JPH0763010B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0763010B2
JPH0763010B2 JP61108157A JP10815786A JPH0763010B2 JP H0763010 B2 JPH0763010 B2 JP H0763010B2 JP 61108157 A JP61108157 A JP 61108157A JP 10815786 A JP10815786 A JP 10815786A JP H0763010 B2 JPH0763010 B2 JP H0763010B2
Authority
JP
Japan
Prior art keywords
battery
lithium
lini
organic electrolyte
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61108157A
Other languages
Japanese (ja)
Other versions
JPS62264560A (en
Inventor
亨 永浦
俊夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61108157A priority Critical patent/JPH0763010B2/en
Priority to CA000534644A priority patent/CA1285986C/en
Priority to US07/043,039 priority patent/US4770960A/en
Priority to EP87106108A priority patent/EP0243926B1/en
Priority to DE8787106108T priority patent/DE3769692D1/en
Priority to KR1019870004139A priority patent/KR950011245B1/en
Publication of JPS62264560A publication Critical patent/JPS62264560A/en
Publication of JPH0763010B2 publication Critical patent/JPH0763010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極にリチウムもしくはリチウム合金を,ま
た電解液に有機電解液を用いる有機電解質電池(いわゆ
るリチウム電池)に関するものであり、特にLiと遷移金
属との複合酸化物を陽極活物質とする有機電解質電池の
改良に関するものである。
TECHNICAL FIELD The present invention relates to an organic electrolyte battery (so-called lithium battery) using lithium or a lithium alloy as a cathode and an organic electrolyte as an electrolyte, and particularly Li The present invention relates to an improvement in an organic electrolyte battery using a composite oxide of a metal and a transition metal as an anode active material.

〔発明の概要〕[Outline of Invention]

本発明は、有機電解質電池の陽極材としてLiNixCo(1-x)
O2(但し、0<x≦0.27である。)で示される複合金属
酸化物を用いることにより、 作動電圧の点で水銀電池と完全に互換性を有するととも
に電池容量が大きく、且つ無公害な全く新しい電池シス
テムを提供しようとするものである。
The present invention provides LiNi x Co (1-x) as an anode material for an organic electrolyte battery.
By using the composite metal oxide represented by O 2 (where 0 <x ≦ 0.27), it is completely compatible with the mercury battery in terms of operating voltage, has a large battery capacity, and is non-polluting. It aims to provide an entirely new battery system.

〔従来の技術〕[Conventional technology]

近年、例えば時計,カメラ,電卓等の各種の電子機器の
小型化が進められており、これら機器には小型,薄型で
水溶液系電池の中でもエネルギー密度の高い酸化銀電池
や水銀電池が使用されている。
In recent years, various electronic devices such as watches, cameras, and calculators have been miniaturized, and silver oxide batteries and mercury batteries, which are small and thin and have high energy density among aqueous batteries, are used for these devices. There is.

しかしながら、環境汚染問題への関心が高まるにつれ、
水銀電池は勿論のこと、酸化銀電池も陰極に亜鉛アマル
ガムを使用していることから、これら水銀電池や酸化銀
電池の廃電池の処理にまつわる公害への関連がとりざた
されている。
However, as interest in environmental pollution increases,
Since not only mercury batteries but also silver oxide batteries use zinc amalgam as the cathode, the relation to the pollution associated with the disposal of these mercury batteries and silver oxide batteries has been proposed.

かかる状況から、水銀電池や酸化銀電池と互換性のある
無公害な電池の出現が強く望まれている。
Under such circumstances, the advent of pollution-free batteries compatible with mercury batteries and silver oxide batteries is strongly desired.

一方、陰極にリチウム若しくはリチウム合金を用い、電
解液に有機電解液を用いるリチウム電池は、保存性に極
めて優れ、且つエネルギー密度も大きいため小型,薄型
化が可能であり、また水銀も使用していないので無公害
であることから、種々の電子機器に使われ始めている。
例えば、陽極活物質としてMnO2,CFx,AgCrO4等を使用し
たものが実用化されている。
On the other hand, a lithium battery that uses lithium or a lithium alloy for the cathode and an organic electrolyte for the electrolyte has excellent storage stability and has a large energy density, so it can be made small and thin, and it also uses mercury. Since it is non-polluting because it is not present, it is beginning to be used in various electronic devices.
For example, a material using MnO 2 , CF x , AgCrO 4 or the like as an anode active material has been put into practical use.

ところが、これらリチウム電池は電池電圧が3Vと高いた
め、従来の銀電池や水銀電池との互換性の点で難があっ
た。そこで、これら酸化銀電池や水銀電池と互換性のあ
るリチウム電池の開発が進められ、陽極活物質としてFe
S,FeS2,CuO等を用い、これらをリチウム陰極と組み合わ
せたリチウム電池等が提案されている。このようなリチ
ウム電池は、電池電圧が1.5〜1.6Vと酸化銀電池とほぼ
同等なものとなり、酸化銀電池との互換性は確保され
る。しかしながら、水銀電池はその電池電圧が1.3Vとや
や低いため、この水銀電池と完全に互換性を持つリチウ
ム電池は知られていない。
However, since these lithium batteries have a high battery voltage of 3 V, they have a difficulty in compatibility with conventional silver batteries and mercury batteries. Therefore, development of lithium batteries compatible with these silver oxide batteries and mercury batteries has been promoted, and Fe as an anode active material has been developed.
Lithium batteries and the like have been proposed in which S, FeS 2 , CuO and the like are used and are combined with a lithium cathode. Such a lithium battery has a battery voltage of 1.5 to 1.6 V, which is almost the same as a silver oxide battery, and compatibility with the silver oxide battery is secured. However, since the battery voltage of the mercury battery is as low as 1.3 V, a lithium battery that is completely compatible with this mercury battery is not known.

そこで本願出願人は、先にLiと遷移金属との複合酸化物
を陽極材とし水銀電池とほぼ等しい電池電圧を示す有機
電解質電池を提案した。
Therefore, the applicant of the present application previously proposed an organic electrolyte battery that uses a composite oxide of Li and a transition metal as an anode material and exhibits a battery voltage almost equal to that of a mercury battery.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、かかる複合酸化物を陽極材とする有機電解質
電池のより一層の改良を図ろうとするものである。
The present invention is intended to further improve an organic electrolyte battery using such a composite oxide as an anode material.

すなわち、本発明は、Liと遷移金属との複合酸化物を陽
極材とする有機電解質電池における電池容量の増大を目
的とする。
That is, the present invention aims to increase the battery capacity of an organic electrolyte battery using a composite oxide of Li and a transition metal as an anode material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、LiCoO2を基本活物質として種々研究を重
ねた結果、コバルト原子の一部をニッケル原子に置き換
えることで活物質としての特性が非常に良くなることを
見出した。本発明の有機電解質電池はかかる知見に基づ
いて完成されたものであって、リチウムまたはリチウム
合金よりなる陰極と、LiNixCo(1-x)O2(但し、0<x≦
0.27である。)で示される複合金属酸化物よりなる陽極
と、有機電解質とから構成されることを特徴とするもの
である。
As a result of various studies using LiCoO 2 as a basic active material, the present inventors have found that replacing a part of cobalt atoms with nickel atoms results in very good characteristics as an active material. The organic electrolyte battery of the present invention has been completed on the basis of such findings, and includes a cathode made of lithium or a lithium alloy and LiNi x Co (1-x) O 2 (where 0 <x ≦
It is 0.27. ) Is composed of an anode made of a composite metal oxide and an organic electrolyte.

本発明においては、LiとCo及びNiの複合酸化物を陽極材
としているが、この複合酸化物はLiの炭酸塩とCoの炭酸
塩,Niの炭酸塩を混合し、熱処理することにより簡単に
合成することができる。
In the present invention, a composite oxide of Li, Co and Ni is used as the anode material, but this composite oxide is easily mixed by mixing Li carbonate, Co carbonate and Ni carbonate and heat-treating. Can be synthesized.

また、上記LiNixCo(1-x)O2を陽極材とする有機電解質電
池では、xの値が増加するにつれその容量が大となる。
すなわち、0<xであれば放電容量の増大という点で効
果が期待できる。ただし、xの値があまり大きくなる
と、言い換えればニッケルの含有量があまり多くなり過
ぎると、電池電圧が低下する。したがって、水銀電池の
代用としての用途を考えた場合には、xの値は0<x≦
0.27の範囲内とすることが好ましく、0.07≦x≦0.22と
することがより好ましい。xの値が0.27を越えると、電
池電圧が1.2Vとなるまでの見掛け上の放電容量は、急激
に減少する。もっとも、ある程度電池電圧が低くとも良
い場合には、電池寿命で見るとxの値が上述の範囲を越
えても良い。
In addition, in the organic electrolyte battery using LiNi x Co (1-x) O 2 as the anode material, the capacity increases as the value of x increases.
That is, if 0 <x, an effect can be expected in that the discharge capacity increases. However, if the value of x becomes too large, in other words, if the content of nickel becomes too large, the battery voltage will decrease. Therefore, when considering the use as a substitute for the mercury battery, the value of x is 0 <x ≦
The range is preferably 0.27, and more preferably 0.07 ≦ x ≦ 0.22. When the value of x exceeds 0.27, the apparent discharge capacity until the battery voltage reaches 1.2V sharply decreases. However, when the battery voltage may be low to some extent, the value of x may exceed the above range in terms of battery life.

一方陰極活物質としては、リチウムの他、LiAl合金等、
LiとAl,Pb,Sn,Bi,Cd等のうち一種以上との合金が使用可
能である。
On the other hand, as the cathode active material, other than lithium, LiAl alloy,
An alloy of Li and one or more of Al, Pb, Sn, Bi, Cd, etc. can be used.

また、電解液には、リチウム塩を電解質とし、これを有
機溶剤に溶解した非水系の有機電解質が使用される。
A non-aqueous organic electrolyte prepared by dissolving a lithium salt in an electrolyte and dissolving it in an organic solvent is used as the electrolytic solution.

ここで、有機溶剤としては、エステル類,エーテル類,3
置換−2−オキサゾリジノン類及びこれらの二種以上の
混合溶剤が挙げられる。
Here, as the organic solvent, esters, ethers, 3
Substituted-2-oxazolidinones and mixed solvents of two or more of these may be mentioned.

エステル類としては、アルキレンカーボネート(エチレ
ンカーボネート,プロピレンカーボネート,γ−ブチロ
ラクトン等)等が挙げられる。
Examples of the esters include alkylene carbonate (ethylene carbonate, propylene carbonate, γ-butyrolactone, etc.) and the like.

エーテル類としては、環状エーテル,例えば5員環を有
するエーテル〔テトラヒドロフラン;置換(アルキル,
アルコキシ)テトラヒドロフラン例えば2−メチルテト
ラヒドロフラン,2,5−ジメチルテトラヒドロフラン,2−
エチルテトラヒドロフラン,2,2′−ジメチルテトラヒド
ロフラン,2−メトキシテトラヒドロフラン,2,5−ジメト
キシテトラヒドロフラン等;ジオキソラン等〕,6員環を
有するエーテル〔1.4−ジオキサン,ピラン,ジヒドロ
ピラン,テトラヒドロピラン〕,ジメトキシエタン等が
挙げられる。
The ethers include cyclic ethers, for example, ethers having a 5-membered ring [tetrahydrofuran; substituted (alkyl,
Alkoxy) tetrahydrofuran, for example 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2-
Ethyltetrahydrofuran, 2,2'-dimethyltetrahydrofuran, 2-methoxytetrahydrofuran, 2,5-dimethoxytetrahydrofuran, etc .; dioxolane, etc.], ether having a 6-membered ring [1.4-dioxane, pyran, dihydropyran, tetrahydropyran], dimethoxyethane Etc.

3置換−2−オキサゾリジノン類としては、3−アルキ
ル−2−オキサゾリジノン(3−メチル−2−オキサゾ
リジノン,3−エチル−2−オキサゾリジノン,等),3−
シクロアルキル−2−オキサゾリジノン(3−シクロヘ
キシル−2−オキサゾリジノン等),3−アラルキル−2
−オキササゾリジノン(3−ベンジル−2−オキサゾリ
ジノン等),3−アリール−2−オキサゾリジノン(3−
フェニル−2−オキサゾリジノン等)が挙げられる。
The 3-substituted-2-oxazolidinones include 3-alkyl-2-oxazolidinone (3-methyl-2-oxazolidinone, 3-ethyl-2-oxazolidinone, etc.), 3-
Cycloalkyl-2-oxazolidinone (3-cyclohexyl-2-oxazolidinone, etc.), 3-aralkyl-2
-Oxazazolidinone (3-benzyl-2-oxazolidinone, etc.), 3-aryl-2-oxazolidinone (3-
Phenyl-2-oxazolidinone and the like).

なかでも、プロピレンカーボネートや5員環を有するエ
ーテル(特にテトラヒドロフラン,2−メチルテトラヒド
ロフラン,2−エチルテトラヒドロフラン,2,5−ジメチル
テトラヒドロフラン,2−メトキシテトラヒドロフラ
ン),3−メチル−2−オキサゾリジノンが好ましい。
Among them, propylene carbonate, ether having a 5-membered ring (particularly tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2-methoxytetrahydrofuran), and 3-methyl-2-oxazolidinone are preferable.

電解質としては、過塩素酸リチウム,ホウフッ化リチウ
ム,リンフッ化リチウム,塩化アルミン酸リチウム,ハ
ロゲン化リチウム,トリフルオロメタンスルホン酸リチ
ウム等が使用可能であり、過塩素酸リチウム,ホウフッ
化リチウム等が好ましい。
As the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used, and lithium perchlorate and lithium borofluoride are preferable.

〔作用〕[Action]

LiとCoの複合酸化物であるLiCoO2を基本活物質とし、そ
のコバルト原子の一部をニッケル原子で置き換えること
により、これを陽極材とする有機電解質電池の放電容量
が増大する。
By using LiCoO 2 which is a composite oxide of Li and Co as a basic active material and replacing some of the cobalt atoms with nickel atoms, the discharge capacity of the organic electrolyte battery using this as an anode material increases.

特に、陽極材であるLiNixCo(1-x)O2のxの値を0<x≦
0.27とすることにより、LiCoO2を陽極材とする電池に比
べて容量の大きい有機電解質電池となり、電池電圧も水
銀電池の代用とするに充分な値が確保される。
In particular, the value of x of LiNi x Co (1-x) O 2 which is the anode material is 0 <x ≦
By setting it to 0.27, an organic electrolyte battery having a larger capacity than a battery using LiCoO 2 as an anode material can be obtained, and a sufficient battery voltage can be secured to substitute for a mercury battery.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明する。 Hereinafter, the present invention will be described based on specific experimental results.

複合酸化物合成例 市販の炭酸リチウム粉末と炭酸コバルト粉末とをリチウ
ム原子及びコバルト原子が1:1となるように混合し、空
気中,900℃で5時間焼成してリチウムコバルト複合酸化
物(LiCoO2)を得た。得られたリチウムコバルト複合酸
化物のX線回折パターンを第1図Aに示す。
Example of composite oxide synthesis Commercially available lithium carbonate powder and cobalt carbonate powder were mixed so that the ratio of lithium atoms and cobalt atoms was 1: 1 and the mixture was fired in air at 900 ° C for 5 hours to obtain a lithium cobalt composite oxide (LiCoO). 2 ) got The X-ray diffraction pattern of the obtained lithium cobalt composite oxide is shown in FIG. 1A.

次に、上記リチウムコバルト複合酸化物のコバルト原子
をニッケル原子で置き換える目的で、炭酸リチウム(Li
CO3),炭酸コバルト(CoCO3),炭酸ニッケル(NiC
O3)をLiNixCo(1-x)O2の組成に合致するように混合し、
焼成した。すなわち、各xの値に応じて、リチウム原
子,ニッケル原子,コバルト原子が1:x:1−xとなるよ
うに混合焼成した。なお、焼成条件は、リチウムコバル
ト複合酸化物と同様、空気中,900℃で5時間とした。
Next, in order to replace the cobalt atom of the lithium-cobalt composite oxide with the nickel atom, lithium carbonate (Li
CO 3 ), cobalt carbonate (CoCO 3 ), nickel carbonate (NiC
O 3 ) is mixed to match the composition of LiNi x Co (1-x) O 2 ,
Baked. That is, depending on the value of each x, mixed firing was performed so that the lithium atom, the nickel atom, and the cobalt atom became 1: x: 1-x. The firing conditions were 900 ° C. in air for 5 hours, similar to the lithium cobalt composite oxide.

第1図Bないし第1図Gは、これら複合酸化物のX線回
折パターンを示すもので、第1図BはLiNi0.1Co0.9O2
第1図CはLiNi0.2Co0.8O2、第1図DはLiNi0.4Co
0.6O2、第1図EはLiNi0.6Co0.4O2、第1図FはLiNi0.8
Co0.2O2、第1図GはLiNiO2をそれぞれ示す。
1B to 1G show X-ray diffraction patterns of these composite oxides, and FIG. 1B shows LiNi 0.1 Co 0.9 O 2 ,
Figure 1C shows LiNi 0.2 Co 0.8 O 2 and Figure 1D shows LiNi 0.4 Co.
0.6 O 2 , FIG. 1E shows LiNi 0.6 Co 0.4 O 2 , and FIG. 1F shows LiNi 0.8.
Co 0.2 O 2 and FIG. 1G show LiNiO 2 , respectively.

これら第1図Aないし第1図Gに示すX線回折パターン
より明らかなように、LiNixCo(1-x)O2において、コバル
トとニッケルとは自由な比で置き変わることがわかる。
何故ならば、x=0なるLiCoO2の基本パターン(第1図
A)が変わることはなく、xの値に応じてX線回折パタ
ーンは次第に変化し、最終的にはx=1なるLiNiO2のパ
ターン(第1図G)へと変化していくからである。
As is clear from the X-ray diffraction patterns shown in FIGS. 1A to 1G, it is found that in LiNi x Co (1-x) O 2 , cobalt and nickel are replaced at a free ratio.
The reason is that the basic pattern of LiCoO 2 with x = 0 (FIG. 1A) does not change, the X-ray diffraction pattern gradually changes according to the value of x, and finally LiNiO 2 with x = 1. This is because the pattern (Fig. 1G) changes.

実施例 先の複合酸化物合成例で調製された複合酸化物〔LiNixC
o(1-x)O2(x=0〜1)〕粉末70重量部にグラファイト
27重量部及びバインダとなるポリテトラフルオロエチレ
ン粉末3重量部を混合し、圧粉成形して直径10.3mm,厚
さ0.5mmの陽極ペレットを用意した。
Example The composite oxide prepared in the previous composite oxide synthesis example [LiNi x C
o (1-x) O 2 (x = 0 to 1)] 70 parts by weight of graphite
27 parts by weight and 3 parts by weight of polytetrafluoroethylene powder serving as a binder were mixed and compacted to prepare an anode pellet having a diameter of 10.3 mm and a thickness of 0.5 mm.

次に、第2図に示すように、アノードカップ(1)に直
径12.3mm,厚さ1.6mmのリチウム箔(2)を打ち抜いて圧
着し、さらにその上に電解液を含有するセパレータ
(3)を置き、プラスチックのガスケット(4)をはめ
込んだ後、用意した陽極ペレット(5)をセパレータ
(3)の上に置き、カソード罐(6)を被せ、その端を
カシメてシールして有機電解質電池を組み立てた。な
お、電解液としては、プロピレンカーボネートに過塩素
酸リチウムを1モル/の割合で溶解したものを用い
た。
Next, as shown in FIG. 2, a lithium foil (2) having a diameter of 12.3 mm and a thickness of 1.6 mm is punched out and press-bonded to the anode cup (1), and a separator (3) containing an electrolyte solution is further formed thereon. , Put the plastic gasket (4) on it, put the prepared anode pellet (5) on the separator (3), cover the cathode can (6), and crimp the end to seal the organic electrolyte battery. Assembled. The electrolyte used was propylene carbonate in which lithium perchlorate was dissolved at a rate of 1 mol / mol.

これらの電池を6.5kΩの抵抗を介して放電し、終止電圧
1.2Vまでの放電時間を測定し、陽極材であるLiNixCo
(1-x)O2の単位重量(1mg)当たりの放電時間を求めた。
結果を第3図に示す。
These batteries are discharged through a 6.5 kΩ resistor,
Discharge time up to 1.2V was measured and the anode material LiNi x Co
The discharge time per unit weight (1 mg) of (1-x) O 2 was determined.
Results are shown in FIG.

第3図に示すように、LiNixCo(1-x)O2を陽極材とする電
池では、その放電容量がxの値により変化し、コバルト
の一部をニッケルで置き換えるとLiCoO2に比べて放電容
量が増すことが見出された。但し、この置き換えもx≧
0.27ではニッケルが多くなるにつれ容量が減少すること
も見出された。
As shown in Fig. 3, in the battery using LiNi x Co (1-x) O 2 as the anode material, its discharge capacity changes depending on the value of x, and when a part of cobalt is replaced by nickel, it is compared to LiCoO 2 . It was found that the discharge capacity increased. However, this replacement is also x ≧
It was also found that at 0.27 the capacity decreased with increasing nickel.

したがって、本実施例により、リチウム,コバルト,ニ
ッケルの3元素よりなる複合酸化物LiNixCo(1-x)O2は電
池活物質として優れたものであり、特にxの値を0<x
≦0.27に選んでコバルト原子の一部をニッケル原子で置
き換えたものは、次式 LiMO2+3Li→2Li2O+M ……(1) (但し、Mは遷移金属である。) で示される反応を基本電池反応とする有機電解質電池に
おいて優れた電池活物質となることが裏付けられた。
Therefore, according to the present embodiment, the composite oxide LiNi x Co (1-x) O 2 consisting of three elements of lithium, cobalt and nickel is excellent as a battery active material, and particularly, the value of x is 0 <x.
≤0.27 selected with some cobalt atoms replaced with nickel atoms is based on the reaction shown by the following formula: LiMO 2 + 3Li → 2Li 2 O + M (1) (where M is a transition metal). It has been proved that it is an excellent battery active material in an organic electrolyte battery which is a battery reaction.

第4図は放電容量で最大値を示したLi/LiNi0.1Co0.9O2
電池の放電曲線を、Li/LiCoO2電池及びLi/LiNiO2電池の
それと比較して示す特性図である。この第4図からも、
LiNixCo(1-x)O2を陽極材とする優位性が確認された。す
なわち、LiCoO2を陽極材とする電池では、放電電圧の点
では問題ないものの、放電容量に不満を残している。一
方、LiNiO2を陽極材とする電池では、放電曲線はフラッ
トなもので、電池寿命については良好な特性を示すが、
放電電圧が若干低く、終止電圧を1.2Vとすると殆ど電池
容量が取れない状態である。
Figure 4 shows the maximum discharge capacity of Li / LiNi 0.1 Co 0.9 O 2
FIG. 3 is a characteristic diagram showing discharge curves of a battery in comparison with those of a Li / LiCoO 2 battery and a Li / LiNiO 2 battery. Also from this FIG.
The superiority of using LiNi x Co (1-x) O 2 as the anode material was confirmed. That is, in the battery using LiCoO 2 as an anode material, there is no problem in terms of discharge voltage, but discharge capacity remains unsatisfactory. On the other hand, in the battery using LiNiO 2 as the anode material, the discharge curve is flat and shows good characteristics for battery life.
The discharge voltage is a little low, and when the final voltage is 1.2V, the battery capacity is almost out of reach.

これに対して、LiNi0.1Co0.9O2を陽極材とする電池は、
放電電圧,放電容量の両者とも良好な特性を示した。
On the other hand, the battery using LiNi 0.1 Co 0.9 O 2 as the anode material,
Both discharge voltage and discharge capacity showed good characteristics.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明においては、
LiCoO2を基本活物質とし、そのコバルト原子の一部をニ
ッケル原子で置き換えたものを陽極活物質としているの
で、電池の放電容量が著しく向上する。
As is clear from the above description, in the present invention,
Since LiCoO 2 is used as the basic active material and some of the cobalt atoms thereof are replaced with nickel atoms as the anode active material, the discharge capacity of the battery is significantly improved.

また、Liと遷移金属の複合酸化物を陽極材とする有機電
解質電池は、公害等の観点から問題が少なく、作動電圧
も1.2〜1.3Vと水銀電池と互換性を有する等、全く新し
い電池システムである。
In addition, the organic electrolyte battery using the composite oxide of Li and transition metal as the anode material has few problems from the viewpoint of pollution, etc., and has an operating voltage of 1.2 to 1.3 V, which is compatible with mercury batteries, and is a completely new battery system. Is.

【図面の簡単な説明】[Brief description of drawings]

第1図Aないし第1図GはLiNixCo(1-x)O2においてxの
値を0から1まで段階的に変えたときのX線回折パター
ンを示すスペクトル図であって、第1図AはLiCoO2(X
=0),第1図BはLiNi0.1Co0.9O2,第1図CはLiNi0.2
Co0.8O2,第1図DはLiNi0.4Co0.6O2、第1図EはLiNi
0.6Co0.4O2、第1図FはLiNi0.8Co0.2O2、第1図GはLi
NiO2(X=1)のX線回折パターンをそれぞれ示す。 第2図は有機電解質電池の構成の一例を示す拡大断面図
である。 第3図はLiNixCo(1-x)O2を陽極材とする電池におけるx
の値と単位重量当たりの放電時間の関係を示す特性図で
ある。 第4図はLiNi0.1Co0.9O2を陽極材とする電池の放電曲線
をLiCoO2を陽極材とする電池及びLiNiO2を陽極材とする
電池のそれと比較して示す特性図である。 2……リチウム箔(陰極) 3……セパレータ 5……陽極ペレット
1A to 1G are spectrum diagrams showing X-ray diffraction patterns when the value of x is changed stepwise from 0 to 1 in LiNi x Co (1-x) O 2 . Figure A shows LiCoO 2 (X
= 0), Fig. 1B shows LiNi 0.1 Co 0.9 O 2 , and Fig. 1C shows LiNi 0.2.
Co 0.8 O 2 , Figure 1D shows LiNi 0.4 Co 0.6 O 2 , Figure 1E shows LiNi
0.6 Co 0.4 O 2 , Fig. 1F shows LiNi 0.8 Co 0.2 O 2 , Fig. 1G shows Li
The X-ray diffraction patterns of NiO 2 (X = 1) are shown respectively. FIG. 2 is an enlarged cross-sectional view showing an example of the structure of the organic electrolyte battery. Figure 3 shows x in a battery with LiNi x Co (1-x) O 2 as the anode material.
It is a characteristic view showing the relationship between the value of and the discharge time per unit weight. FIG. 4 is a characteristic diagram showing discharge curves of a battery using LiNi 0.1 Co 0.9 O 2 as an anode material in comparison with those of a battery using LiCoO 2 as an anode material and a battery using LiNiO 2 as an anode material. 2 ... Lithium foil (cathode) 3 ... Separator 5 ... Anode pellet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムまたはリチウム合金よりなる陰極
と、LiNixCo(1-x)O2(但し、0<x≦0.27である。)で
示される複合金属酸化物よりなる陽極と、有機電解質と
から構成される有機電解質電池。
1. A cathode made of lithium or a lithium alloy, an anode made of a composite metal oxide represented by LiNi x Co (1-x) O 2 (where 0 <x ≦ 0.27), and an organic electrolyte. An organic electrolyte battery composed of
JP61108157A 1986-04-30 1986-05-12 Organic electrolyte battery Expired - Lifetime JPH0763010B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61108157A JPH0763010B2 (en) 1986-05-12 1986-05-12 Organic electrolyte battery
CA000534644A CA1285986C (en) 1986-05-12 1987-04-14 Organic electrolyte cell
US07/043,039 US4770960A (en) 1986-04-30 1987-04-27 Organic electrolyte cell
EP87106108A EP0243926B1 (en) 1986-04-30 1987-04-28 Organic electrolyte cell
DE8787106108T DE3769692D1 (en) 1986-04-30 1987-04-28 CELL WITH ORGANIC ELECTROLYTE.
KR1019870004139A KR950011245B1 (en) 1986-04-30 1987-04-29 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108157A JPH0763010B2 (en) 1986-05-12 1986-05-12 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS62264560A JPS62264560A (en) 1987-11-17
JPH0763010B2 true JPH0763010B2 (en) 1995-07-05

Family

ID=14477398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108157A Expired - Lifetime JPH0763010B2 (en) 1986-04-30 1986-05-12 Organic electrolyte battery

Country Status (2)

Country Link
JP (1) JPH0763010B2 (en)
CA (1) CA1285986C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804596A (en) * 1988-01-21 1989-02-14 Honeywell Inc. Electrode material/electrolyte system for non-aqueous cells
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017400B1 (en) * 1979-04-05 1984-05-30 United Kingdom Atomic Energy Authority Electrochemical cell and method of making ion conductors for said cell
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
JPH0785413B2 (en) * 1986-04-30 1995-09-13 ソニー株式会社 Organic electrolyte primary battery

Also Published As

Publication number Publication date
JPS62264560A (en) 1987-11-17
CA1285986C (en) 1991-07-09

Similar Documents

Publication Publication Date Title
US4770960A (en) Organic electrolyte cell
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US4136233A (en) Chalcogenide battery
JPH0785413B2 (en) Organic electrolyte primary battery
JP2000243455A (en) Lithium secondary battery
JPS63299056A (en) Organic electrolyte secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0763010B2 (en) Organic electrolyte battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP2000277108A (en) Lithium secondary battery
JPH05174823A (en) Lithium secondary battery and its manufacture
JP2963452B1 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP3242196B2 (en) Lithium battery
JP2000277112A (en) Lithium secondary battery
JPH0815071B2 (en) Secondary battery
JPH0513082A (en) Nonaqueous electrolytic liquid secondary battery
JP2526093B2 (en) Lithium secondary battery
JP3355644B2 (en) Non-aqueous electrolyte secondary battery
JPH0763011B2 (en) Organic electrolyte battery
JP3135545B2 (en) Lithium secondary battery and method of manufacturing the same
JP2003317718A (en) Positive electrode material, electrode and battery
JP2000040511A (en) Lithium ion secondary battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JP2752690B2 (en) Lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term