JPH08225822A - Reformation of aluminum inclusion in molten steel - Google Patents

Reformation of aluminum inclusion in molten steel

Info

Publication number
JPH08225822A
JPH08225822A JP5208095A JP5208095A JPH08225822A JP H08225822 A JPH08225822 A JP H08225822A JP 5208095 A JP5208095 A JP 5208095A JP 5208095 A JP5208095 A JP 5208095A JP H08225822 A JPH08225822 A JP H08225822A
Authority
JP
Japan
Prior art keywords
molten steel
source
added
steel
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5208095A
Other languages
Japanese (ja)
Inventor
Yuji Kawachi
雄二 河内
Yoshiaki Kusano
祥昌 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5208095A priority Critical patent/JPH08225822A/en
Publication of JPH08225822A publication Critical patent/JPH08225822A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To provide a method for modifying alumina inclusions in molten steel so as to have a composition of low melting point, and to suppress the generation of CaS in the molten steel intended for steel bar and wire. CONSTITUTION: In modifying aluminum inclusions in the molten steel containing, by weight, <=0.100% Al and <=0.150% S to the oxides of a low molting point, Ca is first added to the molten steel, and successively Mg is added thereto. The ratio of the added amount of Mg to that of Ca, the position of addition, the method of addition, and the kind of Ca source and Mg source are appropriate. Casting with smaller cross-section of the molten steel for steel bar or wire completely free from the nozzle stuffing becomes possible to greatly reduce the manufacturing cost. Defects due to the inclusions in a product are almost completely eliminated to enable the supply of steel of excellent quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、AlとSとを含有する
鋼の連続鋳造において、皮下および中心部大型非金属介
在物の少ない良好な品質のブルーム・ビレットを得るた
めに、溶鋼中のアルミナ系介在物を低融点酸化物に改質
する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the continuous casting of steel containing Al and S, in order to obtain a bloom billet of good quality with less large non-metallic inclusions under the skin and in the center, The present invention relates to a method of modifying an alumina-based inclusion into a low-melting oxide.

【0002】[0002]

【従来の技術】棒線材を対象としたブルーム・ビレット
連鋳においては、スラブ連鋳にくらべ小断面サイズであ
るため、鋳型内への浸漬ノズルの設置スペースに制約が
あること、および注入溶鋼量制御性向上の面から小径の
浸漬ノズルを用いての鋳造が行われてきた。最近では連
続鋳造の後工程である分塊工程省略によるコストダウン
を狙い、さらなる小断面サイズ、小径浸漬ノズルを採用
したビレット連鋳が開発されるに至っている。
2. Description of the Related Art In bloom / billet continuous casting for rods and wires, because of its smaller cross-sectional size than continuous slab casting, there is a restriction on the installation space of the immersion nozzle in the mold, and the amount of molten steel injected. From the viewpoint of improving controllability, casting has been performed using a small diameter immersion nozzle. Recently, billet continuous casting employing a smaller cross-sectional size and smaller diameter dipping nozzle has been developed aiming at cost reduction by omitting the agglomeration step which is a post-step of continuous casting.

【0003】棒線材向けの溶鋼は一般にAlにより脱酸
する必要があるが、この場合には脱酸生成物Al23
が不可避的に存在し、鋳造中に浸漬ノズル内壁に付着成
長(巨大化)するため、ノズル詰りを引起こし安定鋳造
の阻害要因になると共に、浸漬ノズル内壁から剥離し
た、巨大Al23 系介在物が鋳片内に混入し、製品で
の介在物性欠陥となることもあった。このような傾向は
小断面鋳造ほど著しく、ビレット連鋳技術確立のために
は、小径浸漬ノズルの詰り防止が極めて重要な課題とな
ってきている。
Molten steel for rods and wires generally needs to be deoxidized with Al. In this case, the deoxidized product Al 2 O 3
There exists inevitably to accretion to the immersion nozzle inner wall during casting (giant), it becomes the impediment caused strainer stable casting nozzle clogging was peeled from the immersion nozzle inner wall, huge Al 2 O 3 system Inclusions may be mixed in the slab and cause defects of inclusions in the product. This tendency is remarkable in small-section casting, and in order to establish the billet continuous casting technique, prevention of clogging of the small diameter immersion nozzle has become a very important issue.

【0004】ノズル詰り防止策としては、溶鋼中Al
23 の除去技術、Al23 改質によるノズル付着
性軽減技術等が検討されている。このうちに関しては
昭和63年11月、日本鉄鋼協会発行の第126・12
7回西山記念技術講座「高清浄鋼」第11〜15頁に記
載されているが、現状ではAl23 の除去機能を十分
具備した技術はほとんどない。これはAl23 の挙動
が複雑であり、十分に解明されていないことによる。
As a measure for preventing nozzle clogging, Al in molten steel is used.
2 O 3 removal technology and nozzle adhesion reduction technology by modifying Al 2 O 3 are being studied. Of these, No. 126/12 issued by the Iron and Steel Institute of Japan in November 1988.
It is described in the 7th Nishiyama Memorial Technical Lecture "Highly Clean Steel" on pages 11 to 15, but at present, few technologies have a sufficient Al 2 O 3 removal function. This is because the behavior of Al 2 O 3 is complicated and has not been sufficiently clarified.

【0005】一方、に関しては昭和56年4月、丸善
株式会社から発行された「カルシウム鋼」第81〜83
頁に詳細に記載されている。それによると改質技術の主
流は溶鋼へのCa添加であり、これによりAl23
低融点の12CaO・7Al23 に改質しノズル内壁
への付着を防止するものである。しかし、棒線材の場合
にはこの方法が期待通り達成されないことが多い。その
理由は棒線材溶鋼がSを0.01重量%以上含有してお
り、このためCa添加によりAl23 の改質と競合し
てCaSが生成し、CaSがノズル内壁に付着し、ノズ
ル詰りを誘発するためである。この対策として特開昭6
3−7322号が提案されているが充分ではない。さら
にノズル内壁から剥離したCaS複合介在物は製品介在
物欠陥となることも多い。
On the other hand, regarding "Calcium Steel" 81-83 issued by Maruzen Co., Ltd. in April 1981.
See page for details. According to it, the mainstream of the reforming technique is to add Ca to the molten steel, whereby Al 2 O 3 is reformed to 12CaO · 7Al 2 O 3 having a low melting point to prevent the adhesion to the inner wall of the nozzle. However, in the case of rods, this method is often not achieved as expected. The reason is that the molten steel for rod and wire contains 0.01% by weight or more of S. Therefore, CaS competes with the reforming of Al 2 O 3 to produce CaS, and CaS adheres to the inner wall of the nozzle, This is to induce clogging. As a countermeasure against this, JP-A-6
No. 3-7322 has been proposed but is not sufficient. Further, the CaS composite inclusions separated from the inner wall of the nozzle often result in product inclusion defects.

【0006】本発明者らはこのような問題に対処するた
め種々の検討をおこない、特開平3−165952号、
および特開平3−183721号にてCaS生成の効率
的抑制方法を提案した。特開平3−165952号の方
法は、溶鋼中の全Ca濃度/全Al濃度の比を全O濃度
に応じて適正にコントロールするものである。また特開
平3−183721号では反応過程でのCaS生成を抑
制するため、溶鋼中C濃度に応じてCa供給速度を適正
にコントロールする方法を開示した。
The present inventors have made various studies in order to deal with such a problem, and disclosed in Japanese Patent Laid-Open No. 3-165952,
In addition, in JP-A-3-183721, a method for efficiently suppressing CaS production was proposed. The method of JP-A-3-165952 appropriately controls the ratio of total Ca concentration / total Al concentration in molten steel according to the total O concentration. Further, JP-A-3-183721 discloses a method of appropriately controlling the Ca supply rate according to the C concentration in the molten steel in order to suppress CaS generation in the reaction process.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記先願の方
法をさらに発展・改良させたものであって、Al23
を12CaO・7Al23 よりもさらに低融点の複合
酸化物とし、同時にCaSをほとんど生成させない画期
的方法を提示するものである。これにより、ノズル詰り
を完全に防止すると共に、製品介在物欠陥を大幅に軽減
させることが可能となる。
[0008] The present invention was to further develop and improve the method of the prior application, Al 2 O 3
Is a composite oxide having a melting point lower than that of 12CaO · 7Al 2 O 3 , and at the same time, an epoch-making method that hardly produces CaS is presented. This makes it possible to completely prevent nozzle clogging and significantly reduce defects in product inclusions.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。Al:0.100重量%以下、
S:0.150重量%以下を含有する溶鋼中のアルミナ
系介在物を低融点酸化物に改質するに際し、まず溶鋼中
へCaを添加し、続いてMgを添加することを特徴とす
る画期的アルミナ系介在物の改質方法を提示するもので
ある。さらにMgとCaの適正添加量比、適正添加場所
と添加方法、さらには好ましいCa源およびMg源の種
類を提案するものである。
The gist of the present invention is as follows. Al: 0.100% by weight or less,
S: When the alumina-based inclusions in the molten steel containing 0.150% by weight or less are modified into low-melting oxides, Ca is first added to the molten steel, and then Mg is added. A method for reforming a temporary alumina-based inclusion is presented. Further, the present invention proposes a proper addition ratio of Mg and Ca, a proper addition place and a proper addition method, and preferable types of Ca source and Mg source.

【0009】[0009]

【作用】以下に本発明の詳細について述べる。まず、C
aに続いてMgを添加し改質する優位性を述べる。Ca
に続いてMgを添加する目的は、改質後の酸化物組成を
CaO−Al23 2元系からCaO−Al23 −M
gO3元系とすることにより、一層低融点化することに
ある。即ちCaO−Al23 2元系では12CaO・
7Al23 が最も低融点(約1400℃)であるが、
CaO−Al23 −MgO3元系では、例えばCa
O:46%、Al23 :47%、MgO:7%とする
と融点は1340℃程度まで低下する。このように溶鋼
中酸化物の融点が1400℃から1340℃に低下する
と、通常の鋳造温度(1470〜1520℃)では酸化
物のノズル付着がほぼ皆無となる。さらに好ましくは酸
化物中のCaOの活量が低下するためにCaSの生成が
大幅に抑制され、CaSを複合した酸化物が消滅する。
以上の2点から、ノズル詰りを完全に防止すると共に、
製品介在物欠陥を大幅に軽減させることが可能となる。
The function of the present invention will be described in detail below. First, C
The superiority of adding Mg to modify after a will be described. Ca
Followed purpose of adding Mg and has an oxide composition after reforming CaO-Al 2 O 3 2-component from CaO-Al 2 O 3 -M
By using a gO ternary system, the melting point is further lowered. 12CaO · In other words CaO-Al 2 O 3 2-component
7Al 2 O 3 has the lowest melting point (about 1400 ° C),
CaO-Al In 2 O 3 -MgO3 ternary, for example Ca
When O: 46%, Al 2 O 3 : 47%, and MgO: 7%, the melting point drops to about 1340 ° C. When the melting point of the oxide in the molten steel is lowered from 1400 ° C. to 1340 ° C., the oxide is not attached to the nozzle at a normal casting temperature (1470 to 1520 ° C.). More preferably, since the activity of CaO in the oxide is reduced, the production of CaS is significantly suppressed, and the oxide compounded with CaS disappears.
From the above two points, while completely preventing nozzle clogging,
It is possible to significantly reduce defects in product inclusions.

【0010】次に本発明における溶鋼成分の規定理由を
述べる。Alは、鋼の結晶粒度調整用に必要であるが、
0.100重量%を越えて添加しても結晶粒度調整作用
が飽和するので上限を0.100重量%とした。Sは機
械構造用鋼あるいは冷間鍛造用鋼などに用いられる棒鋼
線材製品への被削性付与の面から必要であるが、0.1
50重量%を越えて含有されると、むしろ機械的性質が
劣化するので上限を0.150重量%に規定する。
Next, the reasons for defining the molten steel composition in the present invention will be described. Al is necessary for adjusting the grain size of steel,
Even if added in excess of 0.100% by weight, the effect of adjusting the grain size is saturated, so the upper limit was made 0.100% by weight. S is necessary from the aspect of imparting machinability to steel bar wire rod products used for machine structural steel or cold forging steel, etc.
If the content exceeds 50% by weight, the mechanical properties rather deteriorate, so the upper limit is defined as 0.150% by weight.

【0011】次に溶鋼へのMg添加量WMgとCa添加量
Caの比、R(WMg/WCa)を0.05〜0.70の範
囲にコントロールする理由は以下の通りである。本発明
者らの実験によれば、R=WMg/WCaは生成酸化物組成
と密接な関係にあることがわかった。すなわちRを0.
05未満とすると酸化物組成中のMgO濃度が増加せず
酸化物の低融点化が不十分であること、およびRを0.
70重量%以上としても酸化物の低融点化作用がそれ以
上期待できないことを究明した。それゆえ、好ましいR
の範囲は0.05〜0.70となる。
Next, the reason for controlling the ratio of Mg addition amount W Mg and Ca addition amount W Ca to the molten steel and R (W Mg / W Ca ) in the range of 0.05 to 0.70 is as follows. . According to the experiments conducted by the present inventors, it was found that R = W Mg / W Ca is closely related to the composition of the produced oxide. That is, R is 0.
When it is less than 05, the MgO concentration in the oxide composition does not increase and the melting point of the oxide is not sufficiently lowered, and R is 0.
It was clarified that the effect of lowering the melting point of the oxide cannot be expected even if it is 70% by weight or more. Therefore, the preferred R
The range is from 0.05 to 0.70.

【0012】一方、CaおよびMgの添加場所、添加方
法の規定理由は次の通りである。CaおよびMgは高蒸
気圧元素であり蒸発ロスしやすいため、極力凝固直前に
添加し、いちはやくアルミナ系酸化物の改質に寄与させ
ることが望ましい。そのためには製鋼工程の作業性も考
慮すると溶鋼取鍋あるいは連続鋳造タンディッシュある
いは連続鋳造モールドでCa→Mgの順で添加するのが
望ましい。Caを溶鋼取鍋で添加し、Mgを連続鋳造タ
ンディッシュで添加してもよい。CaおよびMg源とし
ては粒状物を溶鋼中へ供給する方法が効率的であり、そ
のためには粒状物を不活性ガスとともに吹込む方式や、
粒状物を鉄製ワイヤー中に充填し、鉄製ワイヤーごと溶
鋼中へ供給する方法が好ましい。
On the other hand, the reasons for adding Ca and Mg and the reasons for adding them are as follows. Since Ca and Mg are high vapor pressure elements and are prone to evaporation loss, it is desirable to add them immediately before solidification as much as possible so as to contribute to the reforming of the alumina-based oxide as soon as possible. For that purpose, considering the workability of the steelmaking process, it is desirable to add in the order of Ca → Mg in a molten steel ladle, a continuous casting tundish or a continuous casting mold. Ca may be added in a molten steel ladle and Mg may be added in a continuous casting tundish. As a source of Ca and Mg, it is efficient to supply the granular material into the molten steel. For that purpose, a method of blowing the granular material together with an inert gas,
It is preferable to fill the iron wire with the granular material and supply the iron wire into the molten steel.

【0013】次に、CaおよびMg源の種類について述
べる。Ca源としては溶鋼添加時の反応性や反応効率を
考慮すると、金属Ca,Ca−Si合金,Fe−Ca合
金の使用が可能であり、鋼種に応じてこれらを1種類以
上用いてもよい。またMg源としてはCa源と同様の考
え方になるが、溶鋼添加時の反応性や反応効率を考慮す
ると、金属Mg,Mg−Si合金,Mg−Coke,F
e−Mg−Si合金、Fe−Mg−Si−Mn合金が使
用でき、これらを1種類以上用いることも可能である。
さらに粒状Mg源と共に鉄粉、Fe−Si合金粉,Fe
−Mn合金粉,Fe−Cr合金粉,Fe−Mo合金粉,
Fe−V合金粉を1種類以上混合して添加することによ
り、これら合金の添加コストの削減さらには、Mg源添
加時の溶鋼飛散抑制が達成でき、より好ましい効果が得
られる。この場合、混合物中のMg濃度は0.5〜30
重量%が適正範囲である。0.5重量%未満では目的と
するMgの作用が発揮されず好ましくない。また30重
量%を越えるとMg源添加時の溶鋼飛散が激しくなり好
ましくない。
Next, the types of Ca and Mg sources will be described. Considering the reactivity and reaction efficiency at the time of adding molten steel, it is possible to use metallic Ca, Ca-Si alloy, Fe-Ca alloy as the Ca source, and one or more of them may be used depending on the steel type. The Mg source has the same concept as the Ca source, but considering the reactivity and reaction efficiency when adding molten steel, metallic Mg, Mg-Si alloy, Mg-Coke, F
An e-Mg-Si alloy and an Fe-Mg-Si-Mn alloy can be used, and it is also possible to use one or more of these.
Furthermore, iron powder, Fe-Si alloy powder, Fe together with granular Mg source
-Mn alloy powder, Fe-Cr alloy powder, Fe-Mo alloy powder,
By mixing and adding one or more kinds of Fe-V alloy powder, the addition cost of these alloys can be reduced, and further, the molten steel scattering can be suppressed when the Mg source is added, and more preferable effects can be obtained. In this case, the Mg concentration in the mixture is 0.5 to 30.
Weight% is the proper range. If it is less than 0.5% by weight, the intended action of Mg is not exhibited, which is not preferable. On the other hand, if it exceeds 30% by weight, the molten steel is greatly scattered when the Mg source is added, which is not preferable.

【0014】[0014]

【実施例】以下に本発明の実施例を延べ、本発明の効果
について記載する。転炉およびRH脱ガス設備を用い
て、120t/ヒートの棒線材向け溶鋼を溶製するに際
し、転炉から取鍋への出鋼段階で転炉スラグを除去し、
続いて取鍋内溶鋼上にフラックスを添加し非酸化性スラ
グを形成せしめ、RH脱ガス設備を用いて成分調整なら
びに脱水素を行った。次に取鍋内溶鋼あるいは連続鋳造
タンディッシュにて本発明法に準じてCa源,Mg源を
添加した。Mg添加後の最終溶鋼は鋳片サイズが162
mm×162mmの湾曲型ビレット連鋳機に供し、棒線
材向けビレットを製造した。得られたビレットの化学成
分,製造条件を表1に示す。
EXAMPLES The effects of the present invention will be described below by extending the examples of the present invention. When using the converter and RH degassing equipment to melt 120t / heat molten steel for rod and wire, the converter slag was removed at the tapping stage from the converter to the ladle,
Subsequently, a flux was added to the molten steel in the ladle to form a non-oxidizing slag, and the components were adjusted and dehydrogenated using an RH degassing facility. Then, a Ca source and a Mg source were added to the molten steel in the ladle or the continuous casting tundish according to the method of the present invention. The final molten steel after adding Mg has a slab size of 162
A billet for rod and wire rod was manufactured by using a continuous billet of mm × 162 mm. Table 1 shows the chemical composition and manufacturing conditions of the obtained billet.

【0015】[0015]

【表1】 [Table 1]

【0016】一方、比較例として本発明とは無関係に溶
製した母溶鋼からも同一の連鋳機を用いて鋳片サイズ1
62mm×162mmの棒線材向けビレットを製造し
た。比較例のビレット化学成分および製造条件も表1に
示す。実施例ならびに比較例それぞれのヒートから得ら
れたビレットを、直径40mmの棒鋼に圧延した後、該
棒鋼製品の超音波探傷試験を実施し、大型介在物による
超音波探傷不良率を求めた。その結果を表1に合わせて
示すが、比較例は平均不良率=0.25%であるのに対
し、本発明実施例の平均不良率=0.06%となり極め
て好ましいレベルであった。さらに、連続鋳造作業時の
ノズル詰りの程度については、本発明実施例が全くノズ
ル詰が発生せず、その兆候さえも見られなかった。比較
例ではほとんどのヒートでノズル詰り傾向となり、一部
のヒートでは操業中断等のトラブルも発生した。
On the other hand, as a comparative example, a slab size 1 was obtained from the mother molten steel melted regardless of the present invention, using the same continuous casting machine.
A billet for rod and wire rod having a size of 62 mm × 162 mm was manufactured. Table 1 also shows the chemical composition and manufacturing conditions of the billet of the comparative example. The billets obtained from the heat of each of the Examples and Comparative Examples were rolled into a steel bar having a diameter of 40 mm, and then an ultrasonic flaw detection test was performed on the steel bar product to determine the ultrasonic flaw detection failure rate due to large inclusions. The results are also shown in Table 1. While the average defective rate of the comparative example is 0.25%, the average defective rate of the example of the present invention is 0.06%, which is a very preferable level. Further, regarding the degree of nozzle clogging during continuous casting work, the nozzles of the present invention did not cause nozzle clogging at all, and there was no sign of this. In the comparative example, the nozzles tended to be clogged in most of the heats, and troubles such as operation interruption occurred in some of the heats.

【0017】[0017]

【発明の効果】以上詳述したように、本発明法により、
AlとSを含有する棒線材向け溶鋼を対象としたアルミ
ナ系介在物の効率的改質法が確立された。すなわち、A
23 を12CaO・7Al23 よりもさらに低融
点のCaO−Al23 −MgO系複合酸化物とし、同
時にCaS生成をほぼ完全に抑制できる画期的改質方法
が開発された。これにより、ノズル詰りが全く発生しな
い棒線材用溶鋼の小断面鋳造が可能となり製造コストを
大幅に削減できる。さらに本発明法によって得られた製
品の介在物起因の欠陥はほぼ完全に解消され、良好品質
鋼材の供給が可能となる。
As described in detail above, according to the method of the present invention,
An efficient reforming method of alumina-based inclusions for molten steel for rods and rods containing Al and S has been established. That is, A
l a 2 O 3 and further lower melting point of CaO-Al 2 O 3 -MgO based composite oxide than 12CaO · 7Al 2 O 3, innovative reforming methods have been developed that can be almost completely suppressed CaS produced simultaneously . As a result, it is possible to cast molten steel for rod and wire rods with a small cross-section, in which nozzle clogging does not occur at all. Further, the defects caused by inclusions in the product obtained by the method of the present invention are almost completely eliminated, and it becomes possible to supply good quality steel.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Al:0.100重量%以下、S:0.
150重量%以下を含有する溶鋼中のアルミナ系介在物
を低融点酸化物に改質するに際し、まず溶鋼中へCaを
添加し、続いてMgを添加することを特徴とする溶鋼中
アルミナ系介在物の改質方法。
1. Al: 0.100% by weight or less, S: 0.
When reforming an alumina-based inclusion in molten steel containing 150 wt% or less into a low melting point oxide, first, Ca is added to the molten steel, and then Mg is added, which is characterized by adding Mg. How to modify things.
【請求項2】 溶鋼へのMg添加量WMgとCa添加量W
Caの比R(=WMg/WCa)を0.05〜0.70の範囲
にコントロールする請求項1記載の方法。
2. The amount of Mg added W Mg and the amount of Ca added W to molten steel
The method according to claim 1, wherein the ratio R of Ca (= W Mg / W Ca ) is controlled in the range of 0.05 to 0.70.
【請求項3】 CaおよびMgを溶鋼取鍋あるいは連続
鋳造タンディッシュあるいは連続鋳造モールドで添加す
る請求項1または2記載の方法。
3. The method according to claim 1, wherein Ca and Mg are added in a molten steel ladle, a continuous casting tundish or a continuous casting mold.
【請求項4】 粒状Ca源、粒状Mg源を不活性ガスに
より溶鋼中に吹込むことを特徴とする請求項1ないし3
記載の方法。
4. A granular Ca source and a granular Mg source are blown into the molten steel by an inert gas.
The described method.
【請求項5】 粒状Ca源、あるいは粒状Mg源を鉄製
ワイヤー中に充填し、溶鋼中に供給することを特徴とす
る請求項1ないし4記載の方法。
5. The method according to claim 1, wherein the granular Ca source or the granular Mg source is filled in an iron wire and supplied into molten steel.
【請求項6】 粒状Ca源として金属Ca,Ca−Si
合金,Fe−Ca合金を1種類以上用いる請求項1ない
し5記載の方法。
6. Metal Ca, Ca-Si as a source of granular Ca
The method according to any one of claims 1 to 5, wherein one or more kinds of alloys and Fe-Ca alloys are used.
【請求項7】 粒状Mg源として金属Mg,Mg−Si
合金,Mg−Coke,Fe−Mg−Si合金,Fe−
Mg−Si−Mn合金を1種類以上用いる請求項1ない
し5記載の方法。
7. Metal Mg, Mg—Si as a source of granular Mg
Alloy, Mg-Coke, Fe-Mg-Si alloy, Fe-
The method according to any one of claims 1 to 5, wherein one or more kinds of Mg-Si-Mn alloys are used.
【請求項8】 粒状Mg源と共に鉄粉,Fe−Si合金
粉,Fe−Mn合金粉,Fe−Cr合金粉,Fe−Mo
合金粉,Fe−V合金粉を1種類以上用いる請求項1な
いし5記載の方法。
8. An iron powder, a Fe—Si alloy powder, a Fe—Mn alloy powder, a Fe—Cr alloy powder, and a Fe—Mo together with a granular Mg source.
The method according to claim 1, wherein one or more kinds of alloy powder and Fe-V alloy powder are used.
JP5208095A 1995-02-17 1995-02-17 Reformation of aluminum inclusion in molten steel Withdrawn JPH08225822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208095A JPH08225822A (en) 1995-02-17 1995-02-17 Reformation of aluminum inclusion in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208095A JPH08225822A (en) 1995-02-17 1995-02-17 Reformation of aluminum inclusion in molten steel

Publications (1)

Publication Number Publication Date
JPH08225822A true JPH08225822A (en) 1996-09-03

Family

ID=12904852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208095A Withdrawn JPH08225822A (en) 1995-02-17 1995-02-17 Reformation of aluminum inclusion in molten steel

Country Status (1)

Country Link
JP (1) JPH08225822A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542034A (en) * 1999-04-15 2002-12-10 ユジノール Treatment to improve castability of aluminum killed continuous cast steel
US6579385B2 (en) 2000-08-31 2003-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Free machining steel for use in machine structure of excellent mechanical characteristics
US6596227B2 (en) 2000-08-30 2003-07-22 Kobe Steel, Ltd. Machine structure steel superior in chip disposability and mechanical properties and its method of making
JP2003340754A (en) * 2003-04-30 2003-12-02 Sankyo Seiki Mfg Co Ltd Articulated robot
WO2020255917A1 (en) * 2019-06-17 2020-12-24 Jfeスチール株式会社 METHOD FOR ADDING Ca TO MOLTEN STEEL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542034A (en) * 1999-04-15 2002-12-10 ユジノール Treatment to improve castability of aluminum killed continuous cast steel
US6596227B2 (en) 2000-08-30 2003-07-22 Kobe Steel, Ltd. Machine structure steel superior in chip disposability and mechanical properties and its method of making
US6579385B2 (en) 2000-08-31 2003-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Free machining steel for use in machine structure of excellent mechanical characteristics
JP2003340754A (en) * 2003-04-30 2003-12-02 Sankyo Seiki Mfg Co Ltd Articulated robot
WO2020255917A1 (en) * 2019-06-17 2020-12-24 Jfeスチール株式会社 METHOD FOR ADDING Ca TO MOLTEN STEEL

Similar Documents

Publication Publication Date Title
JP3803582B2 (en) Steel refinement method, steel refinement alloy and production method of refinement alloy
JP3626278B2 (en) Method for producing Al-killed steel without clusters
US3208117A (en) Casting method
EP2308616A1 (en) Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material
US5616188A (en) Method of producing molten aluminum-killed steel for thin steel sheet
US3623862A (en) Use of rare earth elements for reducing nozzle deposits in the continuous casting of steel process
JPH08225822A (en) Reformation of aluminum inclusion in molten steel
JP2000001718A (en) Manufacture of low carbon steel
JP2003342630A (en) Method for continuous casting molten steel containing added rare earth element
JPH089728B2 (en) Method for preventing agglomeration of Al2O3 in molten steel
JP3230070B2 (en) How to add Mg to molten steel
JP2663231B2 (en) Prevention method of agglomeration of alumina in low carbon molten steel
JP2887535B2 (en) Detoxification of inclusions in steel
JP2684307B2 (en) Highly efficient method for preventing Al2O3 aggregation in molten steel
JP4710180B2 (en) Manufacturing method of high cleanliness steel
CN115287396B (en) Control method for iron-nickel-based superalloy inclusion
JP3070417B2 (en) Production method of steel ingot with extremely small Mn segregation
JPH1043845A (en) Method for continuously casting molten metal
RU2228235C2 (en) Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material
JP3631629B2 (en) Mild steel for strips and its manufacturing method
JPH03199305A (en) Calcium additive
JPH08257706A (en) Stable continuous casting method of molten steel for bar and wire rod
JPH08325627A (en) Production of grain-oriented silicon steel sheet
JP2003268435A (en) Process for manufacturing low-carbon thin steel sheet and its strand slab
JPH03183721A (en) Calcium treatment of molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507