JP2684307B2 - Highly efficient method for preventing Al2O3 aggregation in molten steel - Google Patents

Highly efficient method for preventing Al2O3 aggregation in molten steel

Info

Publication number
JP2684307B2
JP2684307B2 JP1222093A JP1222093A JP2684307B2 JP 2684307 B2 JP2684307 B2 JP 2684307B2 JP 1222093 A JP1222093 A JP 1222093A JP 1222093 A JP1222093 A JP 1222093A JP 2684307 B2 JP2684307 B2 JP 2684307B2
Authority
JP
Japan
Prior art keywords
molten steel
alloy
steel
added
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1222093A
Other languages
Japanese (ja)
Other versions
JPH05271743A (en
Inventor
雄二 河内
弘文 前出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH05271743A publication Critical patent/JPH05271743A/en
Application granted granted Critical
Publication of JP2684307B2 publication Critical patent/JP2684307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶鋼中の酸化物系介在物
の凝集を防止し、鋼材中のアルミナを微細分散させた良
質な鋼材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-quality steel material in which oxide-based inclusions in molten steel are prevented from agglomerating and alumina in the steel material is finely dispersed.

【0002】[0002]

【従来の技術】最近、鋼材に要求される品質は次第に厳
しく、かつ多様化してきており、より清浄な鋼を製造す
る技術の開発が強く望まれている。鋼材中の酸化物系介
在物も例外ではなく、鋼材中での悪影響度を軽減するた
めに一層の低減が要求されてきた。即ち、酸化物系介在
物とくにアルミナ(Al2 3 )系介在物はタイヤコー
ド等線材の断線原因、軸受鋼等の棒鋼では転動疲労特性
の悪化原因、さらにDI缶等の薄鋼板では製缶時ワレの
原因になることが知られており、この対策として、アル
ミナ系介在物を中心として低減技術が種々開発あるいは
検討されてきた。
2. Description of the Related Art In recent years, the quality required for steel materials has become increasingly severe and diversified, and there is a strong demand for the development of technology for producing cleaner steel. Oxide-based inclusions in steel are no exception, and further reductions have been required to reduce the degree of adverse effects in steel. That is, oxide-based inclusions, especially alumina (Al 2 O 3 ) -based inclusions, are the causes of wire breakage of wire materials such as tire cords, the deterioration of rolling contact fatigue characteristics for bar steel such as bearing steel, and the production of thin steel sheets such as DI cans. It is known to cause cracking during canning, and as a countermeasure against this, various reduction techniques have been developed or studied centering on alumina-based inclusions.

【0003】その概要は昭和63年11月、日本鉄鋼協
会発行の第126・127回西山記念技術講座「高清浄
鋼」第11〜第15ページに詳述されており、さらに第
12ページのTable4には技術要約がなされてい
る。それによると除去技術は、脱酸生成物である溶鋼
中アルミナの低減技術、空気酸化等により生成するア
ルミナの抑制防止技術、耐火物等から混入するアルミ
系介在物の低減技術に大別できる。実際の工業プロセス
においては、上記分類された要素技術を種々組合せて酸
化系介在物の低減を図っているのが現状である。即ち、
RH,粉体吹込み装置等の二次精錬装置の適用による脱
酸生成物の低減を中心として、断気、スラグ改質等によ
る再酸化防止、スラグカットによる混入酸化物系介在物
の低減を組合せ、その低減ニーズに対処している。
The outline thereof is described in detail on pages 11 to 15 of the 126.127th Nishiyama Memorial Technical Course "High Clean Steel" issued by the Iron and Steel Institute of Japan in November 1988, and Table 4 on the 12th page. A technical summary is given in. According to this, the removal technology can be roughly classified into a technology for reducing alumina in molten steel that is a deoxidation product, a technology for preventing and preventing alumina produced by air oxidation, and a technology for reducing aluminum-based inclusions mixed in from refractory materials. In the actual industrial process, it is the current situation that the above-mentioned classified elemental technologies are combined in various ways to reduce the inclusions in the oxidation system. That is,
Focusing on the reduction of deoxidation products by the application of secondary refining equipment such as RH and powder blowing equipment, prevention of reoxidation by deaeration, slag reforming, etc., and reduction of mixed oxide inclusions by slag cutting. The combination and the reduction needs are addressed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ア
ルミナ系介在物の除去は技術的な限界に達してきていた
のも事実である。即ち、溶鋼中のアルミナ系介在物含有
度の尺度であるT.O濃度をみても5ppm以下にする
ことは困難である。一方、T.Oを5〜7ppm含有し
ていても、アルミナ系介在物が製品段階で欠陥原因とな
ることも多い。それゆえこの問題は技術的に大きな障壁
にぶつかっていた。このような状況に対し本発明者ら
は、C質の耐火物製浸漬管を溶鋼中に浸漬し、浸漬管内
部を減圧にすることにより、事前に溶鋼中の溶存酸素を
除去し、結果的にアルミナ含有量を従来にないレベルま
で低下せしめた鋼材の製造方法を確立した。また、溶鋼
にFe−Si−Mg,Fe−Mn−Mg合金等のMg合
金を添加し、溶鋼中のアルミナの凝集を防止し、酸化物
を微細分散させることによりアルミナを無害化する方法
も確立した。 しかしながら、鋼材に要求される品質レ
ベルは、益々厳しくなることが予想され、製造技術上の
対応もまた必要である。本発明は以上のような点を鑑が
み、溶鋼にFe−Si−Mg,Fe−Mn−Mg合金等
のMgを添加する方法を改善し、より効率的なアルミナ
の無害化方法を確立したものである。
However, it is a fact that the removal of the above-mentioned alumina-based inclusions has reached the technical limit. That is, T.I., which is a measure of the content of alumina inclusions in molten steel. It is difficult to set the O concentration to 5 ppm or less. On the other hand, T. Even if it contains 5 to 7 ppm of O, alumina-based inclusions often cause defects in the product stage. Therefore this problem encountered a technically significant barrier. For such a situation, the inventors of the present invention removed the dissolved oxygen in the molten steel in advance by immersing the C-quality refractory-made immersion pipe in the molten steel and reducing the pressure inside the immersion pipe. In addition, we have established a method for manufacturing steel products that has reduced the alumina content to a level that has never been seen before. In addition, a method has been established in which Mg alloys such as Fe-Si-Mg and Fe-Mn-Mg alloys are added to molten steel to prevent agglomeration of alumina in molten steel and to finely disperse oxides to render alumina harmless. did. However, the quality level required for steel materials is expected to become more and more severe, and it is necessary to take measures in manufacturing technology. In view of the above points, the present invention has improved the method of adding Mg such as Fe-Si-Mg and Fe-Mn-Mg alloy to molten steel, and established a more efficient method of detoxifying alumina. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。Si,Mnを含有し、C含有量
が0.2重量%以上かつ1.2重量%以下の溶鋼に、M
g含有量5重量%超かつ70重量%以下のMg−Al合
金を添加することを特徴とする溶鋼中Al2 3 の高効
率凝集防止方法を提供するものである。さらにMg−A
l合金の添加速度、添加場所、添加方法の適正条件を提
示するものである。
The gist of the present invention is as follows. For molten steel containing Si and Mn and having a C content of 0.2% by weight or more and 1.2% by weight or less, M
The present invention provides a highly efficient method for preventing aggregation of Al 2 O 3 in molten steel, characterized by adding a Mg-Al alloy having a g content of more than 5% by weight and 70% by weight or less. Further Mg-A
This section presents the appropriate conditions for the addition rate, addition location, and addition method of the 1-alloy.

【0006】[0006]

【作用】本発明の基本的考え方は、溶鋼中に存在するA
2 3 の凝集による粗大化を防止し、Al2 3 を2
μ以下の小サイズのままで鋼材中に分散させることによ
り、鋼材品質に対するAl2 3 の悪影響を回避するこ
とにある。即ち、鋼材中の介在物の大きさが大きいほ
ど、その部分に応力が集中しやすくなり、欠陥となりや
すく、好ましくないことから、Al2 3 についても大
きくしなければ悪影響を及ぼさない。このような考え方
に基ずき,本発明者らはAl2 3 の凝集・粗大化防止
を種々検討した。その結果、Al2 3 を改質しAl2
3 ・MgOとすることにより、Al2 3 の凝集・粗
大化を完全に防止することが可能となった。
The basic idea of the present invention is that A existing in molten steel
l 2 O 3 is prevented from coarsening due to aggregation and Al 2 O 3 is added to 2
It is to avoid the adverse effect of Al 2 O 3 on the quality of the steel material by dispersing it in the steel material while maintaining the small size of μ or less. That is, as the size of the inclusions in the steel material is larger, stress is more likely to be concentrated in that portion, which is more likely to cause defects, which is not preferable. Therefore, if Al 2 O 3 is also not large, no adverse effect is exerted. Based on this idea, the present inventors have made various studies on prevention of aggregation and coarsening of Al 2 O 3 . As a result, Al 2 O 3 is modified and Al 2 O 3 is modified.
By using O 3 .MgO, it became possible to completely prevent aggregation and coarsening of Al 2 O 3 .

【0007】Al2 3 は周知の通り、溶鋼中で凝集し
クラスター状となり、粗大化する。これは、溶鋼とAl
2 3 の濡れ性に起因するものである。これに対して、
溶鋼とAl2 3 ・MgOの濡れ性は、Al2 3 の場
合と異なり、Al2 3 ・MgOは全くクラスター化す
ることはない。このことは、Al2 3 ・MgOの方が
Al2 3 よりも、溶鋼との界面エネルギーが小さいこ
とによる。なおAl23 をAl2 3 ・MgOに改質
する際にサイズが大きくなることもない。Mg添加によ
り、Al2 3 の改質が進行し、酸化物組成がAl2
3 ・MgOからMgOまで変化することもある。MgO
となっても界面エネルギーはAl2 3よりも小さいか
ら、そのサイズは微細であり、クラスター化もしずらく
本発明の目的は達成される。以下に本発明の詳細につい
て述べる。
As is well known, Al 2 O 3 aggregates in molten steel to form clusters and coarsens. This is molten steel and Al
This is due to the wettability of 2 O 3 . On the contrary,
Wettability of the molten steel and Al 2 O 3 · MgO, unlike the case of Al 2 O 3, Al 2 O 3 · MgO never quite clustering. This is because Al 2 O 3 .MgO has a smaller interfacial energy with molten steel than Al 2 O 3 . Note that no larger size when reforming the Al 2 O 3 to Al 2 O 3 · MgO. By the addition of Mg, the modification of Al 2 O 3 progresses and the oxide composition becomes Al 2 O 3.
3. It may change from MgO to MgO. MgO
However, since the interface energy is smaller than that of Al 2 O 3 , the size is fine and clustering is difficult, and the object of the present invention is achieved. The details of the present invention will be described below.

【0008】本発明においては、Al2 3 をAl2
3 ・MgOに改質するためにMg含有量5重量%超かつ
70重量%以下のMg−Al合金を用いる。Mg−Al
合金は、溶融温度が低く合金製造コストが僅少であるこ
とに加え、AlとMgが同時に添加されるために改質反
応を迅速かつ効率的に進めることができる。その結果合
金中のMg添加歩留りが飛躍的に向上する。Mg−Al
合金のMg含有量を70重量%以下に規定する理由は、
合金添加時の溶鋼飛散防止のためである。即ち、合金中
のMgが70重量%を超えると、反応性が激しくなり、
合金添加時に溶鋼が飛散し好ましくない。またMg含有
量が5重量%以下になると、Al2 3・MgOへの改
質が十分進行せず好ましくない。なお、Mg−Al合金
中に10重量%以下のMn,Si等の溶鋼必要成分が含
有されていてもよい。
In the present invention, Al 2 O 3 is replaced with Al 2 O
An Mg-Al alloy having a Mg content of more than 5% by weight and 70% by weight or less is used for modifying to 3 · MgO. Mg-Al
The alloy has a low melting temperature and a low alloy production cost, and since Al and Mg are added at the same time, the reforming reaction can proceed rapidly and efficiently. As a result, the yield of Mg addition in the alloy is dramatically improved. Mg-Al
The reason for defining the Mg content of the alloy to 70% by weight or less is
This is to prevent molten steel from scattering when an alloy is added. That is, when the Mg content in the alloy exceeds 70% by weight, the reactivity becomes intense,
Molten steel is scattered when the alloy is added, which is not preferable. On the other hand, if the Mg content is 5% by weight or less, the modification to Al 2 O 3 .MgO does not proceed sufficiently, which is not preferable. The Mg-Al alloy may contain 10% by weight or less of necessary components for molten steel such as Mn and Si.

【0009】また、Mg−Al合金添加前の溶鋼組成
を、Si,Mnを含有し、C含有量が0.2重量%以上
かつ1.2重量%以下に規定する理由は以下による。C
含有量が0.2重量%未満では、溶鋼中の溶存酸素が多
くなり、添加したMgは溶存酸素と反応しMgOを生成
するため、MgをAl2 3 改質反応に利用できなくな
る。C含有量が1.2重量%超えると添加されたMgと
Cが化合物を形成するため、添加MgのAl2 3 改質
効率が低下し、好ましくない。またSi,Mnを添加後
に添加すると、MnをMg添加後〜鋳造までの時間が長
くなり、Mgのロスが多くなる等して好ましくない。こ
のため、所定量のSi,Mnを含有した溶鋼にMgを添
加した方が得策である。また、Mg添加前溶鋼中にAl
がある程度含有されていても本発明の目的は達成され
る。
The reason why the molten steel composition before adding the Mg-Al alloy is specified to contain Si and Mn and the C content to be 0.2% by weight or more and 1.2% by weight or less is as follows. C
If the content is less than 0.2% by weight, the dissolved oxygen in the molten steel increases, and the added Mg reacts with the dissolved oxygen to form MgO, so that Mg cannot be used in the Al 2 O 3 reforming reaction. When the C content exceeds 1.2% by weight, the added Mg and C form a compound, and the Al 2 O 3 reforming efficiency of the added Mg decreases, which is not preferable. If Si and Mn are added after the addition of Mn, the time from the addition of Mg to the addition of Mg to the casting becomes long and the loss of Mg increases, which is not preferable. Therefore, it is better to add Mg to the molten steel containing a predetermined amount of Si and Mn. In addition, Al in the molten steel before Mg addition
The object of the present invention can be achieved even when a certain amount is contained.

【0010】次に、溶鋼に添加するMg−Al合金中の
Mg分の添加速度を0.002〜0.100kg/T−
溶鋼/分にコントロールする理由を述べる。Mgは溶鋼
中のAl2 3 を還元し、Al2 3 をAl2 3 ・M
gO(スピネル)とする目的で添加される。この際、還
元反応に伴い溶鋼中のAlが増加する。しかしMgは非
常に反応性に富んでいるため、一定速度以上で添加した
場合は、激しい発煙、耐火物侵蝕等が起こり好ましくな
い。この点に関して試験をおこなった結果、Mg合金中
のMg分の添加速度を0.100kg/T−溶鋼/分以
下にすることにより、激しい発煙、耐火物侵蝕等を防止
できることがわかった。また0.002kg/T−溶鋼
/分以下の添加速度では、Mgの蒸発ロス比率が大き
く、Al23 の還元が不十分であることも明かとなっ
た。以上より、Mg合金中のMg添加速度を0.002
〜100Kg/T−溶鋼/分にコントロールするのが適
正である。
Next, the addition rate of the Mg component in the Mg-Al alloy added to the molten steel is 0.002-0.100 kg / T-
The reason for controlling to molten steel / min will be described. Mg reduces Al 2 O 3 in molten steel and converts Al 2 O 3 into Al 2 O 3 · M
It is added for the purpose of making gO (spinel). At this time, Al in the molten steel increases with the reduction reaction. However, since Mg is very highly reactive, it is not preferable if it is added at a constant rate or more because severe smoke generation, corrosion of refractory materials, and the like occur. As a result of conducting a test on this point, it was found that by setting the addition rate of the Mg component in the Mg alloy to 0.100 kg / T-molten steel / min or less, severe smoke generation, refractory erosion, etc. can be prevented. It was also clarified that at an addition rate of 0.002 kg / T-molten steel / minute or less, the evaporation loss ratio of Mg was large and the reduction of Al 2 O 3 was insufficient. From the above, the addition rate of Mg in the Mg alloy was 0.002
It is proper to control to ~ 100 Kg / T-molten steel / min.

【0011】次に、Mg−Al合金の添加条件について
記載する。Mg−Al合金を連続鋳造タンディッシユ及
びまたは同左モールドで添加する理由は以下の通りであ
る。Mgは高蒸気圧元素であり、高温で添加するほど蒸
発ロスが大きくなる。それゆえ、溶製工程上より低温の
場所で添加すべきであり、具体的には連続鋳造タンディ
ッシュ及びまたは同左モールドでの添加が望ましい。も
ちろん、設備制約等によりこれらが不可能であれば、取
鍋内の溶鋼にMg−Al合金を添加してもよい。取鍋内
溶鋼への添加は一般的に採用されている方法である。
Next, the conditions for adding the Mg-Al alloy will be described. The reason for adding the Mg-Al alloy in the continuous casting tundish and / or the mold on the left is as follows. Mg is a high vapor pressure element, and its evaporation loss increases as it is added at higher temperatures. Therefore, it should be added at a temperature lower than that in the melting step, and specifically, addition in a continuous casting tundish and / or a mold on the left side is desirable. Of course, if these are not possible due to equipment restrictions, Mg-Al alloy may be added to the molten steel in the ladle. Addition to molten steel in a ladle is a generally adopted method.

【0012】また、粒状のMg合金を不活性ガスにより
溶鋼中の吹込む方式、及び鉄製ワイヤ−中に充填し溶鋼
中に供給する方式の利点は以下の通りである。Mgは酸
素との親和力が強く容易に酸化されるため、溶鋼表面に
自然落下により添加すると、かなりの部分は溶鋼表面上
で酸化され好ましくない。これに対して粒状のMg合金
を不活性ガスにより溶鋼中の吹込む方式、及び鉄製ワイ
ヤー中に充填し溶鋼中に供給する方式では、空気酸化が
皆無であり、Mgの添加歩留りが大幅に向上する。な
お、粒状のMg合金を不活性ガスにより溶鋼中の吹込む
方式は連続鋳造タンディッシュに適用するのが好まし
く、鉄製ワイヤー中に充填し溶鋼中に供給する方式は連
続鋳造モールドへの適用が最適である。以上のように、
Mg−Al合金の添加速度、添加方法、添加場所の適正
化を図ることによりMg添加による溶鋼飛散、耐火物反
応を防止でき、さらにMg蒸発も抑制できる。これらに
よりMgの添加歩留りは向上し、その結果Al2 3
改質が促進され、材質特性が飛躍的に向上する。以下、
本発明の実施例を述べ、本発明の効果を記載する。
The advantages of the method of blowing granular Mg alloy into the molten steel with an inert gas and the method of filling the iron wire into the molten steel and supplying it into the molten steel are as follows. Since Mg has a strong affinity with oxygen and is easily oxidized, if it is added to the surface of molten steel by natural dropping, a considerable portion is oxidized on the surface of molten steel, which is not preferable. On the other hand, in the method of blowing granular Mg alloy into the molten steel with an inert gas, and the method of filling the steel wire and supplying it into the molten steel, there is no air oxidation, and the yield of addition of Mg is greatly improved. To do. The method of blowing granular Mg alloy into the molten steel with an inert gas is preferably applied to the continuous casting tundish, and the method of filling the iron wire and supplying it into the molten steel is best applied to the continuous casting mold. Is. As mentioned above,
By optimizing the addition rate, addition method, and addition location of the Mg-Al alloy, it is possible to prevent the molten steel from scattering and the refractory reaction due to the addition of Mg, and further suppress Mg evaporation. As a result, the yield of addition of Mg is improved, and as a result, the modification of Al 2 O 3 is promoted and the material properties are dramatically improved. Less than,
An example of the present invention will be described to describe the effect of the present invention.

【0013】[0013]

【実施例】【Example】

実施例1 120ton転炉にて母溶鋼を溶製し、取鍋へ出鋼する
際にSi,Mn,Cr,を添加した。続いて取鍋内溶鋼
にRH処理を施し脱ガス、介在物除去を実施し、さらに
Si,Mn,Cr,の微調整をおこない、その後表2に
示す条件でMg合金を添加し表1に示す組成の軸受相当
溶鋼115tonを得た。この溶鋼から連続鋳造、棒鋼
圧延により軸受鋼素材(サイズ65mmφ)を製造し
た。この際、表2に示す条件でMg合金を添加した結
果、得られた軸受鋼素材の転動疲労試験成績は比較例と
比較して極めて良好な成績が得られた。また鋼材中の介
在物は大部分Al2 3 ・MgO及びMgOであり、そ
の大きさは3.8μ以下であった。
Example 1 Molten mother steel was melted in a 120 ton converter, and Si, Mn, and Cr were added when the steel was tapped into a ladle. Then, the molten steel in the ladle is subjected to RH treatment to degas and remove inclusions, and fine adjustment of Si, Mn, and Cr is performed, and then Mg alloy is added under the conditions shown in Table 2 and shown in Table 1. 115ton of molten steel corresponding to the bearing of the composition was obtained. A bearing steel material (size 65 mmφ) was manufactured from this molten steel by continuous casting and bar rolling. At this time, as a result of adding the Mg alloy under the conditions shown in Table 2, the rolling bearing fatigue test results of the obtained bearing steel material were extremely good as compared with the comparative example. Most of the inclusions in the steel material were Al 2 O 3 .MgO and MgO, and the size thereof was 3.8 μm or less.

【0014】比較例1 実施例1と同様に120ton転炉にて母溶鋼を溶製
し、取鍋へ出鋼する際にSi,Mn,Cr,Alを添加
した。続いて取鍋内溶鋼にRH処理を施し脱ガス、介在
物除去を実施し、さらにSi,Mn,Cr,Alの微調
整をおこない、表1に示す組成、温度の軸受相当溶鋼1
15tonを得た。この際、表2に示す条件で本発明以
外のMg合金を添加、あるいはMg合金を添加しなかっ
た。この溶鋼から連続鋳造、棒鋼圧延により軸受鋼素材
(サイズ65mmφ)を製造した。その結果、得られた
軸受鋼素材の転動疲労試験成績は実施例1と比較して好
ましくない成績となった。また鋼材中の介在物は、主に
Al2 3 であり、その大きさは13μ以下と実施例1
よりもかなり大きかった。
Comparative Example 1 Similar to Example 1, mother molten steel was melted in a 120 ton converter, and Si, Mn, Cr, and Al were added when tapping into a ladle. Subsequently, the molten steel in the ladle was subjected to RH treatment to degas, remove inclusions, and finely adjust Si, Mn, Cr, and Al.
15 ton was obtained. At this time, Mg alloys other than the present invention were added or no Mg alloy was added under the conditions shown in Table 2. A bearing steel material (size 65 mmφ) was manufactured from this molten steel by continuous casting and bar rolling. As a result, the rolling fatigue test results of the obtained bearing steel material were unfavorable as compared with Example 1. The inclusions in the steel material were mainly Al 2 O 3 , and the size thereof was 13 μm or less.
Was much larger than

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】実施例2 実施例1と同様の方法で表3に示す組成のばね鋼相当溶
鋼120tonを得た。この際、表4に示す条件でMg
−Al合金を添加した。この溶鋼から連続鋳造、線材圧
延によりばね鋼線材(サイズ10mmφを)を製造し
た。その結果、得られたばね鋼線材の回転曲げ疲労試験
成績は比較例2に比べ極めて良好な結果となった。ま
た、線材中の介在物は大部分Al2 3 ・MgO及びM
gOであり、そのサイズは6μ以下と微細であった。
Example 2 In the same manner as in Example 1, 120 ton of molten steel corresponding to spring steel having the composition shown in Table 3 was obtained. At this time, Mg under the conditions shown in Table 4
-Al alloy was added. A spring steel wire rod (having a size of 10 mmφ) was manufactured from this molten steel by continuous casting and wire rod rolling. As a result, the rotating bending fatigue test result of the obtained spring steel wire rod was extremely good as compared with Comparative Example 2. Most of the inclusions in the wire are Al 2 O 3 · MgO and M.
It was gO, and its size was as fine as 6 μm or less.

【0018】比較例2 比較例1の方法に準じて表3に示す組成のばね鋼相当溶
鋼118tonを溶製し、続いて連続鋳造、線材圧延に
よりばね鋼線材(サイズ10mmφ)を製造した。しか
しながら、表4に示すように線材の回転曲げ疲労試験成
績は実施例2と比べ好ましくない結果となった。また線
材中の介在物は大部分Al2 3 であり、そのサイズは
18μ以下と実施例2よりもかなり大きかった。
Comparative Example 2 According to the method of Comparative Example 1, 118 ton of molten steel corresponding to the spring steel having the composition shown in Table 3 was melted, and subsequently, continuous casting and rolling of the wire were performed to manufacture a spring steel wire (size 10 mmφ). However, as shown in Table 4, the results of the rotary bending fatigue test of the wire rod were unfavorable as compared with Example 2. Most of the inclusions in the wire were Al 2 O 3 , and the size was 18 μm or less, which was considerably larger than that in Example 2.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【発明の効果】以上、詳細に述べたように、本発明によ
り溶鋼中のAl2 3 の凝集を完全に防止でき、その結
果、鋼材中のAl2 3 系介在物の大きさを従来にない
レベルの小サイズとすることが可能となった。これによ
りAl2 3 系介在物を無害化した良質な鋼材の製造が
可能となり、産業界にとって極めて有益である。
As described above in detail, according to the present invention, the agglomeration of Al 2 O 3 in molten steel can be completely prevented. As a result, the size of Al 2 O 3 -based inclusions in steel materials can be reduced to the conventional level. It has become possible to make the size smaller than that of. This makes it possible to produce a high-quality steel material in which Al 2 O 3 -based inclusions are rendered harmless, which is extremely beneficial to the industrial world.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si,Mnを含有し、C含有量が0.2
重量%以上かつ1.2重量%以下の溶鋼に、Mg含有量
5重量%超かつ70重量%以下のMg−Al合金を添加
することを特徴とする溶鋼中Al2 3 の高効率凝集防
止方法。
1. A material containing Si and Mn and having a C content of 0.2.
Highly efficient agglomeration prevention of Al 2 O 3 in molten steel, characterized in that Mg-Al alloy with Mg content of more than 5% by weight and 70% by weight or less is added to molten steel of more than 1% by weight and less than 1.2% by weight. Method.
【請求項2】 溶鋼にMg−Al合金を添加するに際
し、合金中のMg分の添加速度を0.002〜0.10
kg/T−溶鋼/分にコントロールする請求項1記載の
方法。
2. When adding a Mg—Al alloy to molten steel, the addition rate of Mg in the alloy is 0.002 to 0.10.
The method according to claim 1, wherein the rate is controlled to kg / T-molten steel / minute.
【請求項3】 Mg−Al合金を取鍋、連続鋳造タンデ
ィッシュ及びまたは同左モールドで添加する請求項1
または2記載の方法。
3. The Mg-Al alloy is added by a ladle, a continuous casting tundish and / or a mold on the same left .
Or the method of 2.
【請求項4】 粒状のMg−Al合金を不活性ガスによ
り、溶鋼中の吹込む請求項1、または2、または3記載
の方法。
4. The method according to claim 1 , 2 or 3, wherein the granular Mg—Al alloy is blown into the molten steel with an inert gas.
【請求項5】 粒状のMg−Al合金を鉄製ワイヤー中
に充填し、溶鋼中に供給する請求項1、または2、また
3記載の方法。
5. The iron-based wire is filled with a granular Mg—Al alloy and supplied into molten steel , or
Is the method described in 3.
JP1222093A 1992-01-30 1993-01-28 Highly efficient method for preventing Al2O3 aggregation in molten steel Expired - Lifetime JP2684307B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1449892 1992-01-30
JP4-14498 1992-02-14

Publications (2)

Publication Number Publication Date
JPH05271743A JPH05271743A (en) 1993-10-19
JP2684307B2 true JP2684307B2 (en) 1997-12-03

Family

ID=11862726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222093A Expired - Lifetime JP2684307B2 (en) 1992-01-30 1993-01-28 Highly efficient method for preventing Al2O3 aggregation in molten steel

Country Status (1)

Country Link
JP (1) JP2684307B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420304B1 (en) 2000-08-30 2004-03-04 가부시키가이샤 고베 세이코쇼 Machine structure steel superior in chip disposability and mechanical properties
JP3524479B2 (en) 2000-08-31 2004-05-10 株式会社神戸製鋼所 Free-cutting steel for machine structures with excellent mechanical properties

Also Published As

Publication number Publication date
JPH05271743A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
CN102199684B (en) Production method of ultralow-oxygen titanium-containing ferrite stainless steel
JP2978038B2 (en) Oxide inclusion ultrafine dispersion steel
JP2000129336A (en) Melting method for high cleanliness steel
CN113278762A (en) Ca alloying method in high-aluminum calcium sulfur composite free-cutting steel
JPH089728B2 (en) Method for preventing agglomeration of Al2O3 in molten steel
JP2684307B2 (en) Highly efficient method for preventing Al2O3 aggregation in molten steel
CN113994015A (en) Method for adding Ca to molten steel
CN115094310B (en) Zirconium-cerium-lanthanum-calcium-sulfur treated high-purity high-density steel and preparation and application thereof
JP3230070B2 (en) How to add Mg to molten steel
JP2663231B2 (en) Prevention method of agglomeration of alumina in low carbon molten steel
JP3033002B2 (en) Low cost method of adding Mg to molten steel
JPH11323426A (en) Production of high clean steel
CN115287396B (en) Control method for iron-nickel-based superalloy inclusion
JPH08225822A (en) Reformation of aluminum inclusion in molten steel
JP2001026812A (en) Deoxidizing alloy for molten steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JP3417311B2 (en) Method for producing highly clean HIC steel
KR100900650B1 (en) Calcium Cored Wire for Controlling Calcium Content in Molten Steel and Method for Controlling Calcium Content in Molten Steel Using the Wire
JPH08325627A (en) Production of grain-oriented silicon steel sheet
JPH07224317A (en) Production of high cleanliness steel
JPH06248324A (en) Production of mg added steel
JP3033001B2 (en) Method for miniaturizing oxide inclusions
RU2270258C1 (en) Rod for reduction of hot melts
CN117625887A (en) Production method for improving inclusion of vacuum refined aluminum-containing steel
JP3673409B2 (en) Steel for high-strength ultrafine wire and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715