JP3033002B2 - Low cost method of adding Mg to molten steel - Google Patents

Low cost method of adding Mg to molten steel

Info

Publication number
JP3033002B2
JP3033002B2 JP5214559A JP21455993A JP3033002B2 JP 3033002 B2 JP3033002 B2 JP 3033002B2 JP 5214559 A JP5214559 A JP 5214559A JP 21455993 A JP21455993 A JP 21455993A JP 3033002 B2 JP3033002 B2 JP 3033002B2
Authority
JP
Japan
Prior art keywords
molten steel
steel
mixture
cost
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5214559A
Other languages
Japanese (ja)
Other versions
JPH0762417A (en
Inventor
雄二 河内
弘文 前出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16657734&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3033002(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5214559A priority Critical patent/JP3033002B2/en
Publication of JPH0762417A publication Critical patent/JPH0762417A/en
Application granted granted Critical
Publication of JP3033002B2 publication Critical patent/JP3033002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼中にMgを効率的
に添加する方法に関するものであり、これにより低コス
トで溶鋼中の酸化物サイズが微細化され、品質特性に優
れた鋼材の供給が可能となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently adding Mg to molten steel, whereby the size of oxides in the molten steel is reduced at low cost and the quality of the steel material is excellent. Supply becomes possible.

【0002】[0002]

【従来の技術】最近、鋼材に要求される品質は次第に激
しく、かつ多様化してきており、より清浄で機能性に富
む鋼を製造する技術の開発が強く望まれている。鋼材中
の酸化物系介在物に関しても、鋼材中での悪影響度を軽
減するために一層の低減が要求されてきた。即ち、酸化
物系介在物、特にアルミナ(Al2 3 )系介在物はタ
イヤコード等線材の断線原因に、軸受鋼等の棒鋼では転
動疲労特性の悪化原因に、さらにDI缶等の薄鋼板では
製缶時ワレの原因になることが知られており、その低減
が強く求められてきた。このため、鋼材中酸化物総量の
目安であるT.O含有量を低減させるため、種々の技術
が開発あるいは検討されてきた。それらは、溶鋼の二次
精練段階でのアルミナ除去、外来系酸化物の混入防止等
である。
2. Description of the Related Art In recent years, the quality required for steel materials has become increasingly intense and diversified, and there is a strong demand for the development of technology for producing cleaner and more functional steel. Oxide-based inclusions in steel materials have been required to be further reduced in order to reduce the degree of adverse effects in steel materials. That is, oxide-based inclusions, particularly alumina (Al 2 O 3 ) -based inclusions, cause disconnection of the tire cord and the like, cause deterioration of the rolling contact fatigue characteristics of bar steel such as bearing steel, and further cause the thinning of DI cans and the like. Steel plates are known to cause cracking during can-making, and reduction thereof has been strongly demanded. For this reason, T.P. Various techniques have been developed or studied to reduce the O content. They are for removing alumina in the secondary refining stage of molten steel, preventing foreign oxides from being mixed, and the like.

【0003】しかしながら、T.O含有量の低減は技術
的限界に達してきたのも事実である。即ち、例えば、高
炭素クロム軸受鋼においてはT.O含有量を5ppm以
下にするのが困難であり、一方T.O含有量が5ppm
程度でも酸化物起因の疲労破壊が発生することがある。
それゆえ、この問題は技術的に大きな障壁にぶつかって
いた。
[0003] However, T.A. It is true that the reduction of the O content has reached technical limits. That is, for example, in high carbon chromium bearing steel, T.V. It is difficult to reduce the O content to 5 ppm or less, while T.O. O content is 5ppm
Oxidation may cause fatigue fracture due to oxides.
Therefore, the problem was technically a major barrier.

【0004】このような状況に対して本発明者らは、新
しい概念による抜本的対策を確立した。それらは、特願
平3−337922号、特願平4−14498号、特願
平5−59333号であり、Mg添加により溶鋼中のア
ルミナ(Al2 3 )をMgO・Al2 3 あるいはM
gOに組成変換し、酸化物のサイズを微細化することを
基本とする。即ち、特願平3−337922号では、M
g源としてFe−Si−Mg、Fe−Mn−Mg、Fe
−Si−Mn−Mg、Si−Mg合金を用いる方法を、
また特願平4−14498号ではMg源としてAl−M
g合金を用いる方法を提案した。さらに特願平5−59
333号では効率的組成変換方法として、Mg合金添加
前の溶鋼中S含有量を0.005重量%以下とする方法
を提案した。これらにより、得られた鋼材の品質は飛躍
的に向上した。
[0004] The present inventors have established a drastic measure against such a situation by a new concept. These are Japanese Patent Application No. 3-337922, Japanese Patent Application No. 4-14498, and Japanese Patent Application No. 5-59333. The alumina (Al 2 O 3 ) in the molten steel is changed to MgO.Al 2 O 3 or M
Basically, the composition is converted to gO and the size of the oxide is reduced. That is, in Japanese Patent Application No. 3-337922, M
Fe-Si-Mg, Fe-Mn-Mg, Fe
-Si-Mn-Mg, a method using a Si-Mg alloy,
In Japanese Patent Application No. 4-14498, Al-M is used as a Mg source.
A method using g alloy was proposed. Furthermore, Japanese Patent Application No. 5-59
No. 333 proposed an efficient composition conversion method in which the S content in molten steel before the addition of the Mg alloy was 0.005% by weight or less. As a result, the quality of the obtained steel material has been dramatically improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法に関して実験を繰り返した結果、上記方法ではMgを
合金として添加するために、製造コストが高くなるとい
う欠点を有していることがわかった。即ち合金化のため
には原料を昇温溶解させる必要があり、このために多大
の電気エネルギー等を必要とする。
However, as a result of repeating experiments on the above method, it was found that the above method had a disadvantage that the production cost was increased because Mg was added as an alloy. That is, for alloying, it is necessary to heat and melt the raw material, which requires a great deal of electric energy.

【0006】本発明はこのような点を鑑み、Mg源の改
良による低コスト製造法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a low-cost manufacturing method by improving an Mg source.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、Si、Mn、Alを含有し、さらにCを1.2重
量%以下含有する溶鋼にMgを添加するに際し、Si、
Mn、Al、Fe−Si、Fe−Mn、Cの1種類以上
とMgを混合せしめ、混合物中のMg含有量を0.5〜
15重量%とし、さらにMgの粒径を0.01〜3.0
mmとして添加することを特徴とする溶鋼への低コスト
Mg添加方法にある。
The gist of the present invention is to add Si, Mn and Al to molten steel containing 1.2% by weight or less of C when adding Mg to molten steel.
Mg is mixed with at least one of Mn, Al, Fe-Si, Fe-Mn, and C, and the Mg content in the mixture is 0.5 to
15 wt%, and further, the particle size of Mg is 0.01 to 3.0.
A method of adding low-cost Mg to molten steel, characterized by being added as mm.

【0008】ここでMgの添加速度を0.002〜0.
050kg/t−溶鋼/分にコントロールすること、溶
鋼表面上に重量%で、MgO:3〜15%、FeO+F
23 +MnO:5%以下を含有するCaO−SiO
2 −Al2 3 系スラグを存在させてMgを添加するこ
とも特徴とする。さらにMg混合物を取鍋、連続鋳造タ
ンディッシュおよび連続鋳造モールドの1ケ所以上で添
加すること、Mg混合物を不活性ガスにより溶鋼中に吹
込むこと、Mg混合物を鉄製ワイヤー中に充填し、溶鋼
を攪拌しながら、溶鋼中に供給することも特徴とする。
Here, the addition rate of Mg is set to 0.002 to 0.
Control at 050 kg / t-molten steel / min, MgO: 3 to 15%, FeO + F
e 2 O 3 + MnO: CaO -SiO containing 5% or less
It is also characterized by adding Mg in the presence of 2- Al 2 O 3 -based slag. Further, the Mg mixture is added at one or more points of a ladle, a continuous casting tundish and a continuous casting mold, the Mg mixture is blown into molten steel by an inert gas, the Mg mixture is filled into an iron wire, and the molten steel is filled. It is also characterized by feeding into molten steel while stirring.

【0009】[0009]

【作用】Mg添加の狙いは、溶鋼中に存在する酸化物の
サイズを微細化し、鋼材品質に対する酸化物の悪影響を
回避することにある。即ち、鋼材中の介在物の大きさが
大きいほど、その部分に応力が集中しやすくなり、欠陥
となりやすいことから、酸化物についても大きくしなけ
れば悪影響を及ぼさない。このような考え方に基づき、
本発明者らは溶鋼中で凝集・粗大化しやすいAl2 3
の微細化法を種々検討した。その結果、Mg添加により
Al2 3 を改質し、組成をAl2 3 ・MgOあるい
はMgOとすることにより、酸化物〜溶鋼間の界面エネ
ルギーが減少し、そのため酸化物の微細化が達成される
ことを見出した。
The purpose of the addition of Mg is to reduce the size of the oxide present in the molten steel and to avoid the adverse effect of the oxide on the quality of the steel material. That is, as the size of the inclusions in the steel material is larger, the stress is more likely to be concentrated on that portion, which is likely to cause a defect. Based on this idea,
The present inventors have found that Al 2 O 3
Various refinement methods were studied. As a result, by modifying Al 2 O 3 by adding Mg and changing the composition to Al 2 O 3 .MgO or MgO, the interfacial energy between the oxide and the molten steel is reduced, and thus the oxide is refined. Found to be.

【0010】Mgは周知の通り高蒸気圧元素であり、溶
鋼中に添加しても蒸発ロスしやすい。また酸素との親和
力が強く溶鋼〜大気界面では容易に酸化される。このよ
うにMgロスが大きければ、上記Al2 3 の改質反応
の進行が阻害され好ましくない。Mgロス防止対策とし
ては、Mgを合金化し、Mgの反応性を低下させる方法
が一般的である。しかし合金化は前述の通り多大のコス
トアップをきたすことから、本発明者らはMg合金によ
らない、混合物を用いる好ましい方法を開発した。
As is well known, Mg is a high vapor pressure element, and even if it is added to molten steel, evaporation loss is liable to occur. Also, it has a strong affinity with oxygen and is easily oxidized at the molten steel-air interface. If the Mg loss is large, the progress of the Al 2 O 3 reforming reaction is undesirably hindered. As a measure for preventing Mg loss, a method of alloying Mg to reduce the reactivity of Mg is generally used. However, since alloying causes a great increase in cost as described above, the present inventors have developed a preferable method using a mixture without using an Mg alloy.

【0011】まず、Si、Mn、Al、Fe−Si、F
e−Mn、Cの1種類以上とMgを混合せしめ、混合物
中のMg含有量を0.5〜15重量%とし、さらにMg
の粒径を0.01〜3.0mmとして添加する理由を述
べる。これらの条件を設定する狙いはMg添加時の反応
性を低下させることにより、蒸発、酸化ロスを防止する
ことにある。即ち、Mgの反応性が緩和されれば蒸発速
度が遅くなり、また激しい突沸が回避され酸化ロスも防
止できる。Si、Mn、Al、Fe−Si、Fe−M
n、Cの1種類以上とMgを混合せめしる理由は、溶鋼
中Mgが添加された近傍にMgと親和力の強い元素を共
存させることにより、Mgの反応性を低下させることに
よる。また混合物中のMg含有量を15重量%以下とす
ることによってもMgの反応性を実用レベルまで低下さ
せうる。15重量%を超えるとMgロス、溶鋼飛散が大
きくなり好ましくなく、0.5重量%未満ではMgの供
給が遅くなり改質反応が進行しない。さらにMgの粒径
が0.01〜3.0mmで適度なMg反応性が確保でき
る。0.01mm未満では細粒化に伴いMgの反応性が
激しくなり好ましくなく、3.0mm超では溶鋼内に局
部的Mg濃化域が生成し、Mgの反応性は極めて大きく
なる。
First, Si, Mn, Al, Fe-Si, F
e-Mn, at least one kind of C is mixed with Mg, and the Mg content in the mixture is adjusted to 0.5 to 15% by weight.
The reason for adding the particles having a particle size of 0.01 to 3.0 mm is described. The purpose of setting these conditions is to prevent evaporation and oxidation loss by reducing the reactivity when adding Mg. That is, if the reactivity of Mg is relaxed, the evaporation rate is slowed down, severe bumping is avoided, and oxidation loss can be prevented. Si, Mn, Al, Fe-Si, Fe-M
The reason why Mg is mixed with at least one of n and C is that the reactivity of Mg is reduced by coexisting an element having a strong affinity for Mg in the vicinity of the added Mg in the molten steel. Also, by setting the Mg content in the mixture to 15% by weight or less, the reactivity of Mg can be reduced to a practical level. If it exceeds 15% by weight, Mg loss and scattering of molten steel increase, which is not preferable. If it is less than 0.5% by weight, the supply of Mg becomes slow and the reforming reaction does not proceed. Further, when the particle size of Mg is 0.01 to 3.0 mm, appropriate Mg reactivity can be secured. If the thickness is less than 0.01 mm, the reactivity of Mg becomes severe due to the grain refinement, so that it is not preferable. If the thickness exceeds 3.0 mm, a local Mg concentration region is generated in the molten steel, and the reactivity of Mg becomes extremely large.

【0012】次に、Mg混合物中のMgの添加速度を
0.002〜0.050kg/t−溶鋼/分にコントロ
ールする理由を述べる。Mgは非常に反応性に富んでい
るため、一定速度以上で添加した場合は激しい発煙、耐
火物浸蝕等が起こり好ましくない。この点に関して、M
gの添加速度を0.050kg/t−溶鋼/分以下にす
ることにより激しい発煙、耐火物浸蝕等を防止できるこ
とがわかった。また添加速度が0.002kg/t−溶
鋼/分未満ではMgの蒸発ロス等が起こり、Al 2 3
の改質が十分進行せず好ましくない。この添加速度はM
g合金のそれよりも小さく、混合物の場合には反応性が
激しくなる分、添加速度を遅くしなければならないこと
を意味する。
Next, the addition rate of Mg in the Mg mixture is
Control to 0.002 to 0.050 kg / t-molten steel / minute
State the reason for the Mg is very reactive
Therefore, if added at a certain speed or more,
Fire erosion and the like occur, which is not preferable. In this regard, M
g at a rate of 0.050 kg / t-molten steel / min or less.
Can prevent intense smoke and refractory erosion.
I understood. The addition rate is 0.002 kg / t-
If the rate is less than steel / minute, evaporation loss of Mg occurs, and Al TwoOThree
Does not proceed sufficiently, which is not preferable. The rate of this addition is M
g is smaller than that of the alloy, and the reactivity is higher in the case of a mixture.
The addition speed must be reduced by the amount of intensification
Means

【0013】また、溶鋼表面上に、重量%で、MgO:
3〜15%、FeO+Fe2 3 +MnO:5%以下を
含有するCaO−SiO2 −Al2 3 系スラグを存在
させることによっても、Mgの蒸発、酸化ロスを低減で
きる。ここで、MgOを3〜15%にする理由は、スラ
グのMgO溶解度を一定値以下にし、溶鋼中Mgが酸化
されMgOになった際のスラグ中への移行を防止するた
めであり、MgOが3%以上でその効果が現れ、MgO
が15%を超えるとその効果が鈍化することによる。ま
た、FeO+Fe2 3 +MnOを5%以下にすること
により、溶鋼〜スラグ界面でもMgの酸化が顕著に抑制
され、Mg酸化ロスを防止できる。さらにスラグの基本
成分系をCaO−SiO2 −Al2 3 系とする理由
は、このスラグ系が最も一般的で、かつ低コストで形成
させることが可能なためである。組成的には、3成分合
計で100%とすると、CaO:25〜60重量%、S
iO 2 :15〜50重量%、Al2 3 :10〜45重
量%が適正範囲である。その他、CaF2 、Na2 O等
を複合した系であっても良い。
On the surface of molten steel, MgO:
3-15%, FeO + FeTwoOThree+ MnO: 5% or less
CaO-SiO containedTwo-AlTwoOThreeSystem slag exists
This also reduces Mg evaporation and oxidation loss.
Wear. Here, the reason for setting MgO to 3 to 15% is that
The solubility of MgO in the molten steel to below a certain value
To prevent migration into the slag when it becomes MgO
The effect appears when the content of MgO is 3% or more.
Is more than 15%, the effect is slowed down. Ma
FeO + FeTwoOThree+ MnO to 5% or less
, Significantly suppresses Mg oxidation at the molten steel-slag interface
Thus, Mg oxidation loss can be prevented. Further slag basics
The component system is CaO-SiOTwo-AlTwoOThreeReason
Is the most common and low cost form of this slag system
This is because it is possible to do so. Compositionally, three components
Assuming 100% in total, CaO: 25 to 60% by weight, S
iO Two: 15 to 50% by weight, AlTwoOThree: 10-45 layers
Amount% is an appropriate range. Other, CaFTwo, NaTwoO etc.
May be combined.

【0014】また、Mg合金添加前の溶鋼組成の規定理
由は以下の通りである。Cは添加されたMgと凝固過程
でMgCを生成し、本発明の目的を阻害するため、1.
2重量%以下とする必要がある。この範囲ではMgCは
ほとんど生成しない。Cが0.2重量%未満では溶鋼中
の溶損酸素が多くなり、添加されたMgは酸素と激しく
反応し、溶鋼飛散等が生じる。この対策として事前にA
l等の脱酸剤を添加し溶鋼中溶損酸素を50ppm以下
とすることが有効である。C含有量が0.2重量%以上
の場合にはこの限りではない。なお、Si、MnをMg
添加後に添加するとMg添加から鋳造までの所要時間が
長くなり、そのためMgロスが多くなる等して好ましく
ない。このため、所定量のSi、Mnを含有した溶鋼に
Mgを添加した方が得策である。また、Mg添加前溶鋼
にAlが含有されていても本発明の目的は達成される。
なお、Mgと共に混合物として添加されるSi、Mn、
Al、Cは、添加に伴い相当量の濃度(重量%)が増加
するため、これに対応して添加前濃度を低くしておく必
要がある。
The reasons for defining the molten steel composition before adding the Mg alloy are as follows. C forms MgC in the solidification process together with the added Mg, thereby inhibiting the object of the present invention.
It needs to be 2% by weight or less. In this range, almost no MgC is generated. If C is less than 0.2% by weight, the molten oxygen in the molten steel increases, and the added Mg reacts violently with the oxygen, causing the molten steel to be scattered. As a measure against this, A
It is effective to add a deoxidizing agent such as 1 to make molten oxygen in molten steel 50 ppm or less. This is not the case when the C content is 0.2% by weight or more. Note that Si and Mn are replaced by Mg
If it is added after the addition, the time required from the addition of Mg to the casting becomes long, and therefore, Mg loss is undesirably increased. For this reason, it is better to add Mg to molten steel containing predetermined amounts of Si and Mn. Further, the object of the present invention is achieved even if Al is contained in the molten steel before Mg addition.
In addition, Si, Mn added as a mixture with Mg,
Since a considerable amount (% by weight) of Al and C increases with the addition of Al and C, the concentration before addition needs to be reduced correspondingly.

【0015】また、Mg添加前溶鋼S含有量は0.00
5重量%以下としたほうが望ましい。これにより、Mg
Sの生成が抑制され酸化物へのMgS付着による粗大化
を防止できる。なお、鋼材の被削性確保等のため、Mg
添加後に必要に応じてSを添加しても良い。次に、Mg
混合物の添加条件について述べる。Mg混合物を取鍋、
連続鋳造タンディッシュおよび連続鋳造モールドの少な
くとも一箇所で添加する理由はMgの蒸発ロス防止のた
めである。Mgは高蒸気圧元素であるため、より低温の
場所で添加すべきであり、具体的には連続鋳造タンディ
ッシュおよび/または連続鋳造モールドでの添加が望ま
しい。しかし、本発明ではMgの蒸発ロスを顕著に防止
できるから、溶鋼取鍋で添加することも可能である。
The S content of molten steel before Mg addition is 0.00
It is desirable that the content be 5% by weight or less. Thereby, Mg
The generation of S is suppressed, and coarsening due to the attachment of MgS to the oxide can be prevented. In order to ensure the machinability of steel materials, Mg
After the addition, S may be added as necessary. Next, Mg
The conditions for adding the mixture will be described. Ladle with Mg mixture,
The reason for the addition in at least one of the continuous casting tundish and the continuous casting mold is to prevent evaporation loss of Mg. Since Mg is a high vapor pressure element, it should be added at a lower temperature place. Specifically, addition in a continuous casting tundish and / or a continuous casting mold is desirable. However, in the present invention, since the evaporation loss of Mg can be remarkably prevented, it is also possible to add Mg in a molten steel ladle.

【0016】また、粒状のMg混合物を不活性ガスによ
り溶鋼中に吹込む方式、または鉄製ワイヤー中に充填し
溶鋼中に供給する方式では、Mgと大気中酸素との接触
が抑制され、Mgの酸化ロスが大幅に低減する。なお、
鉄製ワイヤー中に充填し溶鋼中に供給する方式では、溶
鋼中に鉄パイプ内装耐火物製ランスを上方から浸漬し、
不活性ガスを吹込んでいる近傍へ鉄製ワイヤーを供給す
るのが望ましい。これにより、Mgが供給されて直ちに
溶鋼中に迅速に分散されるため、Mgの反応性が緩和さ
れると共に改質効率が高まり好ましい。
Further, in a system in which a granular Mg mixture is blown into molten steel with an inert gas, or in a system in which the mixture is fed into molten steel and supplied into molten steel, contact between Mg and oxygen in the atmosphere is suppressed, and Oxidation loss is greatly reduced. In addition,
In the method of filling the steel wire and supplying it to the molten steel, a lance made of refractory with an iron pipe interior is immersed in the molten steel from above,
It is desirable to supply an iron wire to the vicinity where the inert gas is blown. As a result, Mg is supplied and immediately dispersed in the molten steel, so that the reactivity of Mg is reduced and the reforming efficiency is increased, which is preferable.

【0017】以上により、Mgの添加効果はさらに高ま
り、材質特性が飛躍的に向上する。以下に本発明の実施
例を述べ、本発明の効果について記載する。
As described above, the effect of adding Mg is further enhanced, and the material properties are dramatically improved. Hereinafter, examples of the present invention will be described, and effects of the present invention will be described.

【0018】[0018]

【実施例】120ton転炉−RH−Mg添加−連続鋳
造−圧延法により、表1に示す組成の薄鋼板(厚み2m
m)、ばね鋼(直径6mmφ)、軸受鋼(直径65mm
φ)を110〜120ton製造した。その際、薄鋼板
は表2、ばね鋼は表3、軸受鋼は表4に示すように、M
g添加条件、スラグ条件は本発明の適正条件とした。そ
の結果、得られた素材と材質試験成績は表2〜表4に示
すように、Mg合金を用いた比較例−1とほぼ同等であ
り極めて良好であった。また素材中の介在物も比較例−
1と同様大部分目的とするAl2 3 ・MgOおよびM
gOであり、そのサイズは薄鋼板で4〜10μm、ばね
鋼で2〜7μm、軸受鋼で1〜5μmと極めて微細であ
った。さらにMg添加コストは比較例−1よりも20〜
30%低いレベルに留った。
EXAMPLE A thin steel sheet (thickness: 2 m) having the composition shown in Table 1 was obtained by a 120 ton converter-RH-Mg addition-continuous casting-rolling method.
m), spring steel (diameter 6 mmφ), bearing steel (diameter 65 mm)
φ) was manufactured at 110 to 120 tons. At that time, as shown in Table 2 for the thin steel sheet, Table 3 for the spring steel, and Table 4 for the bearing steel,
The g addition conditions and slag conditions were set as appropriate conditions in the present invention. As a result, as shown in Tables 2 to 4, the obtained raw materials and the material test results were almost the same as Comparative Example-1 using the Mg alloy, and were extremely good. Also the inclusions in the material are comparative examples-
Al 2 O 3 · MgO and M
gO, and its size was extremely fine, 4 to 10 μm for a thin steel plate, 2 to 7 μm for a spring steel, and 1 to 5 μm for a bearing steel. Further, the Mg addition cost is 20 to more than Comparative Example-1.
It remained at 30% lower level.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】比較例−1 実施例と同様の方法で表1に示す薄鋼板(厚み2m
m)、ばね鋼(直径6mmφ)、軸受鋼(直径65mm
φ)を製造した。この場合には実施例と異なりMg源と
してMg合金を用い、薄鋼板は表2、ばね鋼は表3、軸
受鋼は表4に示すように、添加条件はMg合金の適正範
囲とした。得られた素材の材質試験成績は表2〜表4に
示すように、実施例とほぼ同等であった。また素材中の
介在物組成およびサイズも実施例とほぼ同様であった。
Comparative Example 1 A thin steel plate (with a thickness of 2 m) shown in Table 1 was prepared in the same manner as in Example.
m), spring steel (diameter 6 mmφ), bearing steel (diameter 65 mm)
φ) was manufactured. In this case, unlike the examples, an Mg alloy was used as the Mg source, and as shown in Table 2 for the thin steel plate, Table 3 for the spring steel, and Table 4 for the bearing steel, the addition conditions were in the appropriate range for the Mg alloy. As shown in Tables 2 to 4, the material test results of the obtained material were almost equivalent to those of the examples. The composition and size of the inclusions in the material were almost the same as in the examples.

【0024】比較例−2 実施例と同様の方法で表1に示す薄鋼板(厚み2m
m)、ばね鋼(直径6mmφ)、軸受鋼(直径65mm
φ)を製造した。この場合には実施例と異なり、薄鋼板
は表2、ばね鋼は表3、軸受鋼は表4に示すように、M
g添加条件、スラグ条件は本発明の適正条件範囲外とし
た。得られた素材の材質試験成績は表2〜表4に示すよ
うに、実施例と比較して好ましくないレベルであった。
また介在物組成は大部分未改質のアルミナであり、その
サイズは薄鋼板で10〜25μm、ばね鋼で6〜18μ
m、軸受鋼で4〜15μmと実施例と比較して好ましく
ないレベルであった。
Comparative Example 2 A thin steel plate (2 m thick) shown in Table 1 was prepared in the same manner as in Example.
m), spring steel (diameter 6 mmφ), bearing steel (diameter 65 mm)
φ) was manufactured. In this case, unlike the embodiment, as shown in Table 2 for the thin steel plate, Table 3 for the spring steel, and Table 4 for the bearing steel,
The g addition conditions and slag conditions were outside the range of the proper conditions of the present invention. As shown in Tables 2 to 4, the material test results of the obtained material were at an unfavorable level as compared with the examples.
The inclusion composition is mostly unmodified alumina, and its size is 10 to 25 μm for thin steel plate and 6 to 18 μm for spring steel.
m, the bearing steel was 4 to 15 μm, which was an unfavorable level as compared with the examples.

【0025】[0025]

【発明の効果】以上、明らかなように本発明により、安
価なMgであるMg混合物を効率的に添加することが可
能となった。その結果、Mg添加鋼の製造コストの削減
が達成され、より低コストでMg添加による介在物微細
化効果を導出できる技術が確立され、産業界にとって極
めて有益である。
As is apparent from the above, according to the present invention, it has become possible to efficiently add an inexpensive Mg mixture of Mg. As a result, a reduction in the manufacturing cost of the Mg-added steel is achieved, and a technology capable of deriving the effect of miniaturizing inclusions by the addition of Mg at a lower cost is established, which is extremely useful for the industry.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si、Mn、Alを含有し、さらにCを
1.2重量%以下含有する溶鋼にMgを添加するに際
し、Si、Mn、Al、Fe−Si、Fe−Mn、Cの
1種類以上とMgを混合せしめ、混合物中のMg含有量
を0.5〜15重量%とし、さらにMgの粒径を0.0
1〜3.0mmとして添加することを特徴とする溶鋼へ
の低コストMg添加方法。
1. When Mg is added to molten steel containing Si, Mn, and Al and further containing 1.2% by weight or less of C, one of Si, Mn, Al, Fe—Si, Fe—Mn, and C is added. More than one kind is mixed with Mg, the Mg content in the mixture is set to 0.5 to 15% by weight, and the particle size of Mg is set to 0.0
A method for adding low-cost Mg to molten steel, characterized in that it is added as 1 to 3.0 mm.
【請求項2】 Mgの添加速度を0.002〜0.05
0kg/t−溶鋼/分にコントロールすることを特徴と
する請求項1記載の溶鋼への低コストMg添加方法。
2. The addition rate of Mg is 0.002 to 0.05.
2. The method for adding low-cost Mg to molten steel according to claim 1, wherein the control is performed at 0 kg / t-molten steel / minute.
【請求項3】 溶鋼表面上に、重量%で、MgO:3〜
15%、FeO+Fe2 3 +MnO:5%以下を含有
するCaO−SiO2 −Al2 3 系スラグを存在させ
て、Mgを添加することを特徴とする請求項1または2
記載の溶鋼への低コストMg添加方法。
3. On the surface of molten steel, MgO: 3% by weight%
15%, FeO + Fe 2 O 3 + MnO: 5% in the presence of a CaO-SiO 2 -Al 2 O 3 slag containing the following, according to claim 1 or 2, characterized in that the addition of Mg
A method for adding low-cost Mg to molten steel as described.
【請求項4】 Mg混合物を取鍋、連続鋳造タンディッ
シュおよび連続鋳造モールドの1ケ所以上で添加するこ
とを特徴とする請求項1〜3のいずれかに記載の溶鋼へ
の低コストMg添加方法。
4. The method for adding low-cost Mg to molten steel according to claim 1, wherein the Mg mixture is added at one or more of a ladle, a continuous casting tundish, and a continuous casting mold. .
【請求項5】 Mg混合物を不活性ガスにより溶鋼中に
吹込むことを特徴とする請求項1〜4のいずれかに記載
の溶鋼への低コストMg添加方法。
5. The method for adding low-cost Mg to molten steel according to claim 1, wherein the Mg mixture is blown into the molten steel with an inert gas.
【請求項6】 Mg混合物を鉄製ワイヤー中に充填し、
溶鋼を攪拌しながら、溶鋼中に供給することを特徴とす
る請求項1〜4のいずれかに記載の溶鋼への低コストM
g添加方法。
6. Filling the Mg mixture into an iron wire,
The low-cost M for molten steel according to any one of claims 1 to 4, wherein the molten steel is supplied into the molten steel while stirring.
g Addition method.
JP5214559A 1993-08-30 1993-08-30 Low cost method of adding Mg to molten steel Expired - Lifetime JP3033002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5214559A JP3033002B2 (en) 1993-08-30 1993-08-30 Low cost method of adding Mg to molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5214559A JP3033002B2 (en) 1993-08-30 1993-08-30 Low cost method of adding Mg to molten steel

Publications (2)

Publication Number Publication Date
JPH0762417A JPH0762417A (en) 1995-03-07
JP3033002B2 true JP3033002B2 (en) 2000-04-17

Family

ID=16657734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5214559A Expired - Lifetime JP3033002B2 (en) 1993-08-30 1993-08-30 Low cost method of adding Mg to molten steel

Country Status (1)

Country Link
JP (1) JP3033002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089817A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp METHOD FOR ADDING Mg INTO MOLTEN STEEL

Also Published As

Publication number Publication date
JPH0762417A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JPH09263820A (en) Production of cluster-free aluminum killed steel
CN114672611B (en) Method for improving rare earth yield in rare earth steel smelting process
JPH0754103A (en) Oxide inclusion super-finely dispersed steel
CN113005261A (en) Comprehensive deoxidation and desulfurization process for smelting stainless steel by using small-capacity AOD furnace
JPWO2003002771A1 (en) Low carbon steel sheet, low carbon steel slab, and method for producing the same
US4795491A (en) Premelted synthetic slag for ladle desulfurizing molten steel
CN114716256B (en) Refractory material for smelting rare earth steel and method for improving rare earth yield
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
CN114700470B (en) Tundish covering agent for smelting rare earth steel and method for reducing rare earth loss
JP3033002B2 (en) Low cost method of adding Mg to molten steel
JP3230070B2 (en) How to add Mg to molten steel
US5228902A (en) Method of desulfurization in vacuum processing of steel
JPH089728B2 (en) Method for preventing agglomeration of Al2O3 in molten steel
US3892561A (en) Composition for treating steels
JP2684307B2 (en) Highly efficient method for preventing Al2O3 aggregation in molten steel
JPH11323426A (en) Production of high clean steel
JP3033001B2 (en) Method for miniaturizing oxide inclusions
JPH07207316A (en) Wire for desulfurization of molten iron having high desulfurization efficiency
CN115287396B (en) Control method for iron-nickel-based superalloy inclusion
JP2663231B2 (en) Prevention method of agglomeration of alumina in low carbon molten steel
CN114703338B (en) Refining slag for smelting rare earth steel and rare earth loss control method thereof
JP3160124B2 (en) Deoxidation method of low silicon aluminum killed steel
JPH09217109A (en) Simultaneous deoxidizing and desulfurizing agent for molten steel and simultaneously deoxidizing and desulfurizing method
JP5387045B2 (en) Manufacturing method of bearing steel
JPH09209026A (en) Simultaneous deoxidizing and desulfurizing agent for molten steel and method for simultaneously deoxidizing and desulfurizing molten steel using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221