JP3242196B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3242196B2
JP3242196B2 JP07910193A JP7910193A JP3242196B2 JP 3242196 B2 JP3242196 B2 JP 3242196B2 JP 07910193 A JP07910193 A JP 07910193A JP 7910193 A JP7910193 A JP 7910193A JP 3242196 B2 JP3242196 B2 JP 3242196B2
Authority
JP
Japan
Prior art keywords
lithium battery
positive electrode
active material
copper
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07910193A
Other languages
Japanese (ja)
Other versions
JPH06267540A (en
Inventor
秀章 弓場
和伸 松本
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP07910193A priority Critical patent/JP3242196B2/en
Publication of JPH06267540A publication Critical patent/JPH06267540A/en
Application granted granted Critical
Publication of JP3242196B2 publication Critical patent/JP3242196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、リチウム含有物質を
負極活物質とし、有機電解液を用いたリチウム電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery using a lithium-containing material as a negative electrode active material and using an organic electrolyte.

【0002】[0002]

【従来の技術】この種のリチウム電池は、大きな放電容
量を有して、すぐれた放電特性が得られ、各種機器の駆
動用電池などに利用されているが、中でも、正極活物質
として酸化銅(CuO)を用いたものが、よく知られて
いる。
2. Description of the Related Art This type of lithium battery has a large discharge capacity and excellent discharge characteristics, and is used as a driving battery for various devices. Among them, copper oxide is used as a positive electrode active material. Those using (CuO) are well known.

【0003】[0003]

【発明が解決しようとする課題】しかるに、酸化銅を正
極活物質とした従来のリチウム電池は、放電電圧(閉路
電圧)が1.3〜1.5V程度と低く、しかも単位体積
当りの容量密度の面で十分に満足できるものではなかつ
た。
However, a conventional lithium battery using copper oxide as a positive electrode active material has a low discharge voltage (closed circuit voltage) of about 1.3 to 1.5 V, and a capacity density per unit volume. I was not completely satisfied with the situation.

【0004】この発明は、上記従来の事情に鑑み、放電
電圧が高くて、かつ単位体積当りの容量密度の大きいリ
チウム電池を提供することを目的としている。
The present invention has been made in view of the above circumstances, and has as its object to provide a lithium battery having a high discharge voltage and a large capacity density per unit volume.

【0005】[0005]

【課題を解決するための手段】この発明者らは、上記の
目的を達成するため、鋭意検討した結果、銅と特定金属
との複合酸化物がリチウム電池の正極活物質としてすぐ
れた性能を発揮することを見い出し、この発明を完成す
るに至つた。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, a composite oxide of copper and a specific metal exhibits excellent performance as a positive electrode active material of a lithium battery. To complete this invention.

【0006】すなわち、この発明は、リチウム含有物質
を負極活物質とし、有機電解液を用いたリチウム電池に
おいて、正極活物質として銅・ゲルマニウム複合酸化物
を用いたことを特徴とするリチウム電池に係るものであ
り、このリチウム電池において、上記の銅・ゲルマニウ
ム複合酸化物がCuGeO3 からなる構成を、とくに好
適な態様としている。
That is, the present invention relates to a lithium battery using a lithium-containing material as a negative electrode active material and using an organic electrolytic solution, wherein a copper / germanium composite oxide is used as a positive electrode active material. In this lithium battery, the configuration in which the above-mentioned copper / germanium composite oxide is made of CuGeO 3 is a particularly preferable embodiment.

【0007】[0007]

【発明の構成・作用】この発明のリチウム電池では、前
記のように、正極活物質として、銅・ゲルマニウム複合
酸化物を用いたことにより、従来の酸化銅を正極活物質
とした電池に比べて、高い放電電圧が得られるととも
に、単位体積当りの容量密度の大きいものとなる。たと
えば、1mA/cm2 の放電電流時に1.5V以上のプラト
―域を持つ放電曲線を示して、終始電圧を1.5Vとし
た場合、1,500mAh /cc以上の大きな容量密度が得
られる。
In the lithium battery of the present invention, as described above, the use of the copper / germanium composite oxide as the positive electrode active material allows the lithium battery to be used in comparison with the conventional battery using copper oxide as the positive electrode active material. , A high discharge voltage is obtained, and the capacity density per unit volume is large. For example, a discharge curve having a plateau region of 1.5 V or more at a discharge current of 1 mA / cm 2 is shown. When the voltage is 1.5 V throughout, a large capacity density of 1,500 mAh / cc or more can be obtained.

【0008】この理由は明らかではないが、銅・ゲルマ
ニウム複合酸化物の代表例として、CuGeO3 につい
て考察すると、この複合酸化物は、下記の式; CuGeO3 +2Li → Cu+Li2 GeO3 に示す放電反応により、その1分子につき2個のLiを
消費する結果、単位体積当りの容量密度が著しく増大す
るものと思われ、また分極が小さいために、高い放電電
圧が得られるものと考えられる。
Although the reason is not clear, considering CuGeO 3 as a typical example of the copper-germanium composite oxide, this composite oxide has a discharge reaction represented by the following formula: CuGeO 3 + 2Li → Cu + Li 2 GeO 3 As a result, two Li atoms are consumed per molecule, and as a result, it is considered that the capacity density per unit volume is remarkably increased, and that high discharge voltage is obtained because of small polarization.

【0009】この発明における銅・ゲルマニウム複合酸
化物としては、上記のCuGeO3のほか、Cu2 Ge
4 など銅とゲルマニウムの複合酸化物であればよい。
その合成法としては、たとえば、酸化銅と酸化ゲルマニ
ウムとを所定比率で混合し、これを空気中所定温度で焼
成するなどの方法がある。
As the copper / germanium composite oxide in the present invention, in addition to the above-mentioned CuGeO 3 , Cu 2 Ge
Any compound oxide of copper and germanium such as O 4 may be used.
As a synthesis method, for example, there is a method of mixing copper oxide and germanium oxide at a predetermined ratio and firing the mixture in air at a predetermined temperature.

【0010】なお、この発明では、正極活物質として、
上記の銅・ゲルマニウム複合酸化物をこれ単独で使用す
るほか、必要によりこれと他の公知の正極活物質、たと
えば酸化銅や酸化マンガンなどとを併用してもよい。ま
た、他の複合酸化物として、たとえばCu2 MgO3
Cu2 TiO3 、Cu3 TiO4 、Cu3 WO6 、Cu
2 F(PO4 )などを適宜併用することもできる。さら
に、これらは個々でも放電でき、CuOより高い放電電
圧が期待できる。
In the present invention, as the positive electrode active material,
In addition to using the above-mentioned copper / germanium composite oxide alone, if necessary, it may be used in combination with another known positive electrode active material, for example, copper oxide or manganese oxide. Further, as other composite oxides, for example, Cu 2 MgO 3 ,
Cu 2 TiO 3 , Cu 3 TiO 4 , Cu 3 WO 6 , Cu
2 F (PO 4) may be appropriately used in combination, and the like. Further, these can be discharged individually, and a discharge voltage higher than that of CuO can be expected.

【0011】正極を作製するには、上記の正極活物質の
粉末に必要に応じてアセチレンブラツクの如き電子伝導
助剤やポリテトラフルオロエチレンの如き結着剤を配合
して正極合剤を調製し、この正極合剤を加圧成形して電
池形態に応じた形状および大きさの成形物とし、要すれ
ば熱処理を施して正極とすればよい。
In order to produce a positive electrode, a positive electrode mixture is prepared by mixing an electron conduction aid such as acetylene black and a binder such as polytetrafluoroethylene with the above-mentioned powder of the positive electrode active material, if necessary. Then, the positive electrode mixture is pressure-formed to form a molded article having a shape and size corresponding to the battery form, and if necessary, heat-treated to form a positive electrode.

【0012】この発明において、負極活物質のリチウム
含有物質としては、金属リチウムのほか、リチウム−ア
ルミニウム合金などのリチウムを含む合金も使用でき
る。通常は、この負極活物質自体を金属板の形で負極と
する。
In the present invention, as the lithium-containing material of the negative electrode active material, an alloy containing lithium, such as a lithium-aluminum alloy, can be used in addition to metallic lithium. Usually, the negative electrode active material itself is used as a negative electrode in the form of a metal plate.

【0013】また、有機電解液は、有機溶媒中に所定量
の電解質を溶解させてなるもので、電解質としては、L
iCF3 SO3 、LiClO4 、LiPF6 、LiBF
3 、LiC49 SO3 などが、有機溶媒としては、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、プロピレンカ―ボネ―ト、エチレンカ―ボネ―ト、
γ−ブチロラクトン、テトラヒドロフラン、1,3−ジ
オキソラン、ジエチレンカ―ボネ―トなどの単独または
2種以上の混合溶媒がある。
The organic electrolytic solution is obtained by dissolving a predetermined amount of an electrolyte in an organic solvent.
iCF 3 SO 3 , LiClO 4 , LiPF 6 , LiBF
3 , LiC 4 F 9 SO 3 and the like, as an organic solvent,
1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate,
There are singly or a mixture of two or more kinds of solvents such as γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, and diethylene carbonate.

【0014】[0014]

【発明の効果】以上のように、この発明においては、正
極活物質として、銅・ゲルマニウム複合酸化物を用いた
ことにより、放電電圧が高くて、かつ単位体積当りの容
量密度の大きいリチウム電池を提供することができる。
As described above, according to the present invention, a lithium battery having a high discharge voltage and a large capacity density per unit volume is obtained by using a copper / germanium composite oxide as a positive electrode active material. Can be provided.

【0015】[0015]

【実施例】つぎに、この発明の実施例を記載して、より
具体的に説明する。
Next, an embodiment of the present invention will be described in more detail.

【0016】実施例1 酸化銅(CuO)と酸化ゲルマニウム(GeO)とをモ
ル比1:1で混合し、空気中焼成温度1,000℃で1
0時間加熱して、薄青色の銅・ゲルマニウム複合酸化物
を得た。この複合酸化物は、粉末X線回折像(CuKα
線により、印加電圧50KV、電流密度150mAのX線
で、2θ=10〜100度を測定)により、CuGeO
3 であることを確認した。
EXAMPLE 1 Copper oxide (CuO) and germanium oxide (GeO) were mixed at a molar ratio of 1: 1 and fired at 1,000 ° C. in air.
The mixture was heated for 0 hour to obtain a light blue copper / germanium composite oxide. This composite oxide has a powder X-ray diffraction image (CuKα
X-rays at an applied voltage of 50 KV and a current density of 150 mA, measuring 2θ = 10 to 100 °).
3 was confirmed.

【0017】この複合酸化物を正極活物質として用い、
これに電子伝導助剤としてアセチレンブラツク、結着剤
としてポリテトラフルオロエチレンを重量比80:1
8:2の割合で混合して正極合剤を調製した。この正極
合剤を金型内に充てんして、圧力1トン/cm2 で直径1
0mmの円板状に加圧成形したのち、250℃で熱処理し
て、60mgの正極を得た。
Using this composite oxide as a positive electrode active material,
An acetylene black as an electron conduction aid and polytetrafluoroethylene as a binder were added at a weight ratio of 80: 1.
The mixture was mixed at a ratio of 8: 2 to prepare a positive electrode mixture. The positive electrode mixture was filled in a mold, and the pressure was 1 ton / cm 2 and the diameter was 1 mm.
After press-molding into a 0 mm disc, heat treatment was performed at 250 ° C. to obtain 60 mg of a positive electrode.

【0018】この正極を用いて、図1に示すボタン形の
リチウム電池Aを作製した。図1において、1は正極、
2は直径14mmの円板状の金属リチウムからなる負極、
3はポリプロピレン不織布からなる電解液吸収体、4は
ステンレス鋼製の正極缶、5はステンレス鋼網からなる
正極集電体、6はステンレス鋼製で表面にニツケルメツ
キを施した負極缶、7はステンレス鋼網からなる負極集
電体、8はポリプロピレン製の環状ガスケツトである。
Using this positive electrode, a button-shaped lithium battery A shown in FIG. 1 was produced. In FIG. 1, 1 is a positive electrode,
2 is a disc-shaped negative electrode made of metallic lithium having a diameter of 14 mm,
Reference numeral 3 denotes an electrolyte absorber made of a polypropylene nonwoven fabric, 4 denotes a positive electrode can made of stainless steel, 5 denotes a positive electrode current collector made of stainless steel mesh, 6 denotes a negative electrode can made of stainless steel and has a nickel-plated surface, 7 denotes stainless steel A negative electrode current collector 8 made of a steel net is a circular gasket made of polypropylene.

【0019】負極集電体7は負極缶6の内面にスポツト
溶接され、この負極集電体7に負極2が圧接されてお
り、電池内にはエチレンカ―ボネ―トと1,2−ジメト
キシエタンとの容量比1:1の混合溶媒にLiCF3
3 を0.6モル/リツトルの割合で溶解した有機電解
液が注入されている。
The negative electrode current collector 7 is spot-welded to the inner surface of the negative electrode can 6, and the negative electrode 2 is pressed against the negative electrode current collector 7. Ethylene carbonate and 1,2-dimethoxyethane are contained in the battery. LiCF 3 S in a mixed solvent with a volume ratio of 1: 1
An organic electrolyte in which O 3 is dissolved at a rate of 0.6 mol / liter is injected.

【0020】比較例1 複合酸化物(CuGeO3 )に代えて酸化銅(CuO)
を用いた以外は、実施例1と同様にして、図1に示すボ
タン形のリチウム電池Bを作製した。
Comparative Example 1 Copper oxide (CuO) was used instead of the composite oxide (CuGeO 3 )
A button-type lithium battery B shown in FIG. 1 was produced in the same manner as in Example 1 except that was used.

【0021】上記の実施例1のリチウム電池Aおよび比
較例1のリチウム電池Bについて、放電電流1mA/cm2
で放電させ、そのときの放電電圧と容量密度との関係を
調べた結果を、図2および図3に示す。図中、放電曲線
aはリチウム電池Aの結果、放電曲線bはリチウム電池
Bの結果である。
For the lithium battery A of Example 1 and the lithium battery B of Comparative Example 1, the discharge current was 1 mA / cm 2.
The results of examining the relationship between the discharge voltage and the capacity density at that time are shown in FIGS. In the figure, the discharge curve a is the result of the lithium battery A, and the discharge curve b is the result of the lithium battery B.

【0022】この試験結果より、1.5Vを放電終始電
圧としてその容量密度(mAh /g)を求め、これに比重
をかけて単位体積当りの容量密度(mAh /cc)を算出し
たところ、下記の表1に示す結果が得られた。
From this test result, the capacity density (mAh / g) was determined by using 1.5 V as the discharge end voltage, and the capacity density per unit volume (mAh / cc) was calculated by multiplying this by the specific gravity. The results shown in Table 1 were obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】上記の図1,2および表1の結果から、正
極活物質としてCuGeO3 を用いたこの発明のリチウ
ム電池Aは、正極活物質としてCuOを用いた従来のリ
チウム電池Bに比べて、放電電圧がかなり高く、約1.
8V程度の放電電圧を示しており、かつ単位体積当りの
容量密度も格段に大きいことがわかる。
According to the results shown in FIGS. 1 and 2 and Table 1, the lithium battery A of the present invention using CuGeO 3 as the positive electrode active material has a smaller size than the conventional lithium battery B using CuO as the positive electrode active material. The discharge voltage is quite high, about 1.
It shows that the discharge voltage is about 8 V, and that the capacity density per unit volume is remarkably large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のリチウム電池の一例を示す縦断面図
である。
FIG. 1 is a longitudinal sectional view showing one example of a lithium battery of the present invention.

【図2】この発明のリチウム電池A(実施例1)の放電
特性図である。
FIG. 2 is a discharge characteristic diagram of a lithium battery A (Example 1) of the present invention.

【図3】従来のリチウム電池B(比較例1)の放電特性
図である。
FIG. 3 is a discharge characteristic diagram of a conventional lithium battery B (Comparative Example 1).

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 電解液吸収体 4 正極缶 5 正極集電体 6 負極缶 7 負極集電体 8 環状ガスケツト DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Electrolyte absorber 4 Positive electrode can 5 Positive electrode current collector 6 Negative electrode can 7 Negative electrode current collector 8 Ring gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−50164(JP,A) 特開 平4−22066(JP,A) 特開 平1−163969(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/48 - 4/58 H01M 6/16 H01M 10/40 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-50164 (JP, A) JP-A-4-22066 (JP, A) JP-A-1-163969 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/48-4/58 H01M 6/16 H01M 10/40 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム含有物質を負極活物質とし、有
機電解液を用いたリチウム電池において、正極活物質と
して銅・ゲルマニウム複合酸化物を用いたことを特徴と
するリチウム電池。
1. A lithium battery using a lithium-containing material as a negative electrode active material and an organic electrolyte, wherein a copper / germanium composite oxide is used as a positive electrode active material.
【請求項2】 銅・ゲルマニウム複合酸化物がCuGe
3 である請求項1に記載のリチウム電池。
2. The copper / germanium composite oxide is CuGe
Lithium battery according to claim 1 which is O 3.
JP07910193A 1993-03-12 1993-03-12 Lithium battery Expired - Fee Related JP3242196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07910193A JP3242196B2 (en) 1993-03-12 1993-03-12 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07910193A JP3242196B2 (en) 1993-03-12 1993-03-12 Lithium battery

Publications (2)

Publication Number Publication Date
JPH06267540A JPH06267540A (en) 1994-09-22
JP3242196B2 true JP3242196B2 (en) 2001-12-25

Family

ID=13680498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07910193A Expired - Fee Related JP3242196B2 (en) 1993-03-12 1993-03-12 Lithium battery

Country Status (1)

Country Link
JP (1) JP3242196B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611506B1 (en) 2013-11-29 2016-04-11 울산과학기술원 Negative electrode active material for a lithium rechargable battery, methode for synthesising the same, and a lithium rechargable battery including the same
US11572648B2 (en) 2011-08-15 2023-02-07 Whirlpool Corporation Method for real time determination during loading of volumetric load size in a laundry treating appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224250B (en) * 2013-05-15 2014-07-23 东华大学 Preparation method of copper germanate quantum dots

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572648B2 (en) 2011-08-15 2023-02-07 Whirlpool Corporation Method for real time determination during loading of volumetric load size in a laundry treating appliance
KR101611506B1 (en) 2013-11-29 2016-04-11 울산과학기술원 Negative electrode active material for a lithium rechargable battery, methode for synthesising the same, and a lithium rechargable battery including the same

Also Published As

Publication number Publication date
JPH06267540A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JPH1083817A (en) Anode material and non-aqueous electrolytic secondary battery using the material
JP3826746B2 (en) Non-aqueous electrolyte secondary battery
JP2001085010A (en) Lithium secondary battery
JPH11102705A (en) Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2007200646A (en) Lithium secondary battery
WO2018198410A1 (en) Positive electrode active material and battery
JP2006155941A (en) Method of manufacture for electrode active material
JPWO2018163518A1 (en) Positive electrode active material and battery
JPH06342673A (en) Lithium secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JPH1083815A (en) Lithium secondary battery
JP3533664B2 (en) Negative electrode material and battery using the same
JP3242196B2 (en) Lithium battery
JP2003282147A (en) Lithium ion secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JP2003157843A (en) Positive electrode material, its manufacturing method, and battery using it
JP3135545B2 (en) Lithium secondary battery and method of manufacturing the same
JP2001006673A (en) Nonaqueous electrolyte lithium secondary battery and its positive electrode active material
JP2933645B2 (en) Manufacturing method of lithium secondary battery
JP2002117837A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

LAPS Cancellation because of no payment of annual fees