JPH0761869A - Method for joining material different in coefficient of thermal expansion - Google Patents

Method for joining material different in coefficient of thermal expansion

Info

Publication number
JPH0761869A
JPH0761869A JP20807993A JP20807993A JPH0761869A JP H0761869 A JPH0761869 A JP H0761869A JP 20807993 A JP20807993 A JP 20807993A JP 20807993 A JP20807993 A JP 20807993A JP H0761869 A JPH0761869 A JP H0761869A
Authority
JP
Japan
Prior art keywords
temperature
joining
thermal expansion
intermediate layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20807993A
Other languages
Japanese (ja)
Other versions
JP3215554B2 (en
Inventor
Hiroyuki Takeda
裕之 武田
Yoichiro Yoneda
陽一郎 米田
Yoshitsune Tochio
善恒 杤尾
Takatoo Mizoguchi
孝遠 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20807993A priority Critical patent/JP3215554B2/en
Publication of JPH0761869A publication Critical patent/JPH0761869A/en
Application granted granted Critical
Publication of JP3215554B2 publication Critical patent/JP3215554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a healthy joined body reduced in residual stress and free from breakage by keeping a material different in coefficient of thermal expansion to a definite temperature halfway during cooling from a joining temperature to a ambient temperature in heating and joining the material through an intermediate layer. CONSTITUTION:In a method heating and joining a material different in coefficient of thermal expansion, the temperature of the material is kept to a definite temperature halfway during cooling from joining temperature to ambient temperature. In this joining method, in the case of the intermediate layer consisting of Cu or Cu alloy when the keeping temperature is >=600 deg.C, the heating effect is not produced, because the difference of temperature cooled to ambient temperature become larger even if stress is released by the keeping temperature and as a result, residual stress becomes also larger and when the keeping temperature is <600 deg.C, the effect is not produced, because Cu or Cu alloy is not softened and as a result, the stress is not released. Similarly, in the case of an intermediate layer consisting of Al or Al alloy, when the keeping temperature is >=500 deg.C, the effect is not produced because the difference of temperature cooled to ambient temperature becomes larger, though the stress is released by the keeping temperature and as a result, the residual stress becomes also larger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱膨張係数が異なる材
料を加熱して接合する方法、さらに詳述すれば加工性が
乏しく複雑な形状の部品の成形が困難であり、かつ接合
部の高い強度が要求されるような、例えば金属とセラミ
ックスを接合するような場合の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating and joining materials having different coefficients of thermal expansion. More specifically, it is difficult to form a part having a complicated shape with poor workability, The present invention relates to a joining method in which high strength is required, for example, when joining metal and ceramics.

【0002】[0002]

【従来の技術】従来から、熱膨張係数が異なる材料を接
合する際には、健全な接合体を得るために、被接合材の
間に応力緩和材を配置したり(特開昭61−21527
2号公報参照)、接合体の形状を制御したり(特開平4
−77369号公報参照)、あるいは接合後接合体を加
工したり(特公平3−71391号公報参照)して、残
留応力の緩和が施されている。
2. Description of the Related Art Conventionally, when joining materials having different thermal expansion coefficients, a stress relaxation material is arranged between the materials to be joined in order to obtain a sound joined body (Japanese Patent Laid-Open No. 61-21527).
No. 2), or controlling the shape of the bonded body (Japanese Patent Laid-Open No.
-77369) or, after joining, the joined body is processed (see Japanese Patent Publication No. 3-71391) to relieve the residual stress.

【0003】[0003]

【発明が解決しようとする課題】前述のように熱膨張係
数が異なる材料を加熱して接合する際には、健全な接合
体を得るため、残留応力の緩和が図られる場合が多い。
なかでも中間層として応力緩和材を用いる加熱接合方法
は、簡単に残留応力を緩和できるため効果的である。
As described above, when materials having different thermal expansion coefficients are heated and bonded together, residual stress is often relaxed in order to obtain a sound bonded body.
Among them, the heat bonding method using a stress relaxation material as the intermediate layer is effective because residual stress can be easily relaxed.

【0004】しかしながら、接合する材料の熱膨張係数
の差が大きいような場合あるいは接合する面積が大きく
なるような場合には、応力緩和材を用いても十分に残留
応力を緩和できずセラミックス等に割れが発生し、健全
な接合体が得られないなどの課題がある。この課題を解
決するため、本発明者らは鋭意研究を重ねた。
However, when the difference in the coefficient of thermal expansion between the materials to be joined is large or the area to be joined is large, even if a stress relaxation material is used, the residual stress cannot be sufficiently relaxed, and ceramics or the like cannot be relaxed. There is a problem that cracks occur and a healthy joined body cannot be obtained. In order to solve this problem, the present inventors have conducted extensive research.

【0005】本発明はかかる課題に関するものであり、
熱膨張係数が異なる材料を加熱して接合する場合に、残
留応力を低減し、割れの無い健全な接合体を得ることを
目的とするものである。
The present invention relates to such a problem,
It is an object of the present invention to reduce residual stress and obtain a sound joined body without cracks when joining materials with different thermal expansion coefficients by heating.

【0006】[0006]

【課題を解決するための手段】上記の目的は前記特許請
求の範囲に記載された熱膨張係数が異なる材料の接合方
法によって達成される。本発明に係わる接合方法は、中
間層を用いて加熱接合する場合に、接合温度から室温ま
での冷却段階で、一定の温度で保持することを要旨とす
るものである。
The above object can be achieved by the method for joining materials having different coefficients of thermal expansion described in the claims. The gist of the joining method according to the present invention is to maintain the temperature at a constant temperature during the cooling step from the joining temperature to room temperature in the case of heat joining using the intermediate layer.

【0007】[0007]

【作用】本発明により、熱膨張係数が異なる材料を中間
層を介して加熱接合する方法において、接合温度から室
温までの冷却段階で、一定の温度で保持することによ
り、割れなどの欠陥の無い健全な接合体を得ることが可
能になる。被接合材は、Al2 3 ,SiC等のセラミ
ックスあるいは鋼,チタン等の金属などいずれでもよ
い。
According to the present invention, in the method of heat-bonding materials having different thermal expansion coefficients through the intermediate layer, there is no defect such as cracking by holding at a constant temperature in the cooling stage from the bonding temperature to room temperature. It is possible to obtain a healthy joined body. The material to be joined may be ceramics such as Al 2 O 3 and SiC, or metals such as steel and titanium.

【0008】接合温度から室温までの冷却段階で、一定
の温度で保持すると、中間層が軟化しているため、保持
温度までの冷却過程で発生した応力が解放され零にな
る。従って、実際室温に冷却された際発生する残留応力
は、保持温度から室温までの冷却過程で生成する残留応
力のみとなる。そのため、冷却途中で保持しない場合と
比較して室温での残留応力を軽減し、割れや界面剥離を
防止することができる。
If the intermediate layer is held at a constant temperature in the cooling step from the bonding temperature to room temperature, the stress generated during the cooling process up to the holding temperature is released and becomes zero because the intermediate layer is softened. Therefore, the residual stress actually generated when cooled to room temperature is only the residual stress generated in the cooling process from the holding temperature to room temperature. Therefore, the residual stress at room temperature can be reduced and cracking and interfacial peeling can be prevented as compared with the case of not holding during cooling.

【0009】中間層がCuまたはCu合金の場合、保持
温度が600℃より高くなると、保持温度で応力が解放
されても、それ以後室温までの温度差が大きくなるため
残留応力も大きくなり、効果が無い。また保持温度が2
00℃未満であると、CuまたはCu合金が軟化しない
ため応力が解放されず、効果は認められない。同じよう
に中間層がアルミニウム(以下Alと表記する。)また
はAl合金の場合、保持温度が500℃より高くなる
と、保持温度で応力が解放されても、それ以後室温まで
の温度差が大きくなるため残留応力も大きくなり、効果
が無い。
When the intermediate layer is made of Cu or Cu alloy and the holding temperature is higher than 600 ° C., even if the stress is released at the holding temperature, the temperature difference up to room temperature becomes large thereafter and the residual stress also becomes large. There is no. The holding temperature is 2
If the temperature is lower than 00 ° C., the Cu or Cu alloy does not soften, so that the stress is not released and the effect is not recognized. Similarly, in the case where the intermediate layer is aluminum (hereinafter referred to as Al) or Al alloy, if the holding temperature is higher than 500 ° C, even if the stress is released at the holding temperature, the temperature difference up to room temperature increases thereafter. Therefore, the residual stress also becomes large and there is no effect.

【0010】また保持温度が150℃未満であると、A
lまたはAl合金が軟化しないため応力が解放されず、
効果は認められない。そのため保持温度は、中間層がC
uまたはCu合金の場合は200℃以上600℃以下、
中間層がAlまたはAl合金の場合は、150℃以上5
00℃以下が適切である。
If the holding temperature is lower than 150 ° C., A
1 or Al alloy does not soften, so stress is not released,
No effect is observed. Therefore, the holding temperature is C for the intermediate layer.
In the case of u or Cu alloy, 200 ° C to 600 ° C,
If the intermediate layer is Al or Al alloy, 150 ° C or higher 5
A temperature of 00 ° C or lower is suitable.

【0011】以上の観点から、室温で発生する残留応力
を低下させるため、保持する温度はできるかぎる低い方
が、より効果的である。また中間層の軟化は瞬時に起る
ものではなく、十分に中間層を軟化させるためには、少
なくとも冷却途中で1分間以上保持することがより効果
的である。
From the above viewpoint, it is more effective to keep the temperature as low as possible in order to reduce the residual stress generated at room temperature. Further, the softening of the intermediate layer does not occur instantly, and in order to sufficiently soften the intermediate layer, it is more effective to hold it for at least 1 minute during cooling.

【0012】次に本発明の実施例について比較例と比較
して説明する。
Next, examples of the present invention will be described in comparison with comparative examples.

【実施例1】超硬合金11と鋼(S45C)15との接
合において、図1に示すように超硬合金11と鋼15と
の間に、鋼15側から順にAg−Cu−Ti合金ろう材
14、無酸素銅13、Ag−Cu−Ti合金ろう材12
を積層して配置し、加熱により前記各ろう材を溶融させ
て超硬合金11と鋼15とを接合する。なお使用した合
金ろう材12と14の組成は、72重量%Ag−27重
量%Cu−1重量%Tiであり、接合温度870℃に
て、真空炉中で加熱接合した。得られた接合体の超硬合
金11側の界面近傍の残留応力を測定した。残留応力の
値および外観の結果を、表1に示す。
Example 1 In joining the cemented carbide 11 and the steel (S45C) 15, as shown in FIG. 1, between the cemented carbide 11 and the steel 15, an Ag-Cu-Ti alloy brazing material is sequentially placed from the steel 15 side. Material 14, oxygen-free copper 13, Ag-Cu-Ti alloy brazing material 12
Are laminated and arranged, and the brazing filler metals are melted by heating to bond the cemented carbide 11 and the steel 15. The alloy brazing filler metals 12 and 14 used had a composition of 72% by weight Ag-27% by weight Cu-1% by weight Ti and were heat-bonded in a vacuum furnace at a bonding temperature of 870 ° C. The residual stress in the vicinity of the interface on the cemented carbide 11 side of the obtained joined body was measured. Table 1 shows the values of the residual stress and the results of the appearance.

【0013】[0013]

【表1】 [Table 1]

【0014】表1からあきらかなように、冷却途中に2
00℃以上600℃以下の温度で保持すると、室温に冷
却した際の残留応力が、冷却途中で温度保持しない場合
および200℃未満あるいは600℃より高温で温度保
持した場合と比較して大きく減少しかつ割れの発生が防
止されており、健全な接合体を得るのに有効なことがわ
かる。
As is clear from Table 1, 2 during cooling
When held at a temperature of 00 ° C or higher and 600 ° C or lower, the residual stress when cooled to room temperature is greatly reduced compared to when the temperature is not held during cooling and when the temperature is held below 200 ° C or higher than 600 ° C. Moreover, the occurrence of cracks is prevented, which proves that it is effective for obtaining a sound joined body.

【0015】[0015]

【実施例2】純チタン21と高純度アルミナ27との接
合において、図2に示すようにチタン21とアルミナ2
7との間に、アルミナ27側から順にAg−Cu−Ti
合金ろう材26、無酸素銅25、Ag−Cu合金ろう材
24、Kovar23、およびAg−Cu合金ろう材2
2を積層して配置し、加熱により前記各ろう材を溶融さ
せてチタン母材21とアルミナ27とを接合する。
[Embodiment 2] In joining pure titanium 21 and high-purity alumina 27, as shown in FIG.
7 and Ag-Cu-Ti in order from the alumina 27 side.
Alloy brazing material 26, oxygen-free copper 25, Ag—Cu alloy brazing material 24, Kovar 23, and Ag—Cu alloy brazing material 2
The two brazing materials are melted by heating and the titanium base material 21 and the alumina 27 are bonded to each other.

【0016】なお、アルミナ27と無酸素銅25との間
の合金ろう材26には、72重量%Ag−27重量%C
u−1重量%Ti合金ろう材を、無酸素銅25とKov
ar23との間およびKovar23とチタン21との
間には72重量%Ag−28重量%Cu合金ろう材を使
用して、接合温度850℃にて、真空炉中で加熱接合し
た。接合した試験片について、外観観察および超音波探
傷(UT)により無酸素銅25とアルミナ27との接合
界面の検査を実施した。接合体の試験結果を表2に示
す。
The alloy brazing material 26 between the alumina 27 and the oxygen-free copper 25 contains 72 wt% Ag-27 wt% C.
u-1 wt% Ti alloy brazing material, oxygen-free copper 25 and Kov
A 72 wt% Ag-28 wt% Cu alloy brazing material was used between the ar23 and the Kovar23 and the titanium 21 at a joining temperature of 850 ° C. to perform heat joining in a vacuum furnace. With respect to the joined test piece, the joint interface between the oxygen-free copper 25 and the alumina 27 was inspected by visual observation and ultrasonic flaw detection (UT). Table 2 shows the test results of the bonded body.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例で示すように、冷却途中に200℃
以上600℃以下の温度で保持すると、室温に冷却され
た際の残留応力が軽減され、外観および超音波探傷の結
果とも良好な接合が行われていることがわかる。
As shown in the examples, 200 ° C. during cooling.
It can be seen that when the temperature is kept at 600 ° C. or lower, the residual stress when cooled to room temperature is reduced, and the appearance and the result of ultrasonic flaw detection are good.

【0019】一方比較例で示すように、冷却途中で温度
保持しない場合および200℃未満あるいは600℃よ
り高温で温度保持した場合には、銅とアルミナの接合界
面が剥離したり、あるいはアルミナに割れが発生するな
ど、残留応力が十分に軽減されないため、健全に接合さ
れていないことがあきらかとなった。
On the other hand, as shown in Comparative Examples, when the temperature is not maintained during cooling and when the temperature is maintained below 200 ° C. or higher than 600 ° C., the bonding interface between copper and alumina peels off or cracks in alumina. Since the residual stress was not sufficiently reduced, such as the occurrence of cracks, it was clarified that they were not joined properly.

【0020】[0020]

【実施例3】数字符号31で示すSUS304と窒化珪
素33との接合において、図3に示すようにSUS30
431と窒化珪素33との間に、Alが芯材のブレージ
ングシート32を配置し、加熱によりブレージングシー
ト32上のろう材を溶融させてSUS30431と窒化
珪素33とを接合する。接合温度600℃にて、真空炉
中で加熱接合した。接合体の試験結果を表3に示す。
[Embodiment 3] In the joining of SUS304 and silicon nitride 33 indicated by numeral numeral 31, as shown in FIG.
A brazing sheet 32 having a core material of Al is disposed between 431 and silicon nitride 33, and the brazing material on brazing sheet 32 is melted by heating to bond SUS30431 and silicon nitride 33. Heat bonding was performed in a vacuum furnace at a bonding temperature of 600 ° C. Table 3 shows the test results of the joined body.

【0021】[0021]

【表3】 [Table 3]

【0022】実施例で示すように、冷却途中に150℃
以上500℃以下の温度で保持すると、室温に冷却され
た際の残留応力が軽減され、良好な接合が行われている
ことがわかる。一方比較例で示すように、冷却途中で温
度保持しない場合および150℃未満あるいは500℃
より高温で温度保持した場合には、Alと窒化珪素の接
合界面が剥離したり、あるいは窒化珪素に割れが発生す
るなど、残留応力が十分に軽減されないため、健全に接
合されていないことがあきらかとなった。
As shown in the examples, 150 ° C. during cooling.
It can be seen that when the temperature is kept at 500 ° C. or lower, the residual stress when cooled to room temperature is reduced and good bonding is performed. On the other hand, as shown in the comparative example, when the temperature is not maintained during cooling and when the temperature is less than 150 ° C or 500 ° C.
When the temperature is maintained at a higher temperature, the residual interface stress is not sufficiently reduced, such as the peeling of the bonding interface between Al and silicon nitride, or the cracking of silicon nitride. Became.

【0023】[0023]

【発明の効果】以上詳述したように、本発明によれば、
熱膨張係数が異なる材料を接合した際の残留応力を低減
することができ、割れや界面剥離の無い健全な接合体を
提供することが可能になる。
As described in detail above, according to the present invention,
It is possible to reduce the residual stress when joining materials having different thermal expansion coefficients, and it is possible to provide a sound joined body without cracks or interfacial peeling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例に係る接合方法を
示す模式図である。
FIG. 1 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【図2】本発明の実施例および比較例に係る接合方法を
示す模式図である。
FIG. 2 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【図3】本発明の実施例および比較例に係る接合方法を
示す模式図である。
FIG. 3 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

11 超硬合金 12,14 Al−Cu−Ti合金ろう材 13 無酸素銅 15 鋼 21 チタン 22,24 Ag−Cu合金ろう材 23 Kovar 25 無酸素銅 26 Ag−Cu−Ti合金ろう材 27 アルミナ 31 SUS304 32 ブレージングシート 33 窒化珪素 11 Cemented Carbide 12,14 Al-Cu-Ti Alloy Brazing Material 13 Oxygen Free Copper 15 Steel 21 Titanium 22,24 Ag-Cu Alloy Brazing Material 23 Kovar 25 Oxygen Free Copper 26 Ag-Cu-Ti Alloy Brazing Material 27 Alumina 31 SUS304 32 Brazing sheet 33 Silicon nitride

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝口 孝遠 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takato Mizoguchi 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Research Institute, Kobe Steel Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張係数が異なる材料を中間層を介し
て加熱接合する方法において、接合温度から室温までの
冷却途中で、一定の温度で保持することを特徴とする熱
膨張係数が異なる材料の接合方法。
1. A method of heat-bonding materials having different thermal expansion coefficients via an intermediate layer, wherein the materials are held at a constant temperature during cooling from the bonding temperature to room temperature, and materials having different thermal expansion coefficients. How to join.
【請求項2】 中間層がCuまたはCu合金で、保持温
度が200℃以上600℃以下である請求項1記載の熱
膨張係数が異なる材料の接合方法。
2. The method for joining materials having different thermal expansion coefficients according to claim 1, wherein the intermediate layer is Cu or a Cu alloy, and the holding temperature is 200 ° C. or higher and 600 ° C. or lower.
【請求項3】 中間層がアルミニウムまたはアルミニウ
ム合金で、保持温度が150℃以上500℃以下である
請求項1記載の熱膨張係数が異なる材料の接合方法。
3. The method for joining materials according to claim 1, wherein the intermediate layer is aluminum or an aluminum alloy and the holding temperature is 150 ° C. or higher and 500 ° C. or lower.
JP20807993A 1993-08-23 1993-08-23 Method of joining materials with different coefficients of thermal expansion Expired - Fee Related JP3215554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20807993A JP3215554B2 (en) 1993-08-23 1993-08-23 Method of joining materials with different coefficients of thermal expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20807993A JP3215554B2 (en) 1993-08-23 1993-08-23 Method of joining materials with different coefficients of thermal expansion

Publications (2)

Publication Number Publication Date
JPH0761869A true JPH0761869A (en) 1995-03-07
JP3215554B2 JP3215554B2 (en) 2001-10-09

Family

ID=16550297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20807993A Expired - Fee Related JP3215554B2 (en) 1993-08-23 1993-08-23 Method of joining materials with different coefficients of thermal expansion

Country Status (1)

Country Link
JP (1) JP3215554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201122A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Member joining method, ink-jet head, and manufacturing method of the same
GB2558523A (en) * 2015-06-25 2018-07-18 Delavan Inc Braze joints

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201122A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Member joining method, ink-jet head, and manufacturing method of the same
GB2558523A (en) * 2015-06-25 2018-07-18 Delavan Inc Braze joints
US10688577B2 (en) 2015-06-25 2020-06-23 Delavan Inc. Braze joints
GB2558523B (en) * 2015-06-25 2021-04-07 Delavan Inc Braze Joints
GB2588358A (en) * 2015-06-25 2021-04-21 Delavan Inc Braze Joints

Also Published As

Publication number Publication date
JP3215554B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
JPH0562034B2 (en)
EP1135348B1 (en) Method for joining ceramic to metal
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JPH0761869A (en) Method for joining material different in coefficient of thermal expansion
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
JP3119906B2 (en) Joint of carbon material and metal
JP2651847B2 (en) Aluminum alloy for ceramic joining
JPH0337165A (en) Adhesion between ceramics and metal
JPH0940476A (en) Joined body of aluminum alloy member and ceramic member
JPS61245993A (en) Brazing filler metal for joining of al and al alloy
JP3464563B2 (en) Method for producing composite
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JPS6183684A (en) Method of bonding ceramic and metal
JP2676413B2 (en) Method for joining graphite and titanium or titanium alloy
JPH05286777A (en) Bonding method of ceramics with ti or ti alloy
JP2655332B2 (en) Aluminum alloy for ceramic joining
JPH1081573A (en) Production of bonded body of age-hardening aluminum alloy member to ceramic member
JP3289860B2 (en) Joining method of ceramics and silicon
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JPH0547513B2 (en)
JPH07247178A (en) Method for cementing ti or ti-alloy with alumina
JPH0159998B2 (en)
JPH0725674A (en) Production of joined body of ceramics to metal
JPH08239278A (en) Brazing between silicon carbide material and metallic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100727

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120727

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130727

LAPS Cancellation because of no payment of annual fees