JPH0762167B2 - Method of deoxidizing molten steel - Google Patents

Method of deoxidizing molten steel

Info

Publication number
JPH0762167B2
JPH0762167B2 JP60145274A JP14527485A JPH0762167B2 JP H0762167 B2 JPH0762167 B2 JP H0762167B2 JP 60145274 A JP60145274 A JP 60145274A JP 14527485 A JP14527485 A JP 14527485A JP H0762167 B2 JPH0762167 B2 JP H0762167B2
Authority
JP
Japan
Prior art keywords
molten steel
flux
steel
inclusions
deoxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60145274A
Other languages
Japanese (ja)
Other versions
JPS627816A (en
Inventor
正純 平居
修道 芹川
宏美 高橋
賢一 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60145274A priority Critical patent/JPH0762167B2/en
Publication of JPS627816A publication Critical patent/JPS627816A/en
Publication of JPH0762167B2 publication Critical patent/JPH0762167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶鋼の脱酸時に生成する硬質の酸化物系非金属
介在物をすみやかに改質するとともに除去し、清浄度の
良い鋼を製造する脱酸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention promptly reforms and removes hard oxide nonmetallic inclusions generated during deoxidation of molten steel to produce steel with good cleanliness. The present invention relates to a deoxidizing method for

(従来の技術) 従来、清浄度の良い鋼を製造するには、例えば第100回
西山記念技術講座226〜232頁に述べられているように、 (イ) 脱酸剤の添加された溶鋼を真空脱ガス装置、又
は不活性ガス吹込装置、誘導撹拌装置等で撹拌し、介在
物を合体、浮上させる方法, (ロ) 介在物の合体、浮上を促進あるいは介在物形態
制御するために、石灰等のフラックスをインジェクショ
ンする方法。
(Prior Art) Conventionally, in order to produce steel with good cleanliness, for example, as described in the 100th Nishiyama Memorial Technical Lecture, pages 226 to 232, (a) molten steel added with a deoxidizing agent is used. A method of mixing and floating inclusions by stirring with a vacuum degassing device, an inert gas blowing device, an induction stirring device, or the like, (b) Liming of inclusions or levitation of the inclusions or to control the form of inclusions. The method of injecting flux such as.

(ハ) (イ)や(ロ)の方法において浮上した介在物
を吸収し除去するために溶鋼の表面に合成スラグで被覆
する方法, がある。しかしこのような従来方法には以下に示す欠点
がある。
(C) In the methods of (a) and (b), there is a method of coating the surface of molten steel with synthetic slag in order to absorb and remove the floating inclusions. However, such a conventional method has the following drawbacks.

(イ)の方法は鋼中に介在物の衝突,合体により介在物
を大型化し、浮上性を良くして除去するものであるが、
衝突は確率的現象であるため、鋼中に分散している微小
な介在物の完全な除去は困難であり、有害な大型介在物
も残存する。
The method (a) is to remove inclusions by making the inclusions larger by colliding and coalescing inclusions in the steel to improve the floating property.
Since collision is a stochastic phenomenon, it is difficult to completely remove minute inclusions dispersed in steel, and harmful large inclusions also remain.

(ロ)の方法は例えばAl脱酸鋼のAl2O3クラスターを除
去するためにAl2O3と合体しやすいCaO系フラックスをイ
ンジェクションしCaO系フラックスにAl2O3を吸収させ大
型のmCaO・nAl2O3となし、浮上の促進あるいはmCaO・nA
l2O3系の介在物に形態制御するものである。しかし、こ
の場合も、衝突は確率的であり効果には限界がある。
Large methods imbibed Al 2 O 3 to the injection and CaO-based flux coalescence easily CaO-type flux and Al 2 O 3 in order to remove the Al 2 O 3 clusters example Al deoxidized steel (b) MCAO・ With nAl 2 O 3 , promoting levitation or mCaO ・ nA
The morphology is controlled by l 2 O 3 inclusions. However, even in this case, the collision is stochastic and the effect is limited.

(ハ)の方法は浮上してきた介在物を合成スラグが吸収
するだけ(イ)や(ロ)の方法より清浄度が向上する
が、鋼中介在物の衝突・合体に支配されている点は同じ
であり、効果には自ずから限界がある。
The method (c) improves the cleanliness compared with the methods (a) and (b) only because the synthetic slag absorbs the floating inclusions, but the point that is controlled by collision and coalescence of inclusions in steel is It is the same, and the effect is naturally limited.

(発明が解決しようとする問題点) 本発明の目的は前記の如き従来法の欠点である鋼中介在
物の衝突・合体の確率を飛躍的に改善し、極めて清浄度
の高い鋼を製造することのできる溶鋼の脱酸方法を提供
するにある。
(Problems to be Solved by the Invention) The object of the present invention is to dramatically improve the probability of collision / coalescence of inclusions in steel, which is a drawback of the conventional method as described above, and to manufacture steel with extremely high cleanliness. The purpose is to provide a deoxidizing method for molten steel that can be used.

(問題点の解決するための手段) 本発明はこの目的を達成するために脱酸剤とフラックス
を実質的に同時に、混合状態で溶鋼にインジェクション
法等により添加することにより、生成する脱酸生成物を
直ちに、周囲に高密度で存在するフラックスと結合させ
て改質することによって浮上・除去を促進し、清浄度を
極めて良くするとともにより完全な介在物形態制御をす
ることを骨子とするものである。
(Means for Solving Problems) In order to achieve this object, the present invention is to produce a deoxidizing product produced by adding a deoxidizing agent and a flux to a molten steel in a mixed state at a substantially same time by an injection method or the like. Immediately, by combining with the flux that exists in high density in the surroundings and modifying it, it promotes levitation / removal to improve the cleanliness and complete control of inclusion morphology. Is.

すなわち、本発明の要旨とするところは、下記のとおり
である。
That is, the gist of the present invention is as follows.

溶鋼を脱酸する過程において、溶鋼の表面を溶鋼の凝固
温度より50℃以上低い融点を有する溶融スラグで覆った
状態で下記の脱酸剤とフラックスとを混合状態で溶鋼中
に添加することを特徴とする溶鋼の脱酸方法。
In the process of deoxidizing molten steel, it is possible to add the following deoxidizing agent and flux to the molten steel in a mixed state with the surface of the molten steel covered with molten slag having a melting point lower than the solidification temperature of molten steel by 50 ° C or more. A characteristic method for deoxidizing molten steel.

〔脱酸剤〕Si,Al,Ca,Mg,Remの1種又は2種以上 〔フラックス〕CaO−SiO2系フラックス、又はこれにア
ルカリ金属あるいはアルカリ土類金属のフッ化物、酸化
物の1種又は2種以上を含んだ合成フラックス 以下、本発明を更に詳細に説明する。
[Deoxidizer] One or more of Si, Al, Ca, Mg, Rem [Flux] CaO-SiO 2 based flux, or one of alkali metal or alkaline earth metal fluoride and oxide Or, a synthetic flux containing two or more kinds of the present invention will be described in more detail below.

非金属介在物の多くは溶鋼より比重が小さく浮力により
浮上した溶鋼表面に排出される。浮上速度はストークス
によれば、 但し、υ:介在物の浮上速度〔cm/sec2〕,g:重力の加速
度〔cm/sec2〕,ρ:溶鋼の密度〔g/cm3〕,ρ′:介在
物の密度〔g/cm3〕,r:介在物の半径〔cm〕,η:溶鋼の
粘性係数〔poise〕で表わされる。すなわち、浮上速度
は介在物の半径の二乗に比例するため小型の介在物は浮
上,除去されにくいため、合体により大型化することが
有効である。
Most of non-metallic inclusions have smaller specific gravity than molten steel and are discharged to the surface of molten steel by buoyancy. Ascent rate is according to Stokes, Where ν: floating speed of inclusions [cm / sec 2 ], g: acceleration of gravity [cm / sec 2 ], ρ: density of molten steel [g / cm 3 ], ρ ′: density of inclusions [g / cm 3 ], r: radius of inclusion [cm], η: viscosity of molten steel [poise]. That is, since the floating speed is proportional to the square of the radius of the inclusions, small inclusions are difficult to float and be removed. Therefore, it is effective to increase the size by combining them.

介在物が成長し大型化する機構としては、強撹拌されて
いる溶鋼中では衝突し合体する機構が支配的であると考
えられる。しかしながら、脱酸された溶鋼には数μm程
度の微小な脱酸生成物が溶鋼全体に分散しているため、
脱酸後に撹拌したり、フラックスをインジェクションし
ても衝突し合体する確率は溶鋼を洗浄化するために必要
なほどには大きくない。フラックスとの合体により介在
物を改質し、無害化させる目的の場合にも、合体しない
ままの介在物が多数残存し、十分に目的を達成すること
は困難である。このように残存した微少な介在物は鋳造
時に凝集、合体し、浮上しきれずに鋼中に残り害をなす
原因となる。このような従来法の欠点を改善するために
本発明では脱酸剤とフラックスを混合状態で溶鋼中に添
加することを第1の特徴としているが、その目的は脱酸
剤の周囲に高密度でフラックスを存在させることによ
り、生成した脱酸生成物を直ちにフラックスと結合させ
改質するとともに大型化し、浮上,除去することにあ
る。脱酸生成物とフラックスの結合は、次の2つの機構
で実現される。一つは両者の衝突によるものであるが、
両者ともに反応領域においては極めて密度が高いため、
鋼全体に分散している従来法に比べて衝突の確率は非常
に大きいため、合体,浮上効果は極めて大きくなる。ま
た、一つは脱酸剤が脱酸反応を起すときに脱酸剤は一時
鋼中に固溶した後、鋼中の酸素と結合し、脱酸生成物を
形成すると考えられるが、周囲に高密度で存在するフラ
ックスは脱酸生成物の折出核となるため、両者の結合は
より高い確率で実現する。なおフラックスの量は脱酸剤
の50%以上が望ましい。
It is considered that, as a mechanism for the inclusions to grow and increase in size, the mechanism of collision and coalescence in the molten steel under strong stirring is dominant. However, since deoxidized molten steel contains minute deoxidized products of about several μm dispersed throughout the molten steel,
The probability of collision and coalescence even if stirred or flux-injected after deoxidation is not high enough to clean molten steel. In the case of the purpose of modifying the inclusions to make them harmless by coalescing with the flux, a large number of inclusions remain uncombined, and it is difficult to sufficiently achieve the purpose. The minute inclusions remaining in this way aggregate and coalesce during casting, fail to float, and remain in the steel to cause harm. In order to improve such a drawback of the conventional method, the first feature of the present invention is to add a deoxidizing agent and a flux to the molten steel in a mixed state, but the purpose is to provide a high density around the deoxidizing agent. The presence of the flux in (1) is to immediately combine the generated deoxidized product with the flux to modify it, increase its size, and float and remove it. The binding of the deoxidation product and the flux is realized by the following two mechanisms. One is due to the collision of the two,
Both are extremely dense in the reaction region,
Since the probability of collision is much higher than that of the conventional method, which is dispersed throughout the steel, the coalescence and levitation effects are extremely large. In addition, it is considered that when the deoxidizing agent causes a deoxidizing reaction, the deoxidizing agent temporarily forms a solid solution in steel and then combines with oxygen in the steel to form a deoxidizing product. Since the flux that exists at a high density serves as the nuclei for the deoxidation product, the binding between the two is realized with a higher probability. The amount of flux is preferably 50% or more of the deoxidizer.

脱酸剤とフラックスを混合状態で鋼中に添加する手段と
しては粉状で事前に混合しておいて、これを取鍋に出鋼
する際に出鋼流に投入するか、或いは出鋼後、取鍋中の
溶鋼に浸漬ランスを通じて吹込んでも良い。或いはまた
フラックスと脱酸剤を別々のタンクに装填しておき、同
一のランスを通じて同時に吹込んでも良い。また同一の
タンク内にフラックスと脱酸剤を層状に交互に装填して
おき、浸漬ランスを通じて連続的に吹込んでも、両者は
実質的に混合状態となるため同様な効果が奏せられる。
As a means for adding the deoxidizing agent and the flux to the steel in a mixed state, they are mixed in powder form in advance, and this is put into the tapping flow when tapping the tapped steel, or after tapping. Alternatively, the molten steel in the ladle may be blown through the immersion lance. Alternatively, the flux and the deoxidizer may be loaded in separate tanks and blown simultaneously through the same lance. In addition, even if the flux and the deoxidizer are alternately charged in layers in the same tank and continuously blown through the immersion lance, both are substantially in a mixed state, and the same effect can be obtained.

次に、溶鋼の表面を溶融スラグで覆った状態で脱酸剤と
フラックスを混合状態で鋼中に添加することにより、本
発明は一層その効果を高めることができる。これは溶融
スラグが浮上してきた介在物を吸収し、再び鋼中に戻る
ことを防止するためである。こうした効果を十分に発揮
するためにはスラグは溶融状態であることが必要であ
る。表面および取鍋への付着部においても容易に凝固し
ないように、スラグの融点は溶鋼の融点より50℃以上低
いことが必要である。取鍋には出鋼時に一般的には転炉
スラグが流入してくるため、処理終了時のスラグ組成に
おいて所定の融点となすことが望ましい。溶融スラグを
形成するためには、CaO−SiO2系フラックスにNaF等の滓
化剤を添加した低融点のフラックスを添加することが適
当である。添加量は溶鋼表面を被覆するに必要な量とし
て10kg/m2以上が好ましい。
Next, the present invention can further enhance its effect by adding a deoxidizer and a flux to the steel in a mixed state with the surface of the molten steel covered with molten slag. This is to prevent the molten slag from absorbing the floating inclusions and returning to the steel again. In order to fully exert such effects, the slag needs to be in a molten state. The melting point of the slag must be lower than the melting point of the molten steel by 50 ° C or more so that it does not easily solidify even on the surface and the part adhered to the ladle. Since the converter slag generally flows into the ladle at the time of tapping, it is desirable that the slag composition at the end of the treatment has a predetermined melting point. In order to form the molten slag, it is appropriate to add a low melting point flux obtained by adding a slag forming agent such as NaF to the CaO—SiO 2 based flux. The amount of addition is preferably 10 kg / m 2 or more as the amount required to coat the surface of molten steel.

脱酸剤と混合状態で添加するフラックスとしては、脱酸
生成物と結合しやすく、フラックス自身および結合体と
もに溶鋼から分離しやすいものが望ましい。この目的に
適したフラックスとして、CaOとSiO2を主成分とするフ
ラックス、又はこれに滓化剤としてアルカリ金属あるい
はアルカリ土類金属のフッ化物、酸化物の1種もしくは
2種以上を含む合成フラックスが適当である。
As the flux to be added in a mixed state with the deoxidizing agent, it is desirable that the flux is easily combined with the deoxidized product, and the flux itself and the combined body are easily separated from the molten steel. As a flux suitable for this purpose, a flux containing CaO and SiO 2 as main components, or a synthetic flux containing one or more fluorides or oxides of alkali metals or alkaline earth metals as a slag forming agent. Is appropriate.

CaO−SiO2系フラックスは介在物を軟質化する場合に特
に有効である。また滓化剤の添加によりフラックスと介
在物の合体は一層容易となる。
CaO-SiO 2 Flux is particularly useful for softening inclusions. Further, the addition of the slag forming agent makes it easier to combine the flux and the inclusions.

本発明は脱酸生成物とフラックスの結合の高い確率で実
現することに特徴を有するものであるから、脱酸剤の種
類は特に問題とならない。一般に脱酸剤として用いられ
るAl,Ca,Mg,Rem、およびこれらの元素同士或いはこれら
の元素とSi,Mn,Fe等との合金についても同様の効果が得
られる。また溶鋼の組成についても特に制約される条件
はなく、普通炭素鋼、特殊鋼とも同様に処理することが
できる。
Since the present invention is characterized in that the deoxidation product and the flux are combined with a high probability, the type of deoxidizing agent does not matter. Similar effects can be obtained with Al, Ca, Mg, Rem, which are generally used as a deoxidizing agent, and alloys of these elements or of these elements with Si, Mn, Fe and the like. There is no particular restriction on the composition of the molten steel, and ordinary carbon steel and special steel can be treated in the same manner.

以下に実施例に基づいて本発明の効果を述べる。The effects of the present invention will be described below based on Examples.

(実施例) 溶鋼250Tの取鍋に出鋼時、溶鋼成分が〔C〕:0.05%、
〔Si〕:0.30%、〔Mn〕:1.50%になるように、Fe−Si:
4.1kg/T−S,Fe−Mn:18kg/T−Sを投入し、下記の脱酸処
理を行った後、連続鋳造により220×2000mm2の鋳片を鋳
造し、熱間圧延により厚さ10mmの板に圧延し、清浄度を
測定した。清浄度はJIS法により非延性介在物であるB
系およびC系介在物をカウントし、従来法による比較材
を100とした相対値で示す。該鋼種の溶鋼の凝固温度は1
526℃である。
(Example) When tapped in a ladle of molten steel 250T, the molten steel composition [C]: 0.05%,
[Si]: 0.30%, [Mn]: 1.50%, Fe-Si:
4.1kg / T-S, Fe-Mn: 18kg / T-S was added, the following deoxidation treatment was performed, and then 220 x 2000mm 2 slab was cast by continuous casting, and the thickness was obtained by hot rolling. It was rolled into a plate of 10 mm and the cleanliness was measured. Cleanliness according to JIS method is non-ductile inclusion B
The system and C type inclusions were counted and shown as a relative value with the comparative material by the conventional method as 100. Solidification temperature of molten steel of the steel type is 1
It is 526 ° C.

前記脱酸処理は以下のとおりである。The deoxidation treatment is as follows.

40%CaO−40%SiO2−20%NaFなる組成のフラックス4kg/
T−Sを取鍋中の溶鋼に浸漬ランスを通じて1Nm3/minのA
rガスで吹込み、カバースラグを形成せしめた後、該フ
ラックスの一部に7%Mg合金0.2kg/T−Sを混合して浸
漬ランスを通じてArガスにより吹込んだ。最終的なカバ
ースラグの組成はCaO43.5%,SiO233.5%,MgO5.5%,Al2O
37.0%,NaF7.3%,MnO3.2%で融点は1320℃であった。こ
の場合の清浄度は比較例を100としたとき18であり、介
在物は複合組成の低融点延性介在物となっていた。
40% CaO-40% SiO 2 -20% NaF flux 4 kg /
T-S is immersed in molten steel in a ladle through a dipping lance and 1 Nm 3 / min A
After blowing with r gas to form a cover slag, a part of the flux was mixed with 7% Mg alloy 0.2 kg / T-S and blown with Ar gas through an immersion lance. The composition of the final cover slag is CaO 43.5%, SiO 2 33.5%, MgO 5.5%, Al 2 O
The melting point was 1320 ° C with 3 7.0%, NaF 7.3%, and MnO 3.2%. The cleanliness in this case was 18 when the comparative example was 100, and the inclusions were low melting ductile inclusions of a composite composition.

以上の処理方法について0.05gC−0.30%Mn鋼,0.72%C
−0.25%Si−0.60%Mn鋼,0.55%C−1.4%Si−0.70%Mn
−0.70%Cr鋼についても実施したところ同様の効果が得
られた。また脱酸剤として3%Cr合金,7%Mg合金,30%R
em−Si合金を用い、フラックスとして40%CaO−40%SiO
2−20%NaFを用いても同様の効果が得られた。
About the above treatment method 0.05gC-0.30% Mn steel, 0.72% C
-0.25% Si-0.60% Mn Steel, 0.55% C-1.4% Si-0.70% Mn
The same effect was obtained when the experiment was performed on -0.70% Cr steel. As a deoxidizer, 3% Cr alloy, 7% Mg alloy, 30% R
40% CaO-40% SiO as flux with em-Si alloy
Same effect with 2 -20% NaF was obtained.

(比較例) 溶鋼250Tを取鍋に出鋼時、溶鋼成分が〔C〕:0.05%,
〔Si〕:0.30%,〔Mn〕:1.50%になるようにFe−Si:4.1
kg/T−S,Fe−Mn:1.8kg/T−S,Al:0.6kg/T−Sを投入した
後、取鍋中の溶鋼に浸漬ランスを通じて粉状のCaO:3.6k
g/T−S,CaF2:0.4kg/T−Sの混合物を、1Nm3/minのArガ
スにより吹込んだ。連続鋳造により22×2000mm2の鋳片
を鋳造し、熱間圧延により厚み10mmの板に圧延した。
(Comparative Example) When molten steel 250T is tapped in a ladle, the molten steel composition is [C]: 0.05%,
[Si]: 0.30%, [Mn]: 1.50% Fe-Si: 4.1
kg / T-S, Fe-Mn: 1.8kg / T-S, Al: 0.6kg / T-S was charged, and then powdered CaO: 3.6k through molten lance in molten steel in ladle.
g / T-S, CaF 2 : a 0.4 kg / T-S mixture, was blown by Ar gas 1 Nm 3 / min. A 22 × 2000 mm 2 slab was cast by continuous casting, and hot rolled into a plate having a thickness of 10 mm.

(発明の効果) 以上のように本発明の脱酸方法によれば、脱酸剤とフラ
ックスを混合状態で添加することより、別々に添加する
場合に比べ硬質介在物の数を著しく減少させることがで
き清浄度を大幅に向上させる効果が得られる。
(Effects of the Invention) As described above, according to the deoxidizing method of the present invention, by adding the deoxidizing agent and the flux in a mixed state, the number of hard inclusions can be significantly reduced as compared with the case of adding them separately. The effect of significantly improving cleanliness can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 宏美 千葉県君津市君津1番地 新日本製鐵株式 會社君津製鐵所内 (72)発明者 島本 賢一 千葉県君津市君津1番地 新日本製鐵株式 會社君津製鐵所内 (56)参考文献 特開 昭57−57823(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromi Takahashi, 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Co., Ltd. Inside the Kimitsu Steel Works, Ltd. (72) Inventor, Kenichi Shimamoto, 1 Kimitsu, Chiba Shin Nippon Steel In-house Kimitsu Works (56) Reference JP-A-57-57823 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶鋼を脱酸する過程において、溶鋼の表面
を溶鋼の凝固温度より50℃以上低い融点を有する溶融ス
ラグで覆った状態で下記の脱酸剤とフラックスとを混合
状態で溶鋼中に添加することを特徴とする溶鋼の脱酸方
法。 〔脱酸剤〕Si,Al,Ca,Mg,Remの一種又は2種以上 〔フラックス〕CaO−SiO2系フラックス、又はこれにア
ルカリ金属あるいはアルカリ土類金属のフッ化物、酸化
物の1種又は2種以上を含んだ合成フラックス
1. In the process of deoxidizing molten steel, the following deoxidizer and flux are mixed in molten steel while the surface of molten steel is covered with molten slag having a melting point of 50 ° C. or more lower than the solidification temperature of molten steel. A method for deoxidizing molten steel, characterized by being added to. [Deoxidizer] One or more of Si, Al, Ca, Mg, Rem [Flux] CaO-SiO 2 based flux, or one of fluorides and oxides of alkali metal or alkaline earth metal, or Synthetic flux containing two or more types
JP60145274A 1985-07-02 1985-07-02 Method of deoxidizing molten steel Expired - Fee Related JPH0762167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145274A JPH0762167B2 (en) 1985-07-02 1985-07-02 Method of deoxidizing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145274A JPH0762167B2 (en) 1985-07-02 1985-07-02 Method of deoxidizing molten steel

Publications (2)

Publication Number Publication Date
JPS627816A JPS627816A (en) 1987-01-14
JPH0762167B2 true JPH0762167B2 (en) 1995-07-05

Family

ID=15381344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145274A Expired - Fee Related JPH0762167B2 (en) 1985-07-02 1985-07-02 Method of deoxidizing molten steel

Country Status (1)

Country Link
JP (1) JPH0762167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626278B2 (en) * 1996-03-25 2005-03-02 Jfeスチール株式会社 Method for producing Al-killed steel without clusters
KR20030089955A (en) * 2002-05-20 2003-11-28 주식회사 포스코 The method of decreasing nitrogen in deoxidized molten steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017003B2 (en) * 1980-09-22 1985-04-30 新日本製鐵株式会社 Manufacturing method of low oxygen silicon killed steel

Also Published As

Publication number Publication date
JPS627816A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US4036635A (en) Process for making a steel melt for continuous casting
JPH09263820A (en) Production of cluster-free aluminum killed steel
CN101629224A (en) Deoxidation modification agent of molten steel
CN102337485A (en) Purificant for purifying amorphous alloy molten steel
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP4000674B2 (en) Low carbon steel manufacturing method
JPH0762167B2 (en) Method of deoxidizing molten steel
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
RU2231559C1 (en) Direct method for alloying steel with complex of elements
JP4453532B2 (en) Hot metal desulfurization method
US5037609A (en) Material for refining steel of multi-purpose application
JP2866147B2 (en) Method for producing steel in which fine oxides are dispersed
JP3603513B2 (en) Method for deoxidizing low carbon steel
JPH07207316A (en) Wire for desulfurization of molten iron having high desulfurization efficiency
JP3395699B2 (en) Method for producing ferritic stainless steel
CN115287396B (en) Control method for iron-nickel-based superalloy inclusion
JPH09209026A (en) Simultaneous deoxidizing and desulfurizing agent for molten steel and method for simultaneously deoxidizing and desulfurizing molten steel using it
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JPH09217109A (en) Simultaneous deoxidizing and desulfurizing agent for molten steel and simultaneously deoxidizing and desulfurizing method
JP3326917B2 (en) Desulfurization method of molten steel
JP3033002B2 (en) Low cost method of adding Mg to molten steel
SU835629A1 (en) Method of introducing modifying agent at steel casting
JP3510088B2 (en) Method for manufacturing billet continuous cast material
JPH07300614A (en) Production of molten steel for continuous casting
JP3843590B2 (en) Method for producing Ti deoxidized ultra-low carbon steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees