JPH0761433B2 - Selective gas permeable composite membrane - Google Patents

Selective gas permeable composite membrane

Info

Publication number
JPH0761433B2
JPH0761433B2 JP60251348A JP25134885A JPH0761433B2 JP H0761433 B2 JPH0761433 B2 JP H0761433B2 JP 60251348 A JP60251348 A JP 60251348A JP 25134885 A JP25134885 A JP 25134885A JP H0761433 B2 JPH0761433 B2 JP H0761433B2
Authority
JP
Japan
Prior art keywords
gas permeable
permeable composite
selective gas
composite membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60251348A
Other languages
Japanese (ja)
Other versions
JPS62110730A (en
Inventor
幸廣 斉藤
美登利 関
史朗 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60251348A priority Critical patent/JPH0761433B2/en
Publication of JPS62110730A publication Critical patent/JPS62110730A/en
Publication of JPH0761433B2 publication Critical patent/JPH0761433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は選択気体透過複合膜に関するものである。TECHNICAL FIELD The present invention relates to a selective gas permeable composite membrane.

従来の技術 最近、気体混合物の分離濃縮を選択気体透過膜で行なう
ことが積極的に検討されている。例えば空気より酸素を
選択的に透過させて酸素富化空気を得、燃焼システムあ
るいは医療への応用、さらには石炭、天然ガス等を原料
に、水蒸気改質や熱分解等の処理により得られる合成ガ
ス、又は製鉄所等の廃ガスから水素を選択的に透過させ
一酸化炭素、メタン等のガスと分離、精製し、これらガ
スを利用するC1化学用分離膜への応用、更には天然ガス
からの選択透過によるヘリウムの回収等がある。これら
に使用される選択気体透過膜に必要な特性は、気体選択
性と気体透過性が共に大きく、かつ耐熱性、機械的強度
が大きいこと、さらには耐薬品性を有することである。
2. Description of the Related Art Recently, it has been actively studied to separate and concentrate a gas mixture using a selective gas permeable membrane. For example, oxygen can be selectively permeated from the air to obtain oxygen-enriched air, which can be applied to combustion systems or medical applications, and also to coal, natural gas, etc. as raw materials for steam reforming and pyrolysis. Hydrogen is selectively permeated from gas or waste gas from steelworks, etc. to separate and purify it from gases such as carbon monoxide and methane, and these gases are used to apply to C 1 chemical separation membranes, as well as natural gas. There is recovery of helium by selective permeation from The characteristics required for the selective gas permeable membrane used for these are that both the gas selectivity and the gas permeability are large, and that the heat resistance and the mechanical strength are large, and further, that they have chemical resistance.

発明が解決しようとする問題点 現在まで知られている高分子の気体透過特性は一般的に
気体透過性が向上すると選択性が低下し、一方選択性が
大きくなると透過性が低くなるというように、選択性と
透過性は相反する関係にある。例えば気体透過性が優れ
るポリトリメチルシリルプロピン(PMSP)は酸素透過係
O2が1.60×10-6cc・cm/cm2・sec・cmHgと非常に大
きい透過性を示すが、一方酸素と窒素の透過係数比αは
約1.4と低い。この材料に次ぐ透過性の高い材料として
シリコーンゴムが知られているがこの材料のO2は6.0
×10-8cc・cm/cm2・sec・cmHgでαは約2.0である。
Problems to be Solved by the Invention Generally, the gas permeability characteristics of polymers known to date are such that the selectivity decreases as the gas permeability increases, while the permeability decreases as the selectivity increases. , Selectivity and permeability are in the opposite relationship. For example, polytrimethylsilylpropyne (PMSP), which has excellent gas permeability, has an oxygen permeability coefficient O2 of 1.60 × 10 -6 cc · cm / cm 2 · sec · cmHg, which is extremely high, while oxygen and nitrogen permeability is high. The coefficient ratio α is low at about 1.4. Silicone rubber is known as the next most permeable material after this material, but the O2 of this material is 6.0.
Α is about 2.0 at × 10 -8 cc · cm / cm 2 · sec · cmHg.

これらの材料に対し選択性の優れる材料としてのポリフ
ェニレンオキサイド(PPO)がある。この材料のαは約
4.0と選択性は約2倍に向上する一方その透過性はO2
≒2.8×10-9cc・cm/cm2・sec・cmHgと低くなってしま
う。
Polyphenylene oxide (PPO) is a material having excellent selectivity for these materials. Α of this material is about
The selectivity is 4.0 times that of 4.0, while its permeability is O2.
≒ 2.8 × 10 -9 cc ・ cm / cm 2・ sec ・ cmHg

このように気体選択性と透過性がいずれも優れた高分子
はまだ存在せず、従って選択透過膜の気体透過性に合わ
せて用途開発を行なっているのが現状である。
As described above, a polymer having excellent gas selectivity and permeability is not yet present, and therefore the present situation is that the application is developed according to the gas permeability of the selectively permeable membrane.

本発明は上記問題点を解決するもので、気体分離性と気
体透過性の両特性に優れた選択気体透過複合膜の提供を
目的とするものである。
The present invention solves the above problems, and an object of the present invention is to provide a selective gas permeable composite membrane excellent in both properties of gas separation and gas permeability.

問題点を解決するための手段 本発明は上記目的を達成するためになされたもので、ガ
ラス転移温度(Tg)が180℃以上のアモルファス高分子
膜の表面または内部に、キレート化合物を存在させた選
択気体透過複合膜を提供するものである。
Means for Solving the Problems The present invention has been made to achieve the above object, and a chelate compound was allowed to exist on the surface or inside of an amorphous polymer film having a glass transition temperature (Tg) of 180 ° C. or higher. A selective gas permeable composite membrane is provided.

作用 本発明はかかる構成にすることにより、高気体透過性で
かつ高分離性の複合膜が得られた。
Effect With the present invention having such a structure, a composite membrane having high gas permeability and high separability can be obtained.

なお本発明のアモルファス高分子膜材料としては一般式
が、 (但し、R1は水素原子、ハロゲン原子、アルキル基のい
ずれかで示され、R2はトリアルキルシリル基、アルキル
基、フェニル基より成る群より選ばれる)で示されるア
セチレン高分子もしくはポリフェニレンオキサイドある
いはポリスルホンが適当であり、一方高分子表面及び内
部に存在させる物質としてはキレート化合物が良好で特
にフタロシアニンまたはアミンもしくは複素環式アミン
の化学構造を有する化合物が有効である。
The general formula for the amorphous polymer film material of the present invention is (Wherein R 1 is a hydrogen atom, a halogen atom, or an alkyl group, and R 2 is selected from the group consisting of a trialkylsilyl group, an alkyl group, and a phenyl group) or a polyphenylene oxide Alternatively, polysulfone is suitable, while a chelate compound is preferable as a substance to be present on the surface and inside of the polymer, and a compound having a chemical structure of phthalocyanine or amine or heterocyclic amine is particularly effective.

またこの両者の複合化の方法としてはアモルファス高分
子のフィルムもしくは薄膜を製造し、これを基材とし
て、これにキレート化合物を真空蒸着する方法が最も良
効な特性を与えた。
As a method of compounding both of them, a method of producing an amorphous polymer film or thin film, and using this as a base material, and vacuum-depositing a chelate compound on the base material gave the most effective characteristics.

実施例 以下に本発明の実施例を詳細に説明する。Examples Hereinafter, examples of the present invention will be described in detail.

〈実施例−1〉 アモルファス高分子材料としてポリフェニレンオキサイ
ド(PPO)重量平均分子量w≒20万を用い、この材料
のトルエン溶液から流延法により膜厚が約50μmのフィ
ルムを作製した。次いでこのフィルムを基材として鉄フ
タロシアニン(試薬特級、東京化成)を真空蒸着した。
この時の鉄フタロシアニンの蒸着速度は約50Å/minとし
て行い500Åの膜厚まで蒸着をしてPPOと鉄フタロシアニ
ン複合膜を作成した。この様にして得られた複合膜の酸
素透過係数O2は2.71×10-9cc・cm/cm2・sec・cmHgで
酸素と窒素の透過係数比は約8.0の値を示した。
Example 1 Polyphenylene oxide (PPO) weight average molecular weight w≈200,000 was used as an amorphous polymer material, and a film having a thickness of about 50 μm was prepared from a toluene solution of this material by a casting method. Then, using this film as a base material, iron phthalocyanine (special grade reagent, Tokyo Kasei) was vacuum-deposited.
At this time, the deposition rate of iron phthalocyanine was set to about 50 Å / min and vapor deposition was performed to a film thickness of 500 Å to form a PPO / iron phthalocyanine composite film. The oxygen permeation coefficient O2 of the composite membrane thus obtained was 2.71 × 10 -9 cc · cm / cm 2 · sec · cmHg, and the oxygen / nitrogen permeation coefficient ratio was about 8.0.

〈実施例−2〉 実施例−1の場合と同様の手法によりアモルファス高分
子膜としてポリトリメチルシリルプロピン(PMSP)フィ
ルムを基材として鉄フタロシアニンを蒸着した。その結
O2は約2.0×10-7cc・cm/cm2・sec・cmHgでα(O2
N2)は約3.5となった。
<Example-2> Iron phthalocyanine was vapor-deposited using a polytrimethylsilylpropyne (PMSP) film as an amorphous polymer film as a base material by the same method as in Example-1. As a result, O2 is approximately 2.0 × 10 -7 cc · cm / cm 2 · sec · cmHg and α ( O2
/ N2 ) was about 3.5.

〈実施例−3〉 実施例−2と同様のフィルム基材にキレート化合物の種
類を変化してそれぞれの特性を表に示す。
<Example-3> The type of chelate compound was changed to the same film base material as in Example-2, and the respective properties are shown in the table.

いずれの場合も高い酸素透過係数O2と、高い透過係数
O2N2が得られた。
In each case, a high oxygen permeability coefficient O2 and a high permeability coefficient ratio O2 / N2 were obtained.

〈実施例−4〉 フィルム基材としてポリスルホン(PS)非対称膜(東洋
クロス(株)社製)を用い、このスキン層部分に鉄フタ
ロシアニンを約2000Å蒸着した。この様に複合化した膜
O2が3.5×10-7cc・cm/cm2・sec・cmHgで酸素と窒素
の透過係数比(O2N2)が約4.1と非常に傷れた気
体透過性を示した。
<Example-4> A polysulfone (PS) asymmetric membrane (manufactured by Toyo Cross Co., Ltd.) was used as a film substrate, and iron phthalocyanine was vapor-deposited at about 2000 liters on the skin layer portion. The membrane composited in this way has an O2 of 3.5 × 10 -7 cc · cm / cm 2 · sec · cmHg and a permeability coefficient ratio ( O 2 / N 2 ) of oxygen and nitrogen of about 4.1, which is a very damaged gas permeability. showed that.

本実施例ではアモルファス高分子としてPMSP,POPSの例
を示したがガラス転移温度が180℃以上のアモルファス
高分子であれば同様な効果が出ることはもちろんであ
り、また高分子表面または内部に存在させる物質が他の
キレート化合物であっても良いことも同様である。
In this example, PMSP and POPS were shown as examples of the amorphous polymer, but the same effect can be obtained if the glass transition temperature is 180 ° C. or higher. Similarly, the substance to be caused may be another chelate compound.

発明の効果 以上要するに本発明は、ガラス転移温度が180℃以上の
アモルファス高分子膜の表面または内部に、キレート化
合物を存在させた選択気体透過複合膜を提供するもの
で、非常に高気体透過性でかつ高分離性の選択気体透過
複合膜とすることが可能である。
EFFECTS OF THE INVENTION In summary, the present invention provides a selective gas permeable composite film in which a chelate compound is present on the surface or inside of an amorphous polymer film having a glass transition temperature of 180 ° C. or more, and has a very high gas permeability. It is possible to obtain a selective gas permeable composite membrane having high separation property.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅川 史朗 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (56)参考文献 特開 昭59−98706(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shiro Asakawa 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Matsushita Giken Co., Ltd. (56) Reference JP-A-59-98706 (JP, A)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガラス転移温度が180℃以上のアモルファ
ス高分子膜の表面または内部に、キレート化合物を存在
させた選択気体透過複合膜。
1. A selective gas permeable composite film in which a chelate compound is present on the surface or inside of an amorphous polymer film having a glass transition temperature of 180 ° C. or higher.
【請求項2】アモルファス高分子膜の一般式が (但し、R1は水素原子、ハロゲン原子、アルキル基のい
ずれかで示され、R2はトリアルキルシリル基、アルキル
基、フェニル基より成る群より選ばれる)で示されるア
セチレン高分子である特許請求の範囲第1項記載の選択
気体透過複合膜。
2. The general formula of an amorphous polymer film is (Where R 1 is a hydrogen atom, a halogen atom or an alkyl group, and R 2 is selected from the group consisting of a trialkylsilyl group, an alkyl group and a phenyl group) The selective gas permeable composite membrane according to claim 1.
【請求項3】アモルファス高分子膜がポリフェニレンオ
キサイドである特許請求の範囲第1項記載の選択気体透
過複合膜。
3. The selective gas permeable composite film according to claim 1, wherein the amorphous polymer film is polyphenylene oxide.
【請求項4】アモルファス高分子膜がポリスルホンであ
る特許請求の範囲第1項記載の選択気体透過複合膜。
4. The selective gas permeable composite membrane according to claim 1, wherein the amorphous polymer membrane is polysulfone.
【請求項5】高分子膜の表面または内部に設けられたキ
レート化合物が蒸着により設けられた特許請求の範囲第
1項から第4項のいずれか記載の選択気体透過複合膜。
5. The selective gas permeable composite film according to claim 1, wherein the chelate compound provided on the surface or inside the polymer film is provided by vapor deposition.
【請求項6】キレート化合物がフタロシアニンである特
許請求の範囲第1項から第5項のいずれか記載の選択気
体透過複合膜。
6. The selective gas permeable composite membrane according to any one of claims 1 to 5, wherein the chelate compound is phthalocyanine.
【請求項7】キレート化合物がアミンもしくは複素環式
アミンを含む化学構造である特許請求の範囲第1項から
第5項のいずれか記載の選択気体透過複合膜。
7. The selective gas permeable composite membrane according to any one of claims 1 to 5, wherein the chelate compound has a chemical structure containing an amine or a heterocyclic amine.
JP60251348A 1985-11-08 1985-11-08 Selective gas permeable composite membrane Expired - Lifetime JPH0761433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251348A JPH0761433B2 (en) 1985-11-08 1985-11-08 Selective gas permeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251348A JPH0761433B2 (en) 1985-11-08 1985-11-08 Selective gas permeable composite membrane

Publications (2)

Publication Number Publication Date
JPS62110730A JPS62110730A (en) 1987-05-21
JPH0761433B2 true JPH0761433B2 (en) 1995-07-05

Family

ID=17221487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251348A Expired - Lifetime JPH0761433B2 (en) 1985-11-08 1985-11-08 Selective gas permeable composite membrane

Country Status (1)

Country Link
JP (1) JPH0761433B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136226A (en) * 1985-12-07 1987-06-19 Agency Of Ind Science & Technol Gas separation membrane
US5176724A (en) * 1987-11-10 1993-01-05 Matsushita Electric Industrial Co., Ltd. Permselective composite membrane having improved gas permeability and selectivity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998706A (en) * 1982-11-29 1984-06-07 Toshiba Corp Oxygen gas permselective composite membrane

Also Published As

Publication number Publication date
JPS62110730A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
US11071953B2 (en) Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
US9975092B2 (en) Gas separation membrane and gas separation membrane module
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
JPH07114935B2 (en) Polyarylate separation membrane
JP2009106912A5 (en)
JPH0761433B2 (en) Selective gas permeable composite membrane
JP6511523B2 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound
Aoyama et al. Atmospheric-pressure plasma modification to control porous structure and affinity of organosilica membranes for pervaporation dehydration: Effect of plasma modification time
JPS62183837A (en) Gas permeable membrane
JPS6380826A (en) Selective gas-permeable composite membrane
Yoshikawa et al. Specialty polymeric membranes. V. Selective permeation of carbon dioxide through synthetic polymeric membranes having 2‐(N, N‐dimethyl) aminoethoxycarbonyl moiety
JP3501951B2 (en) Carbon dioxide separation membrane
WO2016052075A1 (en) Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator
JPS62110728A (en) Permselective compound film for gas
JPWO2017122486A1 (en) Gas separation membrane, gas separation membrane manufacturing method, gas separation membrane module, and gas separation device
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPH0575450B2 (en)
JPS62286518A (en) Gas permselective composite membrane
JPH01143620A (en) Selective gas-permeable complex membrane
JPS63126523A (en) Gas permselective composite membrane
JPH0332728A (en) Gas separating laminated membrane
JPS6071004A (en) Gas permselective membrane
JPS6226803B2 (en)
JPS63100917A (en) Gas permselective membrane and its manufacture
JPS63126524A (en) Gas permselective composite membrane