from.

【0032】尚、前述のように、本実施例において触媒
のNOx転換効率に相当するパラメータとは、吸入空気
量Qaと触媒出口温度Teであり、前記吸入空気量Qa
は触媒における排気の通過流速を代表しており、触媒出
口温度Teは触媒床温度を代表している。そして、前記
P9の部分が転換効率検出手段及び切り換え速度制御手
段としての機能を含んでいる。
As described above, the parameters corresponding to the NOx conversion efficiency of the catalyst in this embodiment are the intake air amount Qa and the catalyst outlet temperature Te, and the intake air amount Qa
Represents the exhaust passage velocity of the catalyst, and the catalyst outlet temperature Te represents the catalyst bed temperature. The portion P9 includes functions as conversion efficiency detecting means and switching speed control means.

【0033】ここで、NOxの転換効率ηNOが低い状態
で理論空燃比からリーン空燃比へ切り換えると、途中の
空燃比状態でのNOx排出量が多くなってしまうが、N
Ox転換効率ηNOが高ければ、理論空燃比からリーン空
燃比へ切り換えをゆっくりと行わせることで、機関出力
トルクの急変を回避することができる。そこで、図8に
示すように、吸入空気量Qaが少なく、かつ、触媒出口
温度Teが高く転換効率ηNOが高いときには、切り換え
時間Tcを比較的長く設定して、切り換え時のショック
発生を防止し、逆に、吸入空気流量Qaが多く、かつ、
触媒出口温度Teが低い転換効率ηNOの悪い状態では、
切り換え時間Tcを比較的短く設定して、運転性が多少
犠牲になってもNOxの排出量が低く抑えられるように
してある。
If the stoichiometric air-fuel ratio is switched to the lean air-fuel ratio in the state where the NOx conversion efficiency η NO is low, the NOx emission amount in the middle air-fuel ratio state increases, but N
If the Ox conversion efficiency η NO is high, it is possible to avoid a sudden change in the engine output torque by slowly switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio. Therefore, as shown in FIG. 8, when the intake air amount Qa is small, the catalyst outlet temperature Te is high, and the conversion efficiency η NO is high, the switching time Tc is set to be relatively long to prevent the occurrence of shock during switching. On the contrary, the intake air flow rate Qa is large, and
In the state where the catalyst outlet temperature Te is low and the conversion efficiency η NO is bad,
The switching time Tc is set to be relatively short so that the NOx emission amount can be kept low even if the drivability is somewhat sacrificed.

【0034】このように、そのときのNOx転換効率η
NOに応じて理論空燃比からリーン空燃比への切り換え時
間Tc(切り換え速度)を可変設定すれば、NOx転換
効率ηNOが運転条件によって大きく変化しても、空燃比
切り換え時におけるトルク急変によるショック発生の回
避と、NOx排出量の抑制とを、高い次元で両立させる
ことが可能となる。
Thus, the NOx conversion efficiency η at that time
If the switching time Tc (switching speed) from the stoichiometric air-fuel ratio to the lean air-fuel ratio is variably set according to NO , even if the NOx conversion efficiency η NO changes greatly depending on the operating conditions, a shock due to a sudden torque change at the time of switching the air-fuel ratio. It is possible to achieve both the prevention of the generation and the suppression of the NOx emission amount at a high level.

【0035】P9で上記のように空燃比切り換え時間T
cを、NOx転換効率ηNOに応じて可変設定すると、次
のP10では、実際の切り換え時間を計測するための切り
換えタイマTmをゼロリセットし、カウントアップに備
える。そして、リーン空燃比領域への切り換え初回にお
いては、P11へ進み、理論空燃比に相当する基本燃料噴
射量Tpに、バッテリ電圧の変化によるインジェクタ5
の噴射量バラツキを補正するための補正分Tsを加算し
て燃料噴射量Tiを演算する。
At P9, as described above, the air-fuel ratio switching time T
When c is variably set according to the NOx conversion efficiency η NO , in the next P10, the switching timer Tm for measuring the actual switching time is reset to zero to prepare for the count-up. Then, in the first switching to the lean air-fuel ratio region, the routine proceeds to P11, where the injector 5 due to the change in the battery voltage is added to the basic fuel injection amount Tp corresponding to the theoretical air-fuel ratio.
The fuel injection amount Ti is calculated by adding the correction amount Ts for correcting the variation in the injection amount.

【0036】尚、前記P5でリーン空燃比領域でなく理
論空燃比領域であると判別されたときにも、P6〜P10
をジャンプしてP11へ進む。一方、リーン空燃比領域に
該当し、かつ、リーン領域への移行初回でない場合に
は、P6からP12へ進む。P12では、前記切り換えタイ
マTaを所定時間だけ減算し、次のP12では、前記切り
換えタイマTaがゼロまで減算されたか否かを判別す
る。
Even when it is determined in P5 that it is not the lean air-fuel ratio region but the stoichiometric air-fuel ratio region, P6-P10
Jump to P11. On the other hand, when it corresponds to the lean air-fuel ratio region and is not the first transition to the lean region, the routine proceeds from P6 to P12. At P12, the switching timer Ta is decremented by a predetermined time, and at next P12, it is determined whether or not the switching timer Ta is decremented to zero.

【0037】切り換えタイマTaがゼロになっていない
ときには、P14へ進み、前記切り換えタイマTmに本プ
ログラムの実行周期時間を加算して切り換え開始からの
経過時間をカウントさせる。そして、P15では、前述の
ようにNOx転換効率ηNOに応じて設定された空燃比切
り換え時間Tcと、実際の切り換え時間Tmとを比較
し、実際の切り換え時間Tmが目標時間Tcに至ってい
ないときには、P16へ進む。
When the switching timer Ta is not zero, the routine proceeds to P14, where the execution cycle time of this program is added to the switching timer Tm to count the elapsed time from the start of switching. Then, at P15, the air-fuel ratio switching time Tc set according to the NOx conversion efficiency η NO as described above is compared with the actual switching time Tm, and when the actual switching time Tm does not reach the target time Tc. , P16.

【0038】P16では、前記空燃比切り換え時間Tc内
で、理論空燃比(空燃比14.6)からリーン空燃比(空燃
比22)に徐々に変化させるべく(図13参照)、実際の経
過時間Tmと目標時間Tcとの比に応じて基本燃料噴射
量Tpを補正して、燃料噴射量Tiを以下のように演算
させる。 Ti←Tp×{1−(1−14.6/22)×Tm/Tc}+
Ts 一方、P15で目標切り換え時間Tcが経過したと判別さ
れたとき、及び、P13で切り換えタイマTaによる最大
切り換え時間が経過したことが判別されたときには、P
17へ進み、前記P3で演算された理論空燃比相当の基本
燃料噴射量Tpを、リーン空燃比領域の設定空燃比(例
えば22)に相当する量に補正して、燃料噴射量Tiを以
下のように演算させる。
At P16, within the air-fuel ratio switching time Tc, the actual elapsed time Tm is set so as to gradually change from the stoichiometric air-fuel ratio (air-fuel ratio 14.6) to the lean air-fuel ratio (air-fuel ratio 22) (see FIG. 13). The basic fuel injection amount Tp is corrected according to the ratio with the target time Tc, and the fuel injection amount Ti is calculated as follows. Ti ← Tp × {1- (1-14.6 / 22) × Tm / Tc} +
On the other hand, when it is determined in P15 that the target switching time Tc has elapsed, and in P13 when it is determined that the maximum switching time by the switching timer Ta has elapsed, P
Proceeding to 17, the basic fuel injection amount Tp corresponding to the theoretical air-fuel ratio calculated in P3 is corrected to an amount corresponding to the set air-fuel ratio (for example, 22) in the lean air-fuel ratio region, and the fuel injection amount Ti is To calculate.

【0039】Ti←Tp×14.6/22+Ts 上記のP12〜P17の部分が切り換え速度制御手段に相当
する。尚、上記の空燃比切り換え状態以外においては、
前記酸素センサ14a,14bで検出される排気空燃比に基
づいて、実際の空燃比を目標空燃比(理論空燃比又はリ
ーン空燃比)にフィードバック補正するための補正係数
を設定させ、これによって基本燃料噴射量Tpを補正さ
せる構成としても良い。
Ti ← Tp × 14.6 / 22 + Ts The above P12 to P17 correspond to the switching speed control means. In addition, except the above-mentioned air-fuel ratio switching state,
Based on the exhaust air-fuel ratio detected by the oxygen sensors 14a, 14b, a correction coefficient for feedback-correcting the actual air-fuel ratio to the target air-fuel ratio (theoretical air-fuel ratio or lean air-fuel ratio) is set, and the basic fuel is thereby set. The injection amount Tp may be corrected.

【0040】前記切り換えタイマTaは、通常は切り換
え時間Tcが経過してからゼロにまでカウントダウンさ
れるようになっており、このタイマTaがゼロになる
と、切り換えタイマTmのカウントアップなどを省略し
てP17へ進ませることができるようになる。ところで、
上記実施例では、触媒の転換効率に相当するパラメータ
として排気の通過流速(空間速度)に相当する吸入空気
量Qaと、触媒床温度に相当する触媒出口温度Teを用
いたが、前記触媒出口温度Teに代えて機関温度を代表
し前記触媒出口温度Teに相関のある冷却水温度Twを
用いても良い。
The switching timer Ta normally counts down to zero after the switching time Tc has elapsed, and when the timer Ta reaches zero, the counting up of the switching timer Tm is omitted. You will be able to proceed to P17. by the way,
In the above embodiment, the intake air amount Qa corresponding to the exhaust passage velocity (space velocity) and the catalyst outlet temperature Te corresponding to the catalyst bed temperature are used as the parameters corresponding to the conversion efficiency of the catalyst. Instead of Te, a cooling water temperature Tw that represents the engine temperature and is correlated with the catalyst outlet temperature Te may be used.

【0041】触媒出口温度Teに代えて冷却水温度Tw
を用いる実施例を、図14のフローチャートに示してあ
る。この図14のフローチャートにおいて、P8’,P
9’以外は、前記図6のフローチャートと同じであり、
図14のフローチャートにおけるP6でNOの判定がなさ
れたときには、図7のフローチャートにおけるP12へ進
めば良い。
Cooling water temperature Tw instead of catalyst outlet temperature Te
An example of using is shown in the flowchart of FIG. In the flowchart of FIG. 14, P8 ′, P
Other than 9'is the same as the flowchart of FIG. 6,
If the determination is NO at P6 in the flowchart of FIG. 14, the process may proceed to P12 in the flowchart of FIG.

【0042】前記図14のフローチャートのP8’では、
冷却水温度センサ13で機関1の冷却水温度Twを検出す
る。そして、次のP9’では、図15に示すように、冷却
水温度Twと吸入空気量Qaとに対応して空燃比切り換
え時間Tcを設定してあるマップを参照し、現状のNO
x転換効率ηNOで最適な切り換え時間Tcを設定する。
In P8 'of the flow chart of FIG. 14,
The cooling water temperature sensor 13 detects the cooling water temperature Tw of the engine 1. Then, at the next P9 ′, as shown in FIG. 15, referring to a map in which the air-fuel ratio switching time Tc is set corresponding to the cooling water temperature Tw and the intake air amount Qa, the current NO
The optimum switching time Tc is set by the x conversion efficiency η NO .

【0043】前記冷却水温度Twと吸入空気量Qaとに
応じた空燃比切り換え時間Tcのマップ(図15参照)
は、図16に示すような冷却水温度Twと吸入空気量Qa
とに応じたNOx転換効率ηNOの特性に適合させて設定
されている。冷却水温度センサ13は、冷機時の燃料噴射
量の補正制御に用いるために、電子制御燃料噴射装置に
一般的に設けられるセンサであるから、触媒温度センサ
16a,16bを上記の空燃比切り換え時間Tcの設定のた
めに設ける場合に比べ、コストの点で有利となる。
Map of air-fuel ratio switching time Tc according to the cooling water temperature Tw and the intake air amount Qa (see FIG. 15)
Is the cooling water temperature Tw and the intake air amount Qa as shown in FIG.
The NOx conversion efficiency η NO is set according to the characteristics of Since the cooling water temperature sensor 13 is a sensor that is generally provided in an electronically controlled fuel injection device in order to use it for correction control of the fuel injection amount during cooling, the catalyst temperature sensor
This is advantageous in terms of cost as compared with the case where 16a and 16b are provided for setting the air-fuel ratio switching time Tc.

【0044】上記実施例では、理論空燃比領域からリー
ン空燃比領域へ運転条件が移行し、理論空燃比からリー
ン空燃比に切り換えるときの制御について説明したが、
リーン空燃比から理論空燃比へ切り換えるときにも、前
記実施例と同様にして切り換え時間Tc内で徐々に空燃
比を切り換えるようにすると良い。図17,図18のフロー
チャートに示すプログラムは、触媒出口温度Teを用い
てリーン空燃比領域から理論空燃比領域に切り換えると
きの空燃比切り換え時間Tcを設定する図6,図7のフ
ローチャートに示すプログラムに対応するプログラムで
ある。
In the above embodiment, the control when the operating condition shifts from the stoichiometric air-fuel ratio region to the lean air-fuel ratio region and the stoichiometric air-fuel ratio is switched to the lean air-fuel ratio has been explained.
When switching from the lean air-fuel ratio to the stoichiometric air-fuel ratio, it is advisable to gradually switch the air-fuel ratio within the switching time Tc as in the above-described embodiment. The programs shown in the flow charts of FIGS. 17 and 18 set the air-fuel ratio switching time Tc when switching from the lean air-fuel ratio region to the stoichiometric air-fuel ratio region using the catalyst outlet temperature Te. Is a program corresponding to.

【0045】ここで、図17,図18のフローチャートに示
すプログラムは、図6,図7のフローチャートに示すプ
ログラムに対してP5’,P6’,P11’,P16’,P
17’の部分のみが異なるので、以下に上記の異なるステ
ップのみを説明する。P4でリーン空燃比領域を決定す
ると、P5’では現在の運転条件が理論空燃比領域に含
まれるか否かを判別する。そして、理論空燃比領域でな
くリーン空燃比領域であるときには、P11’へ進み、理
論空燃比相当の基本燃料噴射量Tpをリーン空燃比(空
燃比=22)に対応する量に補正して燃料噴射量Ti(←
Tp×14.6/22+Ts)を演算する。
Here, the programs shown in the flow charts of FIGS. 17 and 18 are P5 ', P6', P11 ', P16', and P5 in comparison with the programs shown in the flow charts of FIGS.
Only the 17 'part is different, so only the different steps are described below. When the lean air-fuel ratio region is determined in P4, it is determined in P5 'whether or not the current operating condition is included in the stoichiometric air-fuel ratio region. When it is not the stoichiometric air-fuel ratio region but the lean air-fuel ratio region, the routine proceeds to P11 ′, where the basic fuel injection amount Tp equivalent to the stoichiometric air-fuel ratio is corrected to the amount corresponding to the lean air-fuel ratio (air-fuel ratio = 22) and the fuel is corrected. Injection amount Ti (←
Tp × 14.6 / 22 + Ts) is calculated.

【0046】一方、P5’で理論空燃比領域であると判
別されたときには、P6’へ進み、理論空燃比領域への
移行初回であるか否かを判別し、初回であるときには、
P7〜P10で空燃比切り換え時間制御のための各種処理
(空燃比切り換え時間Tcの設定等)を実行し、次から
は、P6’からP12へ進む。そして、空燃比切り換え制
御の開始からNOx転換効率ηNOに応じた切り換え時間
Tcが経過するまでは、以下の式に従って燃料噴射量T
iを演算することで、前記切り換え時間Tc内で徐々に
リーン空燃比から理論空燃比にまで変化させる(P1
6’)。
On the other hand, when it is judged at P5 'that it is in the stoichiometric air-fuel ratio region, the routine proceeds to P6', where it is judged whether or not it is the first transition to the stoichiometric air-fuel ratio region.
Various processes (setting of the air-fuel ratio switching time Tc, etc.) for controlling the air-fuel ratio switching time are executed at P7 to P10, and the process proceeds from P6 'to P12 from the next. Then, from the start of the air-fuel ratio switching control until the switching time Tc corresponding to the NOx conversion efficiency η NO elapses, the fuel injection amount T is calculated according to the following equation.
By calculating i, the lean air-fuel ratio is gradually changed to the stoichiometric air-fuel ratio within the switching time Tc (P1
6 ').

【0047】Ti←Tp×{14.6/22−(1−14.6/2
2)×Tm/Tc}+Ts また、前記空燃比切り換え時間Tcが過ぎた場合、又
は、最大切り換え時間が経過した場合(Ta=φとなっ
た場合)には、P17’へ進み、理論空燃比相当として演
算された基本燃料噴射量Tpをそのまま用いて燃料噴射
量Ti(←Tp+Ts)を演算する。
Ti ← Tp × {14.6 / 22- (1-14.6 / 2
2) × Tm / Tc} + Ts Further, when the air-fuel ratio switching time Tc has passed or when the maximum switching time has elapsed (Ta = φ), the routine proceeds to P17 ′, where the theoretical air-fuel ratio is reached. The fuel injection amount Ti (← Tp + Ts) is calculated using the basic fuel injection amount Tp calculated as a corresponding value as it is.

【0048】ところで、上記のように空燃比切り換え時
のNOx転換効率ηNOに応じて空燃比切り換え時間Tc
を可変設定するのは、空燃比切り換え時のNOx排出量
を抑制しつつ、なるべく長い切り換え時間を確保して、
出力トルクの急変を防ぐことを目的とする。従って、切
り換え時間内におけるNOxの排出量の積算値(総量)
を推定し、このNOx排出量の推定に従って空燃比切り
換え時間Tcを可変設定しても良く、かかる実施例を以
下に説明する。
By the way, as described above, the air-fuel ratio switching time Tc depends on the NOx conversion efficiency η NO when the air-fuel ratio is switched.
The variable setting is to suppress the NOx emission amount at the time of switching the air-fuel ratio, to secure the switching time as long as possible,
The purpose is to prevent sudden changes in output torque. Therefore, the integrated value of NOx emissions within the switching time (total amount)
May be estimated, and the air-fuel ratio switching time Tc may be variably set according to the estimation of the NOx emission amount. Such an embodiment will be described below.

【0049】図19のフローチャートに示すプログラム
は、図6及び図7のフローチャートに示したプログラム
において空燃比切り換え時間Tcを設定するP9のステ
ップ部分のみが異なるものであり、図19のフローチャー
トにおけるP6でNOの判定がなされた場合には、図7
のフローチャートのP12へ進む。この図19のフローチャ
ートにおける空燃比切り換え時間Tcの設定は、まず、
P9−1で触媒出口温度Teと吸入空気量Qaとに基づ
いて触媒9a,9bのNOx転換効率ηNOを求める(図
12参照)。この部分が転換効率検出手段に相当する。
The program shown in the flow chart of FIG. 19 differs from the programs shown in the flow charts of FIGS. 6 and 7 only in the step portion of P9 for setting the air-fuel ratio switching time Tc. If NO is determined, the process shown in FIG.
Go to P12 in the flowchart. The setting of the air-fuel ratio switching time Tc in the flowchart of FIG.
In P9-1, the NOx conversion efficiency η NO of the catalysts 9a and 9b is obtained based on the catalyst outlet temperature Te and the intake air amount Qa (Fig.
See 12). This part corresponds to the conversion efficiency detecting means.

【0050】次いでP9−2では、吸入空気量Qa及び
前記NOx転換効率ηNOのデータと、予め記憶してある
各空燃比状態におけるNOx濃度のデータ(この濃度デ
ータの記憶がNOx濃度設定手段に相当する)とに基づ
いて、空燃比を理論空燃比からリーン空燃比まで変化さ
せるときに排出されるNOxの積算値(総量)を演算す
る。
Next, at P9-2, the data of the intake air amount Qa and the NOx conversion efficiency η NO and the data of the NOx concentration in each air-fuel ratio state stored in advance (the storage of this concentration data is stored in the NOx concentration setting means). (Corresponding)), the integrated value (total amount) of NOx discharged when the air-fuel ratio is changed from the stoichiometric air-fuel ratio to the lean air-fuel ratio is calculated.

【0051】具体的には、例えば空燃比16,17,18,1
9,20,21の各状態でのNOx濃度のデータNOx(1
6)〜NOx(21)に吸入空気量Qaを乗算すること
で、各空燃比状態におけるNOx排出量を求めることが
でき、これらの積算値に(1−NOx転換効率ηNO)を
乗算すれば、触媒で処理されないまま排出されるNOx
の総量ΣNOxを概略求めることができる。
Specifically, for example, the air-fuel ratios 16, 17, 18, 1
Data of NOx concentration in each state of 9, 20, 21 NOx (1
6) to NOx (21) can be multiplied by the intake air amount Qa to obtain the NOx emission amount in each air-fuel ratio state, and if these integrated values are multiplied by (1-NOx conversion efficiency η NO ). , NOx exhausted without being treated by the catalyst
It is possible to roughly determine the total amount ΣNOx of.

【0052】 ΣNOx←{Qa×NOx(16)+Qa×NOx(17)+・・・ +Qa×NOx(21)}×(1−ηNO) 尚、上記のP9−1〜P9−2の部分がNOx排出総量
推定手段に相当する。上記のようにして求められるれる
NOx排出総量ΣNOxは、基準切り換え時間内で空燃
比を理論空燃比からリーン空燃比に(或いは逆方向に)
切り換えた場合において排出されると予測されるNOx
量であり、NOx転換効率ηNOが悪化するとそれだけ総
量ΣNOxは多くなる。従って、このNOx排出総量Σ
NOxが多い場合には、空燃比切り換え時間Tcを短く
設定しなければ、NOx排出量を許容レベル内に抑制す
ることができなくなる。
ΣNOx ← {Qa × NOx (16) + Qa × NOx (17) + ... + Qa × NOx (21)} × (1-η NO ) The above P9-1 to P9-2 are It corresponds to a total NOx emission amount estimation means. The total NOx emission amount ΣNOx obtained as described above is the air-fuel ratio from the stoichiometric air-fuel ratio to the lean air-fuel ratio (or in the opposite direction) within the reference switching time.
NOx expected to be emitted when switching
As the NOx conversion efficiency η NO deteriorates, the total amount ΣNOx increases. Therefore, this total NOx emission amount Σ
When the amount of NOx is large, the NOx emission amount cannot be suppressed within the allowable level unless the air-fuel ratio switching time Tc is set to be short.

【0053】そこで、次のP9−3では、図20に示すよ
うに、前記NOx排出総量ΣNOxが多いときほど空燃
比切り換え時間Tcを短く設定する。詳細には、前記N
Ox排出総量ΣNOxに基づいて、切り換え時のNOx
排出量を許容レベル内に抑制できる最長の切り換え時間
Tcを設定し、換言すれば、NOx排出総量が所定値と
なる空燃比切り換え時間Tcを設定し、NOx排出量の
抑制と運転性の確保とを両立させている。上記のP9−
3の部分がNOx量による切り換え制御手段に相当す
る。
Therefore, in the next P9-3, as shown in FIG. 20, the air-fuel ratio switching time Tc is set shorter as the total NOx emission amount ΣNOx increases. Specifically, the N
NOx at the time of switching based on the total Ox emission amount ΣNOx
The longest switching time Tc that can suppress the emission amount within the allowable level is set, in other words, the air-fuel ratio switching time Tc when the total NOx emission amount becomes a predetermined value is set, and the NOx emission amount is suppressed and the drivability is secured. Is compatible. P9- above
The portion 3 corresponds to the switching control means according to the NOx amount.

【0054】前記空燃比切り換え時間Tcに基づく空燃
比切り換え制御は、前述の実施例と同様にして行われる
ので説明を省略する。上記のように切り換え時のNOx
排出総量を推定し、これに基づいて切り換え制御時間T
cを設定する構成であれば、空燃比切り換え時のNOx
排出量を定量的に捉えるから、NOx排出量の規制要求
に柔軟に対応することが可能である。
The air-fuel ratio switching control based on the air-fuel ratio switching time Tc is performed in the same manner as in the above-mentioned embodiment, and therefore its explanation is omitted. NOx when switching as described above
Estimate the total emission amount, and based on this, the switching control time T
If the configuration is such that c is set, NOx when switching the air-fuel ratio
Since the emission amount is quantitatively grasped, it is possible to flexibly meet the regulatory requirement for the NOx emission amount.

【0055】ところで、触媒9a,9bにおけるNOx
の転換効率ηNOは、図9に示すように、理論空燃比より
もリーンで酸素量の比較的多い状態でもある程度維持さ
れるが、理論空燃比で酸素量の少ない状態の方が高い値
を示す。従って、触媒床温度が低かったり、又は、吸入
空気量Qa(排気流速)が大きく、触媒の転換効率が大
きく低下するときには、機関吸入混合気の空燃比を理論
空燃比に制御した方が、より高いNOx転換効率を確保
することができる。
By the way, NOx in the catalysts 9a and 9b
As shown in FIG. 9, the conversion efficiency η NO of is maintained to some extent in a state where the oxygen is leaner than the stoichiometric air-fuel ratio and has a relatively large amount of oxygen, but a higher value is obtained in the state where the oxygen amount is stoichiometric. Show. Therefore, when the catalyst bed temperature is low or the intake air amount Qa (exhaust flow velocity) is large and the conversion efficiency of the catalyst is greatly reduced, it is better to control the air-fuel ratio of the engine intake air-fuel mixture to the theoretical air-fuel ratio. A high NOx conversion efficiency can be secured.

【0056】従って、触媒の転換効率が最も低くなる運
転条件で、初期設定されたリーン空燃比(空燃比22)で
燃焼させることは、NOx排出量の増大を招く惧れがあ
り、前記リーン空燃比よりも理論空燃比で燃焼させる方
が好ましい。また、逆に触媒の転換効率が高いときに
は、空燃比のリーン化度合いを抑制しても、NOx排出
量を許容レベル内に抑えることができるので、初期設定
されたリーン空燃比よりも僅かにリッチ側に修正したリ
ーン空燃比を設定空燃比として、燃焼の安定化を図るこ
とができる。
Therefore, burning under the initially set lean air-fuel ratio (air-fuel ratio 22) under the operating condition where the conversion efficiency of the catalyst is the lowest may cause an increase in NOx emission amount. It is preferable to burn at the stoichiometric air-fuel ratio rather than the fuel ratio. On the contrary, when the conversion efficiency of the catalyst is high, even if the lean degree of the air-fuel ratio is suppressed, the NOx emission amount can be suppressed within the allowable level, so that it is slightly richer than the initially set lean air-fuel ratio. Combustion can be stabilized by using the lean air-fuel ratio corrected to the side as the set air-fuel ratio.

【0057】このように、そのときの触媒の転換効率に
応じてリーン空燃比領域の空燃比を変化させることが好
ましく、かかる実施例を以下に説明する。図21及び図22
のフローチャートに示すプログラムは、図6及び図7の
フローチャートに示すプログラムにおけるP9,P16,
P17の部分のみを変更したものであり、前記変更部分を
中心に以下に説明する。
As described above, it is preferable to change the air-fuel ratio in the lean air-fuel ratio region according to the conversion efficiency of the catalyst at that time. Such an embodiment will be described below. 21 and 22
The program shown in the flowchart of FIG.
Only the part of P17 is modified, and the modified part will be mainly described below.

【0058】図21及び図22のフローチャートにおいて、
P9’では、前記実施例と同様に吸入空気量Qaと触媒
出口温度Teとに基づいて空燃比切り換え時間Tcを設
定すると共に、前記吸入空気量Qaと触媒出口温度Te
とに基づいてそのときの転換効率に見合ったリーン空燃
比領域での空燃比TAFを可変設定する。このP9’にお
ける空燃比TAFの可変設定機能が、リーン空燃比可変手
段に相当する。
In the flowcharts of FIGS. 21 and 22,
At P9 ′, the air-fuel ratio switching time Tc is set based on the intake air amount Qa and the catalyst outlet temperature Te as in the above embodiment, and the intake air amount Qa and the catalyst outlet temperature Te are set.
Based on and, the air-fuel ratio T AF in the lean air-fuel ratio region corresponding to the conversion efficiency at that time is variably set. The variable setting function of the air-fuel ratio T AF at P9 ′ corresponds to lean air-fuel ratio changing means.

【0059】前記空燃比TAFの設定は、例えば図23に示
すような特性で行われる。即ち、吸入空気量Qaが多く
かつ触媒出口温度Teが低く最も転換効率が悪化する条
件においては、リーン空燃比領域であっても、前記空燃
比TAFとしては理論空燃比(空燃比=14.6)が設定され
る。これは、転換効率が大幅に低下する条件下であって
も、極力高い転換効率を維持するために、還元作用を発
揮させるのに都合の良い酸素の少ない空燃比で燃焼させ
ることが好ましい。
The air-fuel ratio T AF is set with the characteristics shown in FIG. 23, for example. That is, under the condition that the intake air amount Qa is large and the catalyst outlet temperature Te is low and the conversion efficiency is the worst, the theoretical air-fuel ratio (air-fuel ratio = 14.6) is obtained as the air-fuel ratio T AF even in the lean air-fuel ratio region. Is set. In order to maintain the conversion efficiency as high as possible even under the condition that the conversion efficiency is significantly lowered, it is preferable to burn at an air-fuel ratio with a small amount of oxygen, which is convenient for exerting a reducing action.

【0060】また、空燃比TAFを理論空燃比とする最低
の転換効率のときよりも転換効率が向上すると、この場
合には、触媒入口におけるNOx濃度を極力抑えるべ
く、安定燃焼が得られるぎりぎりのリーン空燃比(例え
ば空燃比=22)を空燃比TAFとして設定する。これは、
触媒の転換効率があまり高くないので、機関からのNO
x排出量を抑えて、最終的な触媒からのNOx排出量が
許容を越えて高くならないようにするためである。
Further, when the conversion efficiency is improved as compared with the case of the lowest conversion efficiency in which the air-fuel ratio T AF is the stoichiometric air-fuel ratio, in this case, stable combustion is barely obtained in order to suppress the NOx concentration at the catalyst inlet as much as possible. The lean air-fuel ratio (for example, air-fuel ratio = 22) is set as the air-fuel ratio T AF . this is,
Since the conversion efficiency of the catalyst is not very high, NO from the engine
This is because the x emission amount is suppressed so that the final NOx emission amount from the catalyst does not become unacceptably high.

【0061】更に、転換効率の良い条件では、機関から
排出されるNOxが増大しても、その分を触媒における
還元機能で処理できるから、空燃比を安定燃焼の限界付
近までリーン設定する必要はなくなり、空燃比TAFとし
ては前記リーン限界よりも僅かにリッチ側(例えば空燃
比20.5)を空燃比TAFとしている。また、最も転換効率
が高い条件では、リーン限界からのリッチシフトを更に
進め、空燃比19を空燃比TAFとしている。
Furthermore, under conditions of good conversion efficiency, even if the NOx discharged from the engine increases, the increased amount can be treated by the reducing function of the catalyst, so it is necessary to set the air-fuel ratio lean to near the limit of stable combustion. The air-fuel ratio T AF is slightly richer than the lean limit (for example, the air-fuel ratio 20.5) as the air-fuel ratio T AF . Further, under the condition of the highest conversion efficiency, the rich shift from the lean limit is further advanced, and the air-fuel ratio 19 is set as the air-fuel ratio T AF .

【0062】上記のようにしてリーン空燃比領域での設
定空燃比を触媒の転換効率によって変化させる場合に
は、理論空燃比からリーン空燃比に切り換える途中の噴
射量Tiは、切り換え後の空燃比目標が前記空燃比TAF
となるから、P16’で以下のようにして演算される。 Ti←Tp×{1−(1−14.6/TAF)×Tm/Tc}
+Ts 一方、切り換え終了後のリーン空燃比領域での噴射量T
iは、P17’において以下のようにして演算される。
When the set air-fuel ratio in the lean air-fuel ratio region is changed by the conversion efficiency of the catalyst as described above, the injection amount Ti during the switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio is the air-fuel ratio after switching. The target is the air-fuel ratio T AF
Therefore, P16 'is calculated as follows. Ti ← Tp × {1- (1-14.6 / T AF ) × Tm / Tc}
+ Ts On the other hand, the injection amount T in the lean air-fuel ratio region after the switching is completed
i is calculated in P17 'as follows.

【0063】Ti←Tp×14.6/TAF+Ts 即ち、リーン空燃比領域での設定空燃比を22とする場合
の噴射量Tiの演算式において、空燃比=22の代わりに
空燃比TAFをセットすれば良い。前記図21のフローチャ
ートでは、触媒床温度に相当する触媒出口温度Teを用
いたが、ここで、前記出口温度Teの代わりに機関温度
を代表する冷却水温度Twを用いても良く、かかる実施
例を図24のフローチャートに示してある。
Ti ← Tp × 14.6 / T AF + Ts That is, in the arithmetic expression of the injection amount Ti when the set air-fuel ratio in the lean air-fuel ratio region is 22, the air-fuel ratio T AF is set instead of the air-fuel ratio = 22. Just do it. Although the catalyst outlet temperature Te corresponding to the catalyst bed temperature is used in the flowchart of FIG. 21, a cooling water temperature Tw representative of the engine temperature may be used instead of the outlet temperature Te. Is shown in the flowchart of FIG.

【0064】この図24のフローチャートでは、図21のフ
ローチャートにおける触媒出口温度Teを、全て冷却水
温度Twに置き換えており、吸入空気量Qaと冷却水温
度Twとに基づいて触媒の転換効率を推定し、これに応
じてリーン空燃比領域での空燃比を可変設定する。尚、
冷却水温度Twをパラメータとして用いた場合の空燃比
AFの設定特性は、例えば図25に示すようになる。
In the flowchart of FIG. 24, the catalyst outlet temperature Te in the flowchart of FIG. 21 is all replaced with the cooling water temperature Tw, and the conversion efficiency of the catalyst is estimated based on the intake air amount Qa and the cooling water temperature Tw. The air-fuel ratio in the lean air-fuel ratio region is variably set accordingly. still,
The setting characteristic of the air-fuel ratio T AF when the cooling water temperature Tw is used as a parameter is as shown in FIG. 25, for example.

【0065】上記のように、リーン空燃比領域に安定し
た状態での空燃比を、触媒の転換効率に応じて可変設定
すれば、切り換え時のみならず、リーン空燃比領域で継
続運転されているときのNOx排出量を抑えることがで
きるようになり、総合的なNOx排出量を、転換効率の
変化に応じた限界値に制御できる。尚、本実施例のよう
な空燃比切り換え制御を、リーン空燃比でNOx転換効
率が急減する三元触媒を用いたシステムに適用しても良
いが、かかる三元触媒ではリーン領域でのNOx転換効
率がもともと小さく、触媒床温度や吸入空気量の条件が
変化しても、大きく転換効率が変化することがないの
で、大きな効果を得ることは困難であり、リーン領域で
NOx還元機能を発揮し得る触媒を備えたシステムへの
適用が好ましい。
As described above, if the air-fuel ratio in a stable state in the lean air-fuel ratio region is variably set according to the conversion efficiency of the catalyst, not only when switching, but also in the lean air-fuel ratio region, continuous operation is performed. The NOx emission amount at this time can be suppressed, and the total NOx emission amount can be controlled to the limit value according to the change in the conversion efficiency. The air-fuel ratio switching control as in the present embodiment may be applied to a system using a three-way catalyst in which the NOx conversion efficiency sharply decreases with a lean air-fuel ratio, but with such a three-way catalyst, NOx conversion in the lean region is possible. The efficiency is originally small, and even if the conditions of the catalyst bed temperature and the intake air amount change, the conversion efficiency does not change significantly, so it is difficult to obtain a large effect, and the NOx reduction function is exhibited in the lean region. Preference is given to application to a system with the resulting catalyst.

【0066】[0066]

【発明の効果】以上説明したように、本発明によると、
切り換え時のNOx排出量の抑制と、空燃比の切り換え
に伴う出力トルクの急変による運転性の悪化とを、触媒
の転換効率変化に影響されずに高次元にバランスさせる
ことが可能となる。更に、リーン空燃比に制御する運転
条件において、前記転換効率に応じた設定空燃比を変化
させれば、切り換え時のみならずリーン空燃比領域での
NOx排出量を最大限に抑制することができるようにな
る。
As described above, according to the present invention,
It becomes possible to balance the suppression of the NOx emission amount at the time of switching and the deterioration of the drivability due to the sudden change in the output torque due to the switching of the air-fuel ratio, without being influenced by the change in the conversion efficiency of the catalyst. Further, if the set air-fuel ratio is changed according to the conversion efficiency under the operating condition of controlling to the lean air-fuel ratio, the NOx emission amount in the lean air-fuel ratio region can be suppressed to the maximum not only at the time of switching. Like

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing the basic configuration of the present invention.

【図2】本発明の基本構成を示すブロック図。FIG. 2 is a block diagram showing the basic configuration of the present invention.

【図3】実施例のシステム構成を示す概略図。FIG. 3 is a schematic diagram showing a system configuration of an embodiment.

【図4】実施例の電子制御燃料噴射装置の基本構成を示
すブロック図。
FIG. 4 is a block diagram showing a basic configuration of an electronically controlled fuel injection device according to an embodiment.

【図5】実施例の理論空燃比領域とリーン空燃比領域と
を示す線図。
FIG. 5 is a diagram showing a stoichiometric air-fuel ratio region and a lean air-fuel ratio region of the embodiment.

【図6】第1実施例の空燃比切り換え制御を示すフロー
チャート。
FIG. 6 is a flowchart showing air-fuel ratio switching control of the first embodiment.

【図7】第1実施例の空燃比切り換え制御を示すフロー
チャート。
FIG. 7 is a flowchart showing the air-fuel ratio switching control of the first embodiment.

【図8】第1実施例における切り換え時間Tcの設定特
性を示す線図。
FIG. 8 is a diagram showing a setting characteristic of a switching time Tc in the first embodiment.

【図9】空燃比A/FとNOx転換効率との関係を示す
線図。
FIG. 9 is a diagram showing the relationship between the air-fuel ratio A / F and the NOx conversion efficiency.

【図10】空間速度(通過流速)S/V とNOx転換効率と
の関係を示す線図。
FIG. 10 is a graph showing the relationship between space velocity (passage velocity) S / V and NOx conversion efficiency.

【図11】触媒出口温度TeとNOx転換効率との関係を
示す線図。
FIG. 11 is a graph showing the relationship between catalyst outlet temperature Te and NOx conversion efficiency.

【図12】吸入空気量Qaと触媒出口温度Teとに対応す
るNOx転換効率を示す線図。
FIG. 12 is a graph showing NOx conversion efficiency corresponding to intake air amount Qa and catalyst outlet temperature Te.

【図13】第1実施例の空燃比切り換え特性を示すタイム
チャート。
FIG. 13 is a time chart showing the air-fuel ratio switching characteristic of the first embodiment.

【図14】触媒出口温度Teに代えて冷却水温度Twを用
いる実施例を示すフローチャート。
FIG. 14 is a flowchart showing an embodiment in which a cooling water temperature Tw is used instead of the catalyst outlet temperature Te.

【図15】冷却水温度Twをパラメータとして用いる切り
換え時間Tcの特性を示す線図。
FIG. 15 is a diagram showing a characteristic of a switching time Tc using the cooling water temperature Tw as a parameter.

【図16】吸入空気量Qaと冷却水温度Twとに対応する
NOx転換効率を示す線図。
FIG. 16 is a graph showing NOx conversion efficiency corresponding to intake air amount Qa and cooling water temperature Tw.

【図17】リーン領域から理論空燃比領域への切り換え時
の制御を示すフローチャート。
FIG. 17 is a flowchart showing control at the time of switching from the lean region to the stoichiometric air-fuel ratio region.

【図18】リーン空燃比から理論空燃比への切り換え制御
を示すフローチャート。
FIG. 18 is a flowchart showing control for switching from a lean air-fuel ratio to a stoichiometric air-fuel ratio.

【図19】NOx排出総量に基づき切り換え時間Tcを設
定する実施例を示すフローチャート。
FIG. 19 is a flowchart showing an example in which the switching time Tc is set based on the total NOx emission amount.

【図20】NOx排出総量ΣNOxと空燃比切り換え時間
Tcとの関係を示す線図。
FIG. 20 is a graph showing the relationship between the total NOx emission amount ΣNOx and the air-fuel ratio switching time Tc.

【図21】リーン領域の空燃比を転換効率に応じて設定す
る実施例を示すフローチャート。
FIG. 21 is a flowchart showing an example in which the air-fuel ratio in the lean region is set according to the conversion efficiency.

【図22】リーン領域の空燃比を転換効率に応じて設定す
る実施例を示すフローチャート。
FIG. 22 is a flowchart showing an example in which the air-fuel ratio in the lean region is set according to the conversion efficiency.

【図23】触媒出口温度Teと吸入空気量Qaとに対応す
るリーン領域空燃比の特性を示す線図。
FIG. 23 is a diagram showing a characteristic of a lean region air-fuel ratio corresponding to a catalyst outlet temperature Te and an intake air amount Qa.

【図24】冷却水温度をパラメータとして求めた転換効率
に応じてリーン領域空燃比を設定する実施例を示すフロ
ーチャート。
FIG. 24 is a flowchart showing an example in which the lean region air-fuel ratio is set according to the conversion efficiency obtained by using the cooling water temperature as a parameter.

【図25】冷却水温度Twと吸入空気量Qaとに対応する
リーン領域空燃比の特性を示す線図。
FIG. 25 is a diagram showing characteristics of a lean region air-fuel ratio corresponding to a cooling water temperature Tw and an intake air amount Qa.

【図26】実施例のリーン領域でNOx還元機能を有する
触媒及び一般的な三元触媒のNOx転換効率を示す線
図。
FIG. 26 is a diagram showing the NOx conversion efficiency of a catalyst having a NOx reduction function and a general three-way catalyst in the lean range of the example.

【符号の説明】[Explanation of symbols]

1 内燃機関 5 インジェクタ 9a,9b 触媒 10 コントロールユニット 11 エアフローメータ 12 クランク角センサ 13 冷却水温度センサ 16a,16b 触媒温度センサ 1 Internal combustion engine 5 injectors 9a, 9b catalyst 10 Control unit 11 Air flow meter 12 crank angle sensor 13 Cooling water temperature sensor 16a, 16b Catalyst temperature sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F01N 3/24 F02D 45/00 301 F02D 45/00 314 F01N 3/20 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F02D 41/14 310 F01N 3/24 F02D 45/00 301 F02D 45/00 314 F01N 3/20

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関排気通路に排気浄化用の触媒を備える
一方、機関吸入混合気の空燃比を、機関運転条件に応じ
て理論空燃比とリーン空燃比とに切り換え制御する内燃
機関の空燃比制御装置であって、 前記触媒のNOx転換効率に相当するパラメータを検出
する転換効率検出手段と、 該転換効率検出手段で検出された触媒のNOx転換効率
に応じて理論空燃比とリーン空燃比との間の切り換え速
度を可変制御する切り換え速度制御手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。
1. An air-fuel ratio of an internal combustion engine, wherein an engine exhaust passage is provided with a catalyst for purifying exhaust gas, and an air-fuel ratio of an engine intake air-fuel mixture is controlled to be switched between a theoretical air-fuel ratio and a lean air-fuel ratio according to engine operating conditions. The control device is a conversion efficiency detecting means for detecting a parameter corresponding to the NOx conversion efficiency of the catalyst, and a theoretical air-fuel ratio and a lean air-fuel ratio according to the NOx conversion efficiency of the catalyst detected by the conversion efficiency detecting means. And a switching speed control means for variably controlling the switching speed between the internal combustion engine and the air-fuel ratio control apparatus for the internal combustion engine.
【請求項2】前記転換効率検出手段で検出された触媒の
NOx転換効率に応じて前記リーン空燃比に対応する運
転条件における空燃比を可変設定するリーン空燃比可変
手段を設けたことを特徴とする請求項1記載の内燃機関
の空燃比制御装置。
2. A lean air-fuel ratio varying means for variably setting an air-fuel ratio under an operating condition corresponding to the lean air-fuel ratio according to the NOx conversion efficiency of the catalyst detected by the conversion efficiency detecting means. The air-fuel ratio control device for an internal combustion engine according to claim 1.
【請求項3】前記転換効率検出手段が、NOx転換効率
に相当するパラメータとして、触媒における排気の通過
流速と触媒床温度とにそれぞれ相当するパラメータを検
出することを特徴とする請求項1又は2のいずれかに記
載の内燃機関の空燃比制御装置。
3. The conversion efficiency detecting means detects, as the parameters corresponding to the NOx conversion efficiency, parameters corresponding to an exhaust passage velocity of the catalyst and a catalyst bed temperature, respectively. An air-fuel ratio control device for an internal combustion engine according to any one of 1.
【請求項4】前記転換効率検出手段が、NOx転換効率
に相当するパラメータとして、触媒における排気の通過
流速と機関温度とにそれぞれ相当するパラメータを検出
することを特徴とする請求項1又は2のいずれかに記載
の内燃機関の空燃比制御装置。
4. The conversion efficiency detecting means detects, as parameters corresponding to NOx conversion efficiency, parameters respectively corresponding to an exhaust passage velocity in a catalyst and an engine temperature. An air-fuel ratio control device for an internal combustion engine according to any one of claims.
【請求項5】前記触媒における排気の通過流速に相当す
るパラメータとして機関の吸入空気量を検出することを
特徴とする請求項3又は4のいずれかに記載の内燃機関
の空燃比制御装置。
5. The air-fuel ratio control device for an internal combustion engine according to claim 3, wherein the intake air amount of the engine is detected as a parameter corresponding to the passage velocity of exhaust gas in the catalyst.
【請求項6】機関排気通路に排気浄化用の触媒を備える
一方、機関吸入混合気の空燃比を、機関運転条件に応じ
て理論空燃比とリーン空燃比とに切り換え制御する内燃
機関の空燃比制御装置であって、 空燃比の切り換えを行ったときの触媒出口でのNOx排
出総量を推定するNOx排出総量推定手段と、 該NOx排出総量推定手段で推定されたNOx排出総量
に応じて理論空燃比とリーン空燃比との間の切り換え速
度を可変制御するNOx量による切り換え制御手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。
6. An air-fuel ratio of an internal combustion engine, wherein an engine exhaust passage is provided with a catalyst for purifying exhaust gas, and the air-fuel ratio of the engine intake air-fuel mixture is controlled to be switched between a theoretical air-fuel ratio and a lean air-fuel ratio according to engine operating conditions. The control device is a total NOx emission amount estimating means for estimating the total NOx emission amount at the catalyst outlet when the air-fuel ratio is switched, and a theoretical empty amount according to the total NOx emission amount estimated by the total NOx emission amount estimating means. An air-fuel ratio control device for an internal combustion engine, comprising: a switching control means for variably controlling a switching speed between a fuel ratio and a lean air-fuel ratio, the switching control means being based on an NOx amount.
【請求項7】前記NOx排出総量推定手段が、 前記触媒のNOx転換効率に相当するパラメータを検出
する転換効率検出手段と、 機関の吸入空気量を検出する吸入空気量検出手段と、 空燃比に応じたNOx濃度推定値を設定するNOx濃度
設定手段と、 を含んで構成され、前記検出された吸入空気量及び転換
効率と空燃比に応じたNOx濃度推定値とに基づいてN
Ox排出総量を推定することを特徴とする請求項6記載
の内燃機関の空燃比制御装置。
7. The total NOx emission amount estimating means, a conversion efficiency detecting means for detecting a parameter corresponding to the NOx conversion efficiency of the catalyst, an intake air amount detecting means for detecting an intake air amount of the engine, and an air-fuel ratio NOx concentration setting means for setting a NOx concentration estimated value according to the above, and N based on the detected intake air amount and conversion efficiency and the NOx concentration estimated value according to the air-fuel ratio.
The air-fuel ratio control device for an internal combustion engine according to claim 6, wherein the total amount of Ox emissions is estimated.
【請求項8】前記NOx量による切り換え制御手段が、
前記推定されたNOx排出総量に基づいて切り換え時の
NOx排出総量が所定量以下となる最長切り換え時間を
設定し、この切り換え時間内で徐々に空燃比を変化させ
ることを特徴とする請求項6又は7のいずれかに記載の
内燃機関の空燃比制御装置。
8. A switching control means based on the NOx amount comprises:
7. The longest switching time for which the total NOx emission amount at the time of switching becomes a predetermined amount or less is set based on the estimated total NOx emission amount, and the air-fuel ratio is gradually changed within this switching time. 8. An air-fuel ratio control device for an internal combustion engine according to any one of 7.
JP25024592A 1992-09-18 1992-09-18 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3488982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25024592A JP3488982B2 (en) 1992-09-18 1992-09-18 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25024592A JP3488982B2 (en) 1992-09-18 1992-09-18 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06101541A JPH06101541A (en) 1994-04-12
JP3488982B2 true JP3488982B2 (en) 2004-01-19

Family

ID=17205007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25024592A Expired - Fee Related JP3488982B2 (en) 1992-09-18 1992-09-18 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3488982B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182097A (en) * 1997-09-04 1999-03-26 Mazda Motor Corp Control device for engine
US6237330B1 (en) * 1998-04-15 2001-05-29 Nissan Motor Co., Ltd. Exhaust purification device for internal combustion engine

Also Published As

Publication number Publication date
JPH06101541A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
JP4158268B2 (en) Engine exhaust purification system
JP3605221B2 (en) Control device for internal combustion engine
US20010013221A1 (en) Fuel supply conrol system for internal combustion engine
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP2985578B2 (en) Air-fuel ratio control device for lean burn engine
JP3693855B2 (en) Air-fuel ratio control device for internal combustion engine
JP4232524B2 (en) Engine control device
JP3488982B2 (en) Air-fuel ratio control device for internal combustion engine
JP3757668B2 (en) Engine exhaust purification system
JP3612719B2 (en) Fuel injection control device for internal combustion engine
JP4031887B2 (en) Engine air-fuel ratio control apparatus and method
JP3622273B2 (en) Control device for internal combustion engine
JPH0763096A (en) Air-fuel ratio controller of internal combustion engine
JPH0814031A (en) Judgement on reduction and absorption performance of nox reduction catalyst in internal combustion engine, and reduction of nox
JP3531183B2 (en) Air-fuel ratio control device for internal combustion engine
JP4636214B2 (en) Air-fuel ratio control device for internal combustion engine
JP3601101B2 (en) Air-fuel ratio control device for internal combustion engine
JP3767062B2 (en) Air-fuel ratio control device for internal combustion engine
JP3123438B2 (en) Exhaust gas purification device for internal combustion engine
JPH08144802A (en) Air-fuel ratio controller for internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JP4060152B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0996230A (en) Control device for internal combustion engine
JP3508301B2 (en) Engine air-fuel ratio control device
JPH094492A (en) Engine control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees