JPH01143620A - Selective gas-permeable complex membrane - Google Patents

Selective gas-permeable complex membrane

Info

Publication number
JPH01143620A
JPH01143620A JP30220187A JP30220187A JPH01143620A JP H01143620 A JPH01143620 A JP H01143620A JP 30220187 A JP30220187 A JP 30220187A JP 30220187 A JP30220187 A JP 30220187A JP H01143620 A JPH01143620 A JP H01143620A
Authority
JP
Japan
Prior art keywords
gas
phthalocyanine
layer
selective gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30220187A
Other languages
Japanese (ja)
Inventor
Midori Seki
関 美登利
Yukihiro Saito
斉藤 幸廣
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30220187A priority Critical patent/JPH01143620A/en
Publication of JPH01143620A publication Critical patent/JPH01143620A/en
Priority to US07/753,020 priority patent/US5176724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve both gas permeability and gas separability, by forming the lowermost layer of gas-separable membrane layers using glassy high polymers having a glass-transition temperature of 200 deg.C or higher, and providing a layer of phthalocyanine or a coordination complex thereof on the surface of a porous support body. CONSTITUTION:The lowermost layer of gas-separable compound membrane layers is formed using glassy high polymers having a glass-transition temperature of 200 deg.C or higher, such as polyphenylene oxide, acetylene high polymer etc., while a layer of phthalocyanine or a coordination complex thereof, e.g. being 10-2,000Angstrom in thickness, is provided on the surface of a porous support body made of polyether sulfone etc. In this manner, both gas permeability and gas separability can be improved compared with where a phthalocyanine layer is not provided. For example, oxygen permeating rate is raised from ca. 0.6X10<-1> to ca. 1.0X10<-1>cc/cm<2>.sec.atm and O2/N2 separation coefficient from ca. 4.0 to ca. 4.5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は混合気体から特定の気体を分離濃縮するのに用
いる選択性気体透過複合膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a selective gas permeable composite membrane used to separate and concentrate a specific gas from a gas mixture.

従来の技術 近年、混合気体より特定の気体を分離・濃縮するのに選
択的気体透過性を有する高分子膜を用いる方法が盛んに
研究・実用化されている。例えば、天然ガスからのヘリ
ウム採取や、工場排気からの水素ガスの回収等があるが
、なかでも大気中から酸素を選択的に透過させて酸素富
化空気を作る技術は応用分野が広く、各種化学プロセス
、汚泥処理、燃焼システム、医療等、産業界に与える影
響はきわめて犬である。このような技術に利用される高
分子膜に求められる特性としては、分離すべき気体の選
択性と気体透過性が共に大きいということである。
BACKGROUND OF THE INVENTION In recent years, methods of using polymer membranes having selective gas permeability to separate and concentrate specific gases from mixed gases have been actively researched and put into practical use. Examples include helium extraction from natural gas and recovery of hydrogen gas from factory exhaust, but the technology to selectively permeate oxygen from the atmosphere to create oxygen-enriched air has a wide range of applications and various The impact on industry, such as chemical processes, sludge treatment, combustion systems, and medicine, is extremely significant. The characteristics required of a polymer membrane used in such technology are that it has both high selectivity for the gas to be separated and high gas permeability.

発明が解決しようとする問題点 現在知られている高分子の中でも、特に気体透過性に優
れるものとして、ポリトリメチルシリルプロピン(PM
SP)では酸素透過係数がPotが1.60X 10 
”Clニーcm / C4・see 0cmHg、シリ
ヨー7ゴ。
Problems to be Solved by the Invention Among currently known polymers, polytrimethylsilylpropyne (PM) has particularly excellent gas permeability.
SP), the oxygen permeability coefficient of Pot is 1.60X 10
”Cl knee cm/C4・see 0cmHg, Siriyo 7go.

ではPotが〜6.OX 10 cc ・cm/crt
i −5ee ・cyHg等があるが、これらの酸素と
窒素の分離数α(PoV/PN* )id前者が約1.
4後者で約2.0程度でしかない。一方分離係数が大き
い高分子材料は多数あるが、いずれも気体透過性が悪く
、例えばポリフェニレンオキサイドではαが約4.0と
大きいが、Po、は2.8×101J:・crIV/c
rd・就・鋸Hgと極めて小さい。このように高分子膜
では一般に気体透過性と気体選択性とは一方が大きくな
るともう一方が低下するという関係にあり、特定の気体
を高濃度で多量に分離できるという選択性気体透過複合
膜が強く求められていた。
So Pot is ~6. OX 10 cc/cm/crt
i -5ee ・cyHg, etc., but the separation number α (PoV/PN*)id of these oxygen and nitrogen is about 1.
4 The latter is only about 2.0. On the other hand, there are many polymeric materials with large separation coefficients, but they all have poor gas permeability.For example, polyphenylene oxide has a large α of about 4.0, but Po is 2.8×101J:・crIV/c
Extremely low rd/saw/saw Hg. In general, gas permeability and gas selectivity of polymer membranes are in a relationship such that as one increases, the other decreases, and selective gas permeable composite membranes are capable of separating large quantities of specific gases at high concentrations. It was strongly requested.

またこのような膜は気体透過特性の経時の変化が小さく
ない。前記PMSPでは、膜厚〜0.1μmの超薄膜状
態にすると、製膜後直ちに劣化し始め、十数分径には気
体透過速度が10分の1まで低下するなど、極めて不安
定である。その原因として、ガラス状高分子に特徴的な
、構造の緩和現象が高分子の気体透過特性の変化を引き
起こしていると言われており、同様な現象は他のガラス
状高分子ポリフェニレンオキサイド、ポリスルホン等に
も観察される。
In addition, such a membrane does not show small changes in gas permeation characteristics over time. When the PMSP is made into an ultra-thin film with a film thickness of ~0.1 μm, it begins to deteriorate immediately after film formation, and the gas permeation rate decreases to one-tenth when the film is about ten minutes thick, making it extremely unstable. The reason for this is said to be that the structural relaxation phenomenon characteristic of glassy polymers causes changes in the gas permeability properties of the polymers, and similar phenomena occur in other glassy polymers such as polyphenylene oxide, polysulfone, etc. It is also observed in

本発明は上記のような問題点を解決するもので、気体透
過性、気体分離性に優れた選択性気体透過複合膜の提供
を目的とするものである。
The present invention solves the above-mentioned problems and aims to provide a selective gas permeable composite membrane with excellent gas permeability and gas separation properties.

問題点を解決するための手段 本発明は、選択的気体透過性を有する透過膜の少なくと
も最下層がガラス転移温度200℃以上のガラス状高分
子より成シ、前記透過膜を支持する多孔質支持体の表面
にフタロシアニンもしくはフタロシアニン配位化合物よ
り成る層を具備した選択とする選択性気体透過複合膜に
より上記目的を達成するものである。
Means for Solving the Problems The present invention provides a permeable membrane having selective gas permeability, at least the bottom layer of which is made of a glassy polymer having a glass transition temperature of 200° C. or higher, and a porous support supporting the permeable membrane. The above object is achieved by an optional selective gas permeable composite membrane having a layer of phthalocyanine or a phthalocyanine coordination compound on the surface of the body.

作用 本発明の選択性気体透過複合膜は酸素透過流量(Fo、
)が、4.OX 10〜7.2X10’(cr:/cr
A ・式・atm)程度あり、従来我々の開発したポリ
オルガノシロキサン共重合体のFo、 〜1.5X 1
6”(ct/crl+ −5ec−atm)の約2倍以
上もの高透過性とすることができる。
Function The selective gas permeable composite membrane of the present invention has an oxygen permeation flow rate (Fo,
) is 4. OX 10~7.2X10'(cr:/cr
A・Formula・atm) Fo of the polyorganosiloxane copolymer that we have developed, ~1.5X 1
6" (ct/crl+-5ec-atm), the permeability can be about twice or more.

さらに分離性α(Fox/FN雪)は30〜5.0と増
大する。このように本発明は初期特性として材料自身の
もつ透過性をあまり低下させずに分離性を向上させるこ
とが可能であり、本発明が非常に優れた選択性気体透過
複合膜であることを発見した。
Further, the separability α (Fox/FN snow) increases to 30 to 5.0. In this way, it was discovered that the present invention is capable of improving separation performance without significantly reducing the permeability of the material itself as an initial property, and that the present invention is a highly selective gas permeable composite membrane. did.

本発明に用いる支持体としては抽出法、相分離法、延伸
法などの種々の方法で作製された多孔質の支持体(たと
えばセルロース系デ過膜、テフロン多孔膜、ポリプロピ
レン多孔膜、ポリエチレン多孔膜、ポリスルホン多孔膜
、ポリエーテルスルホン膜、ポリカーボネート多孔膜な
ど)、不織布状支持体等が使用可能であるが、本発明の
複合膜ではポリスルホン、ポリエーテルスルホン系の支
持体膜がきわめて良好な結果を示した。この支持体表面
に形成させる層としては、フタロシアニンもしくはフタ
ロシアニン配位化合物が適しており、形成手段としては
真空蒸着法、含浸法、あるいは水面展開でこれら化合物
のLB膜を作成し、これを付着させる方法等があげられ
る。この層の厚さとしては10A0〜200OA’が好
適である。
The supports used in the present invention include porous supports prepared by various methods such as extraction methods, phase separation methods, and stretching methods (e.g., cellulose membranes, Teflon porous membranes, polypropylene porous membranes, polyethylene porous membranes). , polysulfone porous membranes, polyethersulfone membranes, polycarbonate porous membranes, etc.), non-woven fabric supports, etc., but in the composite membrane of the present invention, polysulfone and polyethersulfone-based support membranes have shown very good results. Indicated. Phthalocyanine or a phthalocyanine coordination compound is suitable for the layer to be formed on the surface of the support, and the forming method is to create an LB film of these compounds by vacuum evaporation, impregnation, or water surface development, and then adhere it. Examples include methods. The thickness of this layer is preferably 10A0 to 200OA'.

本発明に用いるガラス転移温度200℃以上の高分子と
しては、一般式 %式% 〔但し、R1は水素原子、C1〜Sのアルキル基または
ハロゲン原子より成る群より選ばれ、R2はCI〜・・
のアルキル基、(γ“(Xは水素原子、C・〜・のアル
キル基、ハロゲン原子のいずれかより成る)CH。
The polymer having a glass transition temperature of 200°C or higher used in the present invention has the general formula % [wherein R1 is selected from the group consisting of a hydrogen atom, a C1 to S alkyl group, or a halogen atom, and R2 is CI to・
an alkyl group, (γ" (X is a hydrogen atom, an alkyl group of C..., or a halogen atom) CH.

成る)より成る群より選ばれる〕で示されるアセチレン
高分子、あるいはポリフェニレンオキサイド、芳香族ポ
リスルホン、ポリフマール酸エステル等が適している。
Suitable are acetylene polymers selected from the group consisting of ), polyphenylene oxide, aromatic polysulfone, polyfumaric acid ester, and the like.

これらの薄膜を作製するにはこれら部分子の希薄溶液を
調整し、水面上に溶液を滴下して固体膜化する水面展開
法が好適であり、このガラス状高分子層の厚さは50〜
2000 A’ が好ましい。複合化は、前記のように
フタロシアニンもしくはフタロシアニン配位化合物の表
面層を与えた支持体に前記ガラス状高分子膜を付着させ
れば良い。
In order to produce these thin films, a water surface development method is suitable, in which a dilute solution of these molecules is prepared and the solution is dropped onto the water surface to form a solid film.
2000 A' is preferred. Composite formation can be accomplished by attaching the glassy polymer membrane to a support provided with a surface layer of phthalocyanine or a phthalocyanine coordination compound as described above.

またこのようにして作製した複合膜にさらに防汚、防湿
あるいは帯電防止等の機能を与えるために、気体透過性
を妨げないような層をオーバーコするが、本発明はこれ
に限定されるものではない。
In addition, in order to further impart functions such as antifouling, moisture proofing, and antistatic properties to the composite membrane produced in this manner, a layer that does not impede gas permeability is overcoated, but the present invention is not limited to this. do not have.

〈実施例−1〉 多孔質支持体としてポリエーテルスルホン(東洋クロス
社製)を用い、これに10TOの真空中でフタロシアニ
ン鉄を430℃に加熱、3分間の蒸着を行った。次いで
、ガラス状高分子としてポリトリメチルシリルプロピン
(PMSP)を用いて1we % )ルエン溶液を調整
し、これをイオン交換水上で展開して厚さ〜01μmの
超薄膜を得た。この超薄膜を前記の支持体に付着させ、
気泡流量計を用いて気体の透過速度を測定したところ、
酸素の透過速度Fogは〜7.I X 10”CtlC
rd ”56(” atmで、酸素/窒素分離係数αは
約32の値を得た。一方フタロシアニン鉄を蒸着しない
支持体を用いて同様に複合化した膜では、Fog 〜3
.8 X 10 ’ Ct /crA−see・atm
、  α〜2.8までしか得られなかった。このように
本実施例では酸素透過性を低下させることなく、分離性
を大幅に改善できることがわかる。
<Example-1> Polyether sulfone (manufactured by Toyo Cross Co., Ltd.) was used as a porous support, and phthalocyanine iron was heated to 430° C. and vapor-deposited for 3 minutes in a vacuum of 10 TO. Next, a 1we% toluene solution was prepared using polytrimethylsilylpropyne (PMSP) as a glassy polymer, and this was developed on ion-exchanged water to obtain an ultra-thin film with a thickness of ~01 μm. This ultra-thin film is attached to the support,
When the gas permeation rate was measured using a bubble flowmeter,
The oxygen permeation rate Fog is ~7. I x 10”CtlC
rd ``56 ('' atm), the oxygen/nitrogen separation coefficient α was obtained with a value of about 32. On the other hand, in a membrane similarly composited using a support without evaporated iron phthalocyanine, Fog ~3
.. 8 X 10' Ct/crA-see・atm
, only α ~ 2.8 was obtained. Thus, it can be seen that in this example, the separability can be significantly improved without reducing the oxygen permeability.

〈実施例−2〉 実施例−1においてガラス状高分子としてポリフェニレ
ンオキサイド(P P O,Mw中15万)を用い、同
様に複合膜化した後、表面にハイドロジエンシランをコ
ートしたところ、Fog〜1.OX 10α/cn1・
式・atm、α〜4.5の初期特性を得た。一方フタロ
シアニン層の無い複合膜では、Fog〜0.6X 10
 ct/crtt −see−atm、α〜4.0であ
った。
<Example-2> When polyphenylene oxide (PPO, Mw of 150,000) was used as the glassy polymer in Example-1 and a composite film was formed in the same manner, the surface was coated with hydrogen silane. ~1. OX 10α/cn1・
Initial characteristics of the formula atm, α~4.5, were obtained. On the other hand, for a composite membrane without a phthalocyanine layer, Fog ~ 0.6X 10
ct/crtt-see-atm, α~4.0.

発明の効果 以上本発明は、選択的気体透過性を有する透過膜の少な
くとも最下層がガラス転移温度200℃以上のガラス状
高分子より成り、前記透過膜を支持する多孔質支持体の
表面に7タロシアニンもしくはフタロシアニン配位化合
物より成る層を備えた選択性気体透過複合膜を提供する
もので、従来の気体透過膜に比べ、気体透過性と気体分
離性の両者に優れた高性能の気体透過膜である。
Effects of the Invention The present invention provides that at least the lowermost layer of a permeable membrane having selective gas permeability is made of a glassy polymer having a glass transition temperature of 200°C or higher, and that the surface of the porous support supporting the permeable membrane is This product provides a selective gas permeable composite membrane equipped with a layer made of talocyanine or phthalocyanine coordination compound, and is a high-performance gas permeable membrane with superior gas permeability and gas separation performance compared to conventional gas permeable membranes. It is.

Claims (4)

【特許請求の範囲】[Claims] (1)選択的気体透過性を有する透過膜の少なくとも最
下層がガラス転移温度200℃以上のガラス状高分子よ
り成り、前記透過膜を支持する多孔質支持体の表面にフ
タロシアニンもしくはフタロシアニン配位化合物より成
る層を具備することを特徴とする選択性気体透過複合膜
(1) At least the bottom layer of the permeable membrane having selective gas permeability is made of a glassy polymer having a glass transition temperature of 200°C or higher, and phthalocyanine or a phthalocyanine coordination compound is added to the surface of the porous support supporting the permeable membrane. A selective gas permeable composite membrane comprising a layer consisting of:
(2)ガラス状高分子が一般式 ▲数式、化学式、表等があります▼(2) Glassy polymer has general formula ▲Contains mathematical formulas, chemical formulas, tables, etc.▼ (3)ガラス状高分子がポリフェニレンオキサイドであ
る特許請求の範囲第1項記載の選択性気体透過複合膜。
(3) The selective gas permeable composite membrane according to claim 1, wherein the glassy polymer is polyphenylene oxide.
(4)ガラス状高分子が芳香族ポリスルホンである特許
請求の範囲第1項記載の選択性気体透過複合膜。
(4) The selective gas permeable composite membrane according to claim 1, wherein the glassy polymer is aromatic polysulfone.
JP30220187A 1987-11-10 1987-11-30 Selective gas-permeable complex membrane Pending JPH01143620A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30220187A JPH01143620A (en) 1987-11-30 1987-11-30 Selective gas-permeable complex membrane
US07/753,020 US5176724A (en) 1987-11-10 1991-08-26 Permselective composite membrane having improved gas permeability and selectivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30220187A JPH01143620A (en) 1987-11-30 1987-11-30 Selective gas-permeable complex membrane

Publications (1)

Publication Number Publication Date
JPH01143620A true JPH01143620A (en) 1989-06-06

Family

ID=17906157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30220187A Pending JPH01143620A (en) 1987-11-10 1987-11-30 Selective gas-permeable complex membrane

Country Status (1)

Country Link
JP (1) JPH01143620A (en)

Similar Documents

Publication Publication Date Title
US4657564A (en) Fluorinated polymeric membranes for gas separation processes
US4156597A (en) Ultrathin polyetherimide membrane and gas separation process
US7339008B2 (en) Membranes for selective gas separation
JPS6094106A (en) Manufacture of compound membrane
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JP2003062422A (en) Gas separation membrane and method for manufacturing the same
JPH01143620A (en) Selective gas-permeable complex membrane
JPS60232205A (en) Gas separating molded body
JPH03262523A (en) Oxygen enriching composite membrane
JPH0747221A (en) Composite membrane for gas separation and its preparation
JPS6071023A (en) Gas permselective membrane
JPS6380826A (en) Selective gas-permeable composite membrane
KR20040031921A (en) A method for preparing ionic liquid supported liquid membrane
JPS62110730A (en) Permselective compound film for gas
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS62227422A (en) Composite membrane and manufacture of same
JPS61200833A (en) Carbon dioxide permselective membrane
JPH02237627A (en) Permselective membrane for gas
WO2016052075A1 (en) Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator
JPS6230524A (en) Permselective membrane
JPS63126523A (en) Gas permselective composite membrane
JPS6388019A (en) Gas permselective composite membrane
JPH01123618A (en) Composite gas separation membrane
JPH0761426B2 (en) Selective gas permeable composite membrane
JPS59183802A (en) Permselective membrane for separation of gas