JPH0762625A - Cylindrical caisson group for construction of breakwater - Google Patents

Cylindrical caisson group for construction of breakwater

Info

Publication number
JPH0762625A
JPH0762625A JP5214618A JP21461893A JPH0762625A JP H0762625 A JPH0762625 A JP H0762625A JP 5214618 A JP5214618 A JP 5214618A JP 21461893 A JP21461893 A JP 21461893A JP H0762625 A JPH0762625 A JP H0762625A
Authority
JP
Japan
Prior art keywords
cylindrical
caisson
group
breakwater
floor slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5214618A
Other languages
Japanese (ja)
Inventor
Hideo Omura
秀雄 大村
Toshihiko Miwa
俊彦 三輪
Tadahiko Tofuku
忠彦 東福
Hideyuki Kitamura
秀之 北村
Yasuhiro Ueda
康浩 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP5214618A priority Critical patent/JPH0762625A/en
Publication of JPH0762625A publication Critical patent/JPH0762625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To realize cost reduction, by effectively adopting precast materials in respect to the construction of a breakwater shielding waves from the offing in order to reduce processes in factory production on the ground and simplify works at site and curtail the construction period. CONSTITUTION:One block of box body 1 is constituted of a flat under floor slab 3, a plurality of cylindrical columns 4 vertically connected on the flat under floor slab 3 so as to mutually contact one another closely, a flat upper floor slab 5 connected with the upper ends of these cylindrical columns 4, and an upper structure 6 supported and fixed on the upper floor slab 5. The block is settled on a mound 2 constructed on the bottom of the sea of the construction site to receive waves on the group of cylindrical columns 4 and dissipate the waves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多数の筒柱を主体に防
波堤を構築する群筒ケーソンに関し、更に詳しくは、港
外からの波浪を複数の筒柱で受けとめ遮蔽する通称波浪
不透過式の群筒ケーソンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a group caisson for constructing a breakwater mainly composed of a large number of pillars. More specifically, it is a so-called wave impermeable type in which waves from outside the port are intercepted and shielded by a plurality of pillars. Regarding the group caisson of.

【0002】[0002]

【従来の技術】従来より、港外から打ち寄せる波浪を防
ぎ港内を静穏に保つために、港湾に築造される突堤の防
波堤としては、在来土木工法で築造される護岸、コンク
リート製のテトラポット等を海中に積み上げて突堤を構
築したもの、或いはケーソンを海中に沈下させる工法な
どが周知である。
2. Description of the Related Art Conventionally, in order to prevent waves coming from the outside of the port and keep the inside of the port quiet, breakwaters for jetties built in the port have been used as revetments built by conventional civil engineering methods, concrete tetrapots, etc. It is well known that the jetty is constructed by stacking the above in the sea, or the caisson is submerged in the sea.

【0003】近年、港湾施設の大型化や海上空港などを
対象とした沖合人口島等の開発において、防波堤の施工
海域もますます沖合いに展開していく傾向にある。その
ため、大水深に対応した大規模防波堤の効率的な施工技
術の確立が重要課題となっている。例えば、水深20メ
ートルを越える大水深での防波堤の施工は、現在ではケ
ーソン式防波堤が主流となってきている。
In recent years, in the development of large-scale port facilities and development of offshore artificial islands for sea airports and the like, the construction area of breakwaters tends to expand even further offshore. Therefore, the establishment of efficient construction technology for large-scale breakwaters that can cope with deep water is an important issue. For example, for construction of breakwaters at a deep water depth of over 20 meters, caisson type breakwaters have become the mainstream at present.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、施設の
大規模化に伴いケーソンの大型化も進み、陸上における
ケーソン製作コスト、施工現場までの陸上搬送と海上曳
航の安全性や経費高騰などの問題、工期の短縮化などを
含めた全般的なコスト削減を実現する新技術の確立が望
まれている。
However, as the size of the facility increases, the size of the caisson also increases, and problems such as the cost of manufacturing caisson on land, the safety of land transportation to the construction site and the safety and cost of marine towing, It is desired to establish new technology that will achieve overall cost reduction, including shortening the construction period.

【0005】本発明は、こうした情勢を踏まえ、波浪を
遮蔽する不透過式の防波堤に係り、防波堤構築用として
プレキャスト材を効率的に採用することで、陸上におけ
る製作工程の低減、現場施工の簡易化と工期短縮により
コスト低減を実現可能とした防波堤構築用群筒ケーソン
の提供を目的とするものである。
In view of such circumstances, the present invention relates to an impermeable breakwater for shielding waves, and by efficiently adopting a precast material for constructing a breakwater, the number of manufacturing steps on land is reduced, and on-site construction is simplified. The purpose of the present invention is to provide a group caisson for building a breakwater, which can realize cost reductions by reducing costs and shortening the construction period.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明による防波堤構築用の群筒ケーソンは、平板
状の下床版と、下床版上に互いに接触して密集させて立
設された複数の筒柱と、筒柱の上端に結合された平板状
の上床版と、上床版上に担持結合された上部工と、から
なる函体を1ブロックとし、函体を施工現場の海底に造
成されたマウンド上に沈設させて載置して、波を筒柱に
当接させて遮蔽する構成となっている。
In order to achieve this object, a group caisson for constructing a breakwater according to the present invention is a flat plate-shaped lower floor slab and stands on the lower floor slab in close contact with each other. A box made up of a plurality of cylindrical columns installed, a plate-shaped upper floor slab connected to the upper ends of the cylindrical columns, and a superstructure supported on the upper floor slab as one block, and the box is constructed at a construction site. It is constructed so that it is submerged and placed on a mound formed on the sea floor, and the waves are abutted against the cylinder column to shield it.

【0007】また、本発明では、筒柱の断面形状として
製作容易で扱い易い円筒柱状を採用し、こうした円筒柱
筒柱の内部には中詰め材を充填した構成とすることがで
きる。
Further, in the present invention, a cylindrical columnar shape is adopted as the cross-sectional shape of the cylindrical column, which is easy to manufacture and is easy to handle, and the inside of such a cylindrical columnar column can be filled with a filling material.

【0008】更に、本発明では、高さ方向に細分化した
リング形状のセグメントの積み重ねにより形成し、セグ
メントの周一円に補強芯材を埋設又は挿通させて互いの
接合を強化し、補強芯材として緊張特性を有するPC鋼
棒を用い、積み上げた複数のセグメントを軸線方向に緊
定させた筒柱を使用することができる。
Further, according to the present invention, the ring-shaped segments, which are subdivided in the height direction, are formed by stacking, and the reinforcing cores are embedded or inserted in the entire circumference of the segments to strengthen the joint with each other, and the reinforcing cores are It is possible to use a cylindrical column in which a plurality of stacked segments are axially tightened by using a PC steel rod having a tensile property as.

【0009】[0009]

【作用】群筒ケーソンを所定の海域に沈設して防波堤を
構築する。港外からの波浪は多数の筒柱に衝突し反射さ
れるので、港内が波浪から遮蔽された状態となる。
[Function] A group break caisson is sunk in a predetermined sea area to construct a breakwater. Waves from outside the port collide with and are reflected by a large number of cylindrical columns, so the inside of the port is shielded from waves.

【0010】筒柱の内部に中詰め材を充填すれば、波浪
などの外力に対する強化と安定性が容易に得られる。ま
た、筒柱をプレキャスト成形により多数のリング形状セ
グメントを積み重ねた構造とすることで、製作設備等が
簡素化され工期も短縮できる。
By filling the inside of the cylindrical column with a filling material, reinforcement and stability against external force such as waves can be easily obtained. In addition, by constructing the cylindrical column by stacking a large number of ring-shaped segments by precast molding, manufacturing equipment and the like can be simplified and the construction period can be shortened.

【0011】[0011]

【実施例】以下、本発明による防波堤構築用群筒ケーソ
ンの実施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a breakwater building group cylinder caisson according to the present invention will be described below with reference to the drawings.

【0012】本発明でいう群筒ケーソンは、「不透過
式」と通称される波浪遮蔽式防波堤の構築用として、図
1の概念図で示すように、港外から押し寄せる波浪を受
け止め、波を受けとめ反射させるものである。
The group caisson referred to in the present invention is used for constructing a wave-shielding breakwater commonly called "impermeable type", as shown in the conceptual diagram of FIG. It receives and reflects.

【0013】図2は、防波堤の1ブロックを構築する実
施例の群筒ケーソン1を示す。群筒ケーソン1は、施工
現場の凹凸状海底を床掘や浚渫を行い、更に基礎捨て石
を投入、均しなどによる基礎工事で造成されたマウンド
2上に載置される。即ち、この海底造成によるマウンド
2上に着座させる下床版3を有し、この下床版3上には
海域の水深などに対応して決定される長さの円柱筒によ
る筒柱4の多数が垂直に設けられる。筒柱4の上端部に
は上床版5を有し、マウンド2から上床版5までの構築
体を下部工と表現すれば、この下部工を基礎として上床
版5の上には海面7上に現れる上部工6が載置され、こ
れら各部からなる群筒ケーソン1を図の左右方向に連続
して設置することにより防波堤が構築される。
FIG. 2 shows a group caisson 1 of an embodiment for constructing one block of a breakwater. The group caisson 1 is placed on a mound 2 formed by foundation work such as floor excavation and dredging on the uneven seabed at the construction site, and further throwing in and discarding foundation stone. That is, there is a lower floor slab 3 to be seated on the mound 2 formed by the seabed formation, and on the lower floor slab 3, a large number of cylindrical columns 4 are formed by a cylindrical cylinder having a length determined in accordance with the water depth of the sea area. Are installed vertically. An upper floor slab 5 is provided at the upper end of the cylindrical column 4, and if the structure from the mound 2 to the upper floor slab 5 is expressed as a substructure, then the substructure is used as a foundation for the upper floor slab 5 to be on the sea surface 7. A superstructure 6 that appears is placed, and a breakwater is constructed by continuously installing the group cylinder caisson 1 composed of these parts in the left-right direction of the drawing.

【0014】図3は群筒ケーソン1の平面図、図4はそ
の正面図、図5は側面図である。実施例の群筒ケーソン
1は、マウンド2と上部工6を除き陸上で函体として組
み立てられ、この函体を海上曳航して現場沈設する工法
を想定して製作されるものである。各部の構造は以下の
通りである。
FIG. 3 is a plan view of the group caisson 1, FIG. 4 is a front view thereof, and FIG. 5 is a side view thereof. The group cylinder caisson 1 of the embodiment is assembled on the ground except for the mound 2 and the superstructure 6, and is manufactured under the assumption that the box caisson 1 is towed at sea and sunk in the field. The structure of each part is as follows.

【0015】下床版3は、前述のマウンド2上に載置さ
れる。下床版3の上面には多数の筒柱4が互いに接触し
て密集し、群集形態で垂直に設けられる。このように、
多数の筒柱4を群衆形態で設けることにより、波浪をそ
れらの前面部で受け止めて反射させる。
The lower floor slab 3 is placed on the mound 2 described above. On the upper surface of the lower floor slab 3, a large number of cylindrical columns 4 are in contact with each other and densely arranged, and are vertically provided in a crowd form. in this way,
By providing a large number of cylindrical columns 4 in the form of a crowd, waves are received and reflected by their front portions.

【0016】筒柱4の個々は、陸側工場にて型枠にコン
クリートを打設していわゆるプレキャスト部材として製
作され、実施例のように円筒柱状とした場合は、外径寸
法が例えばおよそ5m内外で、現場の水深が20mとい
ったような大水深に沈設させるものでは、これに対応す
る高さ寸法Hではそれ自体かなりの重量物である。海上
の据付現場では円筒柱状の内部に後述するように土砂等
の中詰め材が充填され、基礎柱材として波浪などによる
外力に対して強化と安定性を高めるべく補強される。
Each of the cylindrical columns 4 is manufactured as a so-called precast member by casting concrete in a formwork at a land-side factory. When the cylindrical columns are formed into cylindrical columns as in the embodiment, the outer diameter dimension is, for example, about 5 m. In the case of submersion at a deep water depth of 20 m at the site both inside and outside, the height dimension H corresponding to this is considerably heavy in itself. At the installation site on the sea, the inside of the cylindrical column is filled with a filling material such as earth and sand as will be described later, and it is reinforced as a basic column member to strengthen and enhance stability against external force due to waves.

【0017】また、多数の筒柱4の上端には平板状の上
床版5が現場施工され、PC鋼棒で結合される。この上
床版5までの構築体が陸上側で製作され、据付現場にて
上床版5の上に上部工6が取り付けられて群円筒ケーソ
ン1が組み立てられる。
Further, a flat plate-shaped upper floor slab 5 is installed on the upper ends of a large number of cylindrical columns 4 and joined by PC steel rods. The structure up to the upper floor slab 5 is manufactured on the land side, and the superstructure 6 is mounted on the upper floor slab 5 at the installation site to assemble the group cylindrical caisson 1.

【0018】ところで、前述のように筒柱4の単体重量
だけでも内部充填物を含めた重量はかなりであり、これ
が1ブロックで例えば10本以上が見込まれると、筒柱
4の総本数重量と、これら上下に下床版3と上版部5を
加えた群円筒ケーソン1の総重量はかなりに及ぶことに
なる。
By the way, as described above, the weight including the internal filler is considerable even if the weight of the cylindrical column 4 alone is large. If this is expected to be 10 or more in one block, the total weight of the cylindrical columns 4 will be The total weight of the group cylindrical caisson 1 in which the lower floor slab 3 and the upper slab 5 are added to the top and bottom of the caisson 1 is considerably large.

【0019】筒柱4は、重量的にも型枠製作の面でも陸
上での長距離搬送時の輸送性と安全性を考慮すれば、単
体成形することにはさまざまな困難が伴う。図6は、こ
うした単体成形による問題を考慮して、単一の筒柱4自
体を小部品組立化構造の実施例を示している。
Considering the transportability and the safety in long-distance transportation on land, the cylindrical column 4 has various difficulties in terms of weight and form manufacturing, in view of transportability and safety. FIG. 6 shows an embodiment of a small-part assembly structure in which a single cylindrical column 4 itself is taken into consideration in consideration of such a problem caused by single molding.

【0020】即ち、筒柱4をその高さ寸法Hの方向で細
分化したリング形状のセグメント10をプレキャスト成
形し、製作工場から海岸沿いの製作ヤードまで簡便に搬
送し、ここで複数個のセグメント10を接合して単一の
筒柱4を製作する工法を採用することができる。
That is, a ring-shaped segment 10 obtained by subdividing the cylindrical column 4 in the direction of its height dimension H is precast and easily transported from a production plant to a production yard along the coast, where a plurality of segments are provided. It is possible to adopt a method of joining 10 to manufacture a single cylindrical column 4.

【0021】例として前述のように、単一の筒柱4の大
きさを、外径寸法が5m内外で、現場の水深が20mと
いったような大水深に沈設させるものの場合、セグメン
ト10の高さ寸法hを1m程度とすれば、それの20個
を積み上げて接合する。図7は、セグメント10を積み
上げて筒柱4を組み立てる態様を示している。組立場所
において予め基板となる下床版3がコンクリート打設に
より製作され、この下床版3にはセグメント10の円周
に沿う範囲で補強用芯材のPC鋼棒11が埋設により立
ち上げられている。仮に、20個積み上げられるセグメ
ント10のうち、下方部の数個をPC鋼棒11に挿通さ
せて下床版3に積み上げる。セグメント10には型枠成
形工程の段階で、予めPC鋼棒11が挿通する貫通孔1
0aが設けられている。数個のセグメント10にPC鋼
棒11を下から順に通した後、油圧ジャッキ等の設備に
よりPC鋼棒11に緊張力を付与し、下方部の数個を一
群として緊定する。PC鋼棒11は必要に応じて所定個
所で継手により継ぎ足すことができる。
As an example, as described above, when the size of the single cylindrical column 4 is to be submerged in a large water depth such as an outside diameter of 5 m inside and outside and a site water depth of 20 m, the height of the segment 10 is increased. If the dimension h is about 1 m, 20 of them are stacked and joined. FIG. 7 shows a mode in which the segments 10 are stacked and the cylindrical column 4 is assembled. At the assembly site, the lower floor slab 3 that serves as a substrate is manufactured by concrete casting in advance, and a PC steel rod 11 as a reinforcing core material is erected by embedding in the lower floor slab 3 within a range along the circumference of the segment 10. ing. If, for example, 20 pieces of the segments 10 are piled up, some of the lower parts are inserted into the PC steel rods 11 and piled on the lower floor slab 3. The through hole 1 into which the PC steel rod 11 is previously inserted in the segment 10 at the stage of the form forming process.
0a is provided. After the PC steel rods 11 are passed through the several segments 10 in order from the bottom, a tension force is applied to the PC steel rods 11 by equipment such as a hydraulic jack, and several lower portions are tightened as a group. The PC steel rod 11 can be replenished with a joint at a predetermined position as needed.

【0022】こうした接合により20個のセグメント1
0を積み上げて接合する。下床版3上では接合された筒
柱4が互いに接して林立するがごとくに組み立てられ
る。これらの筒柱4は、互いにほとんど隙間のないよう
に設置される。所要数の筒柱4の組立後は、これらの上
端にPC鋼棒11の端部を利用して上床版5が締め付け
結合される。ここまでの構造体が図3〜図5に示される
函体である。
With such joining, 20 segments 1
Stack 0 and join. On the lower floor slab 3, the joined cylindrical columns 4 are in contact with each other and stand upright, but they are assembled in the same manner. These cylindrical columns 4 are installed so that there is almost no gap between them. After assembling the required number of cylindrical columns 4, the upper floor slab 5 is fastened and coupled to the upper ends of the cylindrical columns 4 by utilizing the ends of the PC steel rods 11. The structure so far is the box shown in FIGS.

【0023】函体は、起重機船(クレーン船)を利用す
るか、もしくは単独で海上を据付現場まで曳航される。
所定位置にて海中に沈設され、海底に設けられたマウン
ド2上に載置される。載置後、全ての筒柱4内に中詰砂
が上床版5付近まで投入される。海面上に露呈させた上
床版5の上に上部工6を担持させて取り付け、1ブロッ
クの群筒ケーソン1を築造する。この群筒ケーソン1を
複数を連続して隙間なく設置することにより、所定の長
さの防波堤が構築される。
The box is towed by using a hoist ship (crane ship) or by itself on the sea to the installation site.
It is submerged in the sea at a predetermined position and placed on a mound 2 provided on the sea floor. After the placement, all the cylindrical columns 4 are filled with the filling sand up to the vicinity of the upper floor slab 5. A superstructure 6 is carried and mounted on an upper floor slab 5 exposed on the sea surface, and a one-block group caisson 1 is built. By installing a plurality of this group caisson 1 continuously without a gap, a breakwater of a predetermined length is constructed.

【0024】なお、実施例では筒柱4は断面円形による
円筒柱としている。多数の筒柱4が互いに密接して群集
した構造であるから、各筒柱4の前面部で波を直接受け
る場合に、波との接触面が多くなり強度上有利である。
In the embodiment, the cylindrical column 4 has a circular cross section. Since a large number of cylindrical columns 4 are in close contact with each other in a group, when the front surface of each cylindrical column 4 directly receives a wave, the contact surface with the wave increases, which is advantageous in strength.

【0025】他には方向性を考慮した断面多角形のセグ
メントが可能であるが、コスト低減という観点からは、
方向性のない円筒柱が部材の画一化が容易という意味か
らも好ましい。
Other than the above, a segment having a polygonal cross section is possible in consideration of directionality, but from the viewpoint of cost reduction,
A non-directional cylindrical column is also preferable because it is easy to make the members uniform.

【0026】また、単一の筒柱4を形成するセグメント
10としては、波や曳航時に外圧力を受ける力学的な剛
性を考慮すると、上下端には引張力が作用し、中央部に
は反対に圧縮力が作用するため、上下部のセグメント1
0ではPC鋼棒11による配筋数を増して強化し、セグ
メント10同士の分離などを回避する防止手段を講じて
おくことも必要である。これらの点から、セグメント1
0としては、1本の筒柱4を組み立てるのに単一種にと
どまらず、柱体として各部の強度に対応する数種類をパ
ーツ化しておくことも考えられよう。
Further, considering the mechanical rigidity of the segment 10 forming the single cylindrical column 4 when waves or external pressure is applied during towing, a tensile force acts on the upper and lower ends of the segment 10 and an opposite action occurs on the central part. Since compressive force acts on the upper and lower segments 1,
In the case of 0, it is also necessary to increase the number of reinforcements by the PC steel rods 11 and strengthen the reinforcements, and take preventive measures for avoiding separation of the segments 10 from each other. From these points, segment 1
It is conceivable that 0 is not limited to a single type for assembling one cylindrical column 4, but several types corresponding to the strength of each part may be made into parts as a column.

【0027】[0027]

【発明の効果】以上説明したように、本発明による防波
堤構築用群筒ケーソンは、多数の筒柱を群集形態で設置
することで、港外からの波浪の遮蔽消波に有効である。
As described above, the group caisson for constructing a breakwater according to the present invention is effective in shielding and canceling waves from outside the port by installing a large number of cylindrical columns in a crowded form.

【0028】また、本発明では、主体の筒柱をプレキャ
スト部材によるリング形状のセグメントを積み重ねて形
成することにより、ケーソン製作工程及び大幅な工期短
縮に伴う全般的コスト低減が期待できる。
Further, in the present invention, the main cylindrical column is formed by stacking the ring-shaped segments formed by the precast member, so that it is expected that the caisson manufacturing process and the overall cost reduction due to the drastic shortening of the construction period can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による海水不透過式防波堤の概念を示す
側面断面図
FIG. 1 is a side sectional view showing the concept of a seawater impermeable breakwater according to the present invention.

【図2】実施例の防波堤構築用群筒ケーソンの海中施工
後の形態を示す斜視図
FIG. 2 is a perspective view showing a form of a group caisson for constructing a breakwater of the embodiment after underwater construction.

【図3】実施例の群筒ケーソンの平面図FIG. 3 is a plan view of the group caisson of the embodiment.

【図4】実施例の群筒ケーソンの正面図FIG. 4 is a front view of the group caisson of the embodiment.

【図5】実施例の群筒ケーソンの側面図FIG. 5 is a side view of the group caisson of the embodiment.

【図6】群筒ケーソンの主体をなす円筒セグメントの実
施例の斜視図
FIG. 6 is a perspective view of an embodiment of a cylindrical segment that forms the main body of a group caisson.

【図7】図6に示す円筒セグメントの組立態様を示す斜
視図
FIG. 7 is a perspective view showing an assembly mode of the cylindrical segment shown in FIG.

【符号の説明】[Explanation of symbols]

1・・群筒ケーソン、2・・マウンド、3・・下床部、
4・・筒柱、5・・上床部、6・・上部工、7・・海
面、10・・セグメント、11・・PC鋼棒。
1 ... Group tube caisson, 2 ... mound, 3 ... lower floor,
4 ・ ・ Cylinder pillar, 5 ・ ・ Upper floor, 6 ・ ・ Superstructure, 7 ・ ・ Sea surface, 10 ・ ・ Segment, 11 ・ ・ PC steel rod.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 秀之 東京都千代田区富士見二丁目10番26号前田 建設工業株式会社内 (72)発明者 上田 康浩 東京都千代田区富士見二丁目10番26号前田 建設工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Kitamura 2-10-10 Fujimi, Chiyoda-ku, Tokyo Maeda Construction Industry Co., Ltd. (72) Yasuhiro Ueda 2-26-10 Maeda, Fujimi, Chiyoda-ku, Tokyo Construction Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平板状の下床版と、 下床版上に互いに接して密集させて立設された複数の筒
柱と、 筒柱の上端に結合された平板状の上床版と、 上床版上に担持結合された上部工と、からなる函体を1
ブロックとし、 函体を施工現場の海底に造成されたマウンド上に沈設さ
せて載置して、筒柱に当接させて波を遮蔽することを特
徴とする防波堤構築用群筒ケーソン。
1. A flat lower floor slab, a plurality of cylindrical pillars which are in contact with each other on the lower floor slab so as to be densely erected, a flat upper floor slab connected to an upper end of the cylindrical pillar, and an upper floor. A box consisting of a superstructure supported and bonded on the plate 1
A group caisson for building a breakwater, characterized by placing a box as a block on a mound formed on the sea floor of a construction site and placing it on it to abut a cylindrical column to block waves.
【請求項2】 筒柱が断面円形の円筒形である請求項1
記載の防波堤構築用群筒ケーソン。
2. The cylindrical column is cylindrical with a circular cross section.
Group caisson for building breakwater as described.
【請求項3】 筒柱の内部に中詰め材を充填した請求項
1又は2記載の防波堤構築用群筒ケーソン。
3. The group caisson for constructing a breakwater according to claim 1, wherein a filling material is filled inside the cylindrical pillar.
【請求項4】 筒柱が高さ方向に細分化したリング形状
のセグメントの積み重ねにより形成され、セグメントの
周一円に補強芯材を埋設又は挿通させて互いの接合を強
化した請求項1〜3のいずれか記載の防波堤構築用群筒
ケーソン。
4. A cylindrical column is formed by stacking ring-shaped segments that are subdivided in a height direction, and a reinforcing core material is embedded or inserted into the entire circumference of the segment to strengthen the joint with each other. A group caisson for building a breakwater according to any one of 1.
【請求項5】 補強芯材が緊張特性を有するPC鋼棒
で、積み上げた複数のセグメントを軸線方向に緊定させ
ることができる請求項4記載の防波堤構築用群筒ケーソ
ン。
5. The group caisson for constructing a breakwater according to claim 4, wherein the reinforcing core material is a PC steel rod having a tensile property, and the stacked segments can be clamped in the axial direction.
【請求項6】 高さ方向に細分化したリング形状のセグ
メントの積み重ねにより形成され、セグメントの周一円
に補強芯材を埋設又は挿通させて互いの接合を強化した
防波堤構築用筒柱。
6. A breakwater building cylinder column, which is formed by stacking ring-shaped segments that are subdivided in the height direction, and in which a reinforcing core material is embedded or inserted in the entire circumference of the segment to strengthen the joint with each other.
JP5214618A 1993-08-30 1993-08-30 Cylindrical caisson group for construction of breakwater Pending JPH0762625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5214618A JPH0762625A (en) 1993-08-30 1993-08-30 Cylindrical caisson group for construction of breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5214618A JPH0762625A (en) 1993-08-30 1993-08-30 Cylindrical caisson group for construction of breakwater

Publications (1)

Publication Number Publication Date
JPH0762625A true JPH0762625A (en) 1995-03-07

Family

ID=16658713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5214618A Pending JPH0762625A (en) 1993-08-30 1993-08-30 Cylindrical caisson group for construction of breakwater

Country Status (1)

Country Link
JP (1) JPH0762625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2566047A1 (en) * 2015-12-04 2016-04-08 Carbures Europe, S.A. Modular drawer for vertical dams and assembly procedure (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2566047A1 (en) * 2015-12-04 2016-04-08 Carbures Europe, S.A. Modular drawer for vertical dams and assembly procedure (Machine-translation by Google Translate, not legally binding)
WO2017093594A1 (en) * 2015-12-04 2017-06-08 Carbures Europe, S.A. Modular caisson for vertical dykes and assembly method thereof

Similar Documents

Publication Publication Date Title
US9567720B2 (en) Offshore platform for a marine environment
KR101211811B1 (en) Cast in concrete pile With precast type Caisson
KR101900648B1 (en) Way of installing Precast structure of foundation under water
KR101256274B1 (en) Reverse Drill Method With precast type Caisson and Jacket
JP3423394B2 (en) Underwater frame structure
CN101392521A (en) Rock-socketed steel dock structure and construction method thereof
JP4819835B2 (en) Offshore structure and construction method of offshore structure
AU2012313196B2 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
JP2001248135A (en) Jacket structure
JPH0762625A (en) Cylindrical caisson group for construction of breakwater
KR20060100137A (en) Steel well foundation construction and equipment
JPH0762626A (en) Construction method of breakwater by cylindrical caisson group
KR20210047481A (en) Core wall structure of composite cassion for offshore runway
JP2007092454A (en) Hybrid artificial ground constructed in ocean space, and construction method for the hybrid artificial ground
JP2676779B2 (en) Cylindrical caisson
JPH0762624A (en) Cylindrical caisson group for construction of breakwater
JP3310452B2 (en) Method of constructing continuous wall in water area and guide device for construction
JP2519602B2 (en) How to construct a breakwater
KR200387364Y1 (en) steel well foundation equipment
KR20050000009A (en) Sectional pier wharf
JPH06264424A (en) Column-shaped or column row-shaped water area structure and construction method thereof
JP2002047665A (en) Installation method for jacket structure
JP6337798B2 (en) Water structure and construction method of water structure
KR200330339Y1 (en) Sectional pier wharf
JPH0588326B2 (en)