WO2016052075A1 - Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator - Google Patents

Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator Download PDF

Info

Publication number
WO2016052075A1
WO2016052075A1 PCT/JP2015/075187 JP2015075187W WO2016052075A1 WO 2016052075 A1 WO2016052075 A1 WO 2016052075A1 JP 2015075187 W JP2015075187 W JP 2015075187W WO 2016052075 A1 WO2016052075 A1 WO 2016052075A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
gas separation
separation membrane
siloxane bond
resin layer
Prior art date
Application number
PCT/JP2015/075187
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 望月
澤田 真
岳史 成田
滋英 伊藤
浩之 野田
向井 厚史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015146307A external-priority patent/JP6316779B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016052075A1 publication Critical patent/WO2016052075A1/en
Priority to US15/458,407 priority Critical patent/US10427111B2/en
Priority to US16/441,762 priority patent/US11071953B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a gas separation membrane, a method for producing a gas separation membrane, a gas separation membrane module, and a gas separation device. More specifically, the first and fourth aspects of the present invention include a gas separation membrane having high gas separation selectivity under high pressure, a method for producing the gas separation membrane, and the gas separation membrane.
  • the present invention relates to a gas separation membrane module and a gas separation device having the gas separation membrane module described above. More specifically, the second aspect of the present invention is a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and good bending resistance, and a gas having the gas separation membrane described above.
  • the present invention relates to a separation membrane module and a gas separation device having the gas separation membrane module described above.
  • the third aspect of the present invention is a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure and excellent pressure resistance, and a gas having the gas separation membrane described above.
  • the present invention relates to a separation membrane module and a gas separation device having the gas separation membrane module described above.
  • a material made of a polymer compound has a gas permeability unique to each material. Based on the properties, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound (gas separation membrane). As an industrial application of this gas separation membrane, it is related to the problem of global warming, and it is considered to separate and recover it from large-scale carbon dioxide generation sources in thermal power plants, cement plants, steelworks blast furnaces, etc. Has been.
  • This membrane separation technology is attracting attention as a means to solve environmental problems with relatively small energy, and mainly contains natural gas and biogas containing methane and carbon dioxide (biological wastes, organic fertilizers, biodegradable substances, It is used as a means for removing carbon dioxide from gas generated by fermentation and anaerobic digestion of sewage, garbage and energy crops.
  • the following methods are known in order to secure gas permeability and gas separation selectivity by making a portion contributing to gas separation into a thin layer in order to obtain a practical gas separation membrane.
  • a method of making a portion contributing to separation as an asymmetric membrane a thin layer called a skin layer, or a thin layer providing a thin layer (Selective Layer) contributing to gas separation on a support having mechanical strength A method using a thin film composite (Thin Film composite) or a method using a hollow fiber including a high density layer contributing to gas separation is known.
  • the typical performance of the gas separation membrane includes gas separation selectivity when obtaining a desired gas from a mixed gas and gas permeability of the desired gas.
  • gas separation membranes having various configurations have been studied for the purpose of improving gas permeability and gas separation selectivity.
  • Patent Document 1 a non-porous intermediate layer containing a compound having a siloxane bond is provided on a porous support, and a gas separation membrane having a layer containing cellulose triacetate or polyimide thereon is provided.
  • a method for improving gas separation selectivity such as a mixed gas of carbon dioxide and methane is described.
  • Patent Document 2 low-temperature plasma treatment was performed on the surface of the gas separation composite membrane with a non-polymerizable gas, and then a thin layer film of a silicon-containing polymer such as a compound having a siloxane bond was formed on the plasma treatment surface.
  • a method for producing a laminated composite membrane for gas separation that is highly selective (gas separation selectivity) is described.
  • polydimethylsiloxane or the like is cited as an example of a gas separation composite membrane that is subjected to low-temperature plasma treatment.
  • argon or the like is cited as a non-polymerizable gas used in the low temperature plasma treatment.
  • Patent Document 3 discloses a composite film in which a thin film made of a siloxane compound having a specific structure is laminated on a polymer porous support, and a plasma polymerized film is laminated on the thin film.
  • a composite membrane in which only the layer is plasma treated with a non-polymerizable gas is described, and the composite membrane having such a structure is described as having excellent gas selective permeability (high gas separation selectivity and high gas permeability).
  • Patent Document 4 in a thin-layer composite membrane having a support and a layer having separation selectivity made of polydimethylsiloxane or the like, a hydrophilic layer having a thickness of 0.1 ⁇ m or less is formed on the surface of the layer having separation selectivity.
  • a method is described in which the modified surface is provided by performing UV ozone irradiation treatment or subsequent silane coupling agent treatment.
  • the film thickness of the hydrophilic modification surface provided on the surface of the layer having separation selectivity is about 1 nm to 21 nm, and if it is too thick, the gas permeability decreases.
  • plasma processing is described in parallel with UV ozone irradiation processing as an example of hydrophilic modification processing, but an example using plasma processing was not disclosed in the embodiment of this document. .
  • a method of introducing atmospheric gas mainly into argon gas in a process chamber and performing atmospheric pressure plasma processing is cited.
  • Non-Patent Document 1 discloses that the surface of a film composed of a polyimide support and polydimethylsiloxane is treated with a low power of 5 W or less in a minute order (120 seconds), and 30 minutes after treatment under atmospheric pressure at 30 minutes. It has been shown that the ratio of carbon dioxide permeability to carbon is increased compared to the original polydimethylsiloxane, but high gas separation selectivity is not obtained.
  • Non-Patent Document 2 describes that the ratio of oxygen atoms to silicon atoms on the surface increases to 1.6 by treating the surface of the polydimethylsiloxane membrane with high-temperature atmospheric pressure plasma. Selectivity is not obtained.
  • the problem to be solved by the first and fourth aspects of the present invention is to provide a gas separation membrane having high gas permeability and high gas separation selectivity under high pressure.
  • the problem to be solved by the second aspect of the present invention is to provide a gas separation membrane having a high bending resistance and at least one of gas permeability under high pressure and gas separation selectivity.
  • the problem to be solved by the third aspect of the present invention is to provide a gas separation membrane that has high gas permeability under high pressure and gas separation selectivity and is excellent in pressure resistance.
  • a gas separation membrane having a resin layer containing a compound having a siloxane bond, By allowing oxygen atoms to penetrate from the surface of the resin layer containing a compound having a bond to the thickness direction of the resin layer containing a compound having a siloxane bond to at least 10 nm, at least one of gas permeability under high pressure and gas separation selectivity It has been found that a high gas separation membrane can be obtained.
  • a gas separation membrane having a resin layer containing a compound having a siloxane bond has a porous support.
  • gas separation membranes produced by the methods described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 do not have GLe and GLe defined in the present invention, or layers of GLe and GLe defined in the present invention. It was out of the composition or composition range of each region.
  • a gas separation membrane having a resin layer containing a compound having a siloxane bond By controlling the minimum value of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a bond within a specific range, gas permeability and gas under high pressure It has been found that a gas separation membrane having high separation selectivity and excellent pressure resistance can be obtained.
  • gas separation membranes manufactured by the methods described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 have a minimum range of the ratio of the Si 2+ and Si 3+ peaks defined in the present invention to the total Si peak. I was off.
  • the gas separation selectivity of a gas separation membrane correlates with the pore diameter of minute pores existing in the membrane.
  • a method for obtaining the pore diameter of the minute vacancy existing in the film a method of obtaining by calculation by measuring the third component positron lifetime ⁇ 3 by the positron annihilation method is known.
  • the inventors of the present invention calculated the pore size of the microscopic vacancy existing in the gas separation membrane obtained by the method described in Non-Patent Document 1 by measuring the positron lifetime ⁇ 3 of the third component by the positron annihilation method. .
  • the positron lifetime ⁇ 3 of the third component when the positron is injected with the intensity of 1 keV from the surface of the membrane by the positron annihilation method is 4. 21 (ns).
  • the film obtained by depositing silica by CVD had a third component positron lifetime ⁇ 3 of 3.15 (ns) when positrons were injected from the surface of the film by the positron annihilation method with an intensity of 1 keV.
  • positrons are emitted from the surface of the resin layer containing a compound having a siloxane bond with an intensity of 1 keV.
  • a gas separation membrane having at least one of high gas permeability and gas separation selectivity under high pressure can be obtained.
  • the gas separation membranes manufactured by the methods described in Patent Documents 1 to 4 and Non-Patent Document 2 also injected positrons with a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond specified in the present invention. In this case, the positron lifetime ⁇ 3 of the third component was out of a specific range.
  • a gas separation membrane that satisfies any one of the following conditions 1 to 4;
  • Condition 1 a gas separation membrane having a resin layer containing a compound having a siloxane bond,
  • Formula 1 0.9 ⁇ A / B ⁇ 0.55 Formula 2 B ⁇ 1.7
  • A is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms.
  • B represents an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond
  • Condition 2 porous support A, A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A, The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
  • a resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
  • the thickness of GLe is 50 to 1000 nm, The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
  • R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3);
  • Condition 3 a gas separation membrane having a resin layer containing a compound having a siloxane bond, A gas separation membrane having a minimum value Si 0 of 1 to 40% of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond;
  • Condition 4 a gas separation membrane having a resin layer containing a compound having a siloxane bond, A gas separation membrane in which a positron lifetime ⁇ 3 of a third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of a resin layer containing a compound having a siloxane bond.
  • the gas separation membrane according to [1] preferably satisfies condition 1.
  • the compound having a siloxane bond includes at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
  • R 11 represents a substituent
  • * represents a bonding site with # in General Formula (2) or General Formula (3)
  • # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  • the surface of the resin layer containing the compound having a siloxane bond is a repeating unit represented by the general formula (1) and at least the general formula It is preferable to include a compound having a siloxane bond having the repeating unit represented by (2) or the repeating unit represented by the general formula (3).
  • the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond is 1. It is preferable that it is 6 or less.
  • B is preferably 1.95 or more; B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • the gas separation membrane according to any one of [2] to [7] preferably has an A / B of 0.6 or more; A represents an O / Si ratio which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms.
  • B represents an O / Si ratio which is a ratio of the number of silicon atoms to the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond.
  • the gas separation membrane according to any one of [2] to [8] preferably has an A / B of 0.65 or more; A is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond, B represents an O / Si ratio that is a ratio of the number of silicon atoms to the number of oxygen atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • the gas separation membrane according to any one of [2] to [9] preferably further includes a layer containing a polyimide compound.
  • the layer containing the polyimide compound preferably has a thickness of 0.03 to 0.3 ⁇ m.
  • the thickness of the resin layer containing the compound having a siloxane bond is preferably 0.1 to 5 ⁇ m.
  • the resin layer containing a compound having a siloxane bond has a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  • the gas separation membrane according to any one of [2] to [13] preferably further includes a support.
  • the gel fraction of the gas separation membrane is preferably 45% or more.
  • the gas separation membrane according to [1] preferably satisfies condition 2.
  • the gas separation membrane according to [16] preferably has a GLe thickness of 200 to 900 nm.
  • the thickness of GLi is preferably 20 to 90% of the thickness of GLe.
  • the gas separation membrane according to [1] preferably satisfies condition 3.
  • the gas separation membrane according to [19] has a minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond.
  • the ratio Si 10 with respect to the total Si peak position from the definitive a depth of 10 nm Si 2+ and Si 3+, the difference ⁇ 1 between 50 and between the ratio minimum value Si 0 of relative peaks of the total Si peak of Si 2+ and Si 3+ 90 % Is preferred.
  • the gas separation membrane according to [19] or [20] is a minimum value of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond. the difference from the position having the Si 0 the ratio Si 20 with respect to the total Si peak Si 2+ and Si 3+ which definitive a depth of 20 nm, a ratio minimum value Si 0 of relative peaks of the total Si peak of Si 2+ and Si 3+ Delta] 2 Is preferably 55 to 90%.
  • the thickness of the resin layer containing a compound having a siloxane bond is preferably 150 to 900 nm.
  • the gas separation membrane according to any one of [19] to [22] preferably further includes a support.
  • the gas separation membrane according to [1] preferably satisfies condition 4.
  • the gas separation membrane according to [24] has a relative intensity I3 of the third component of 13 to 41% when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. It is preferable to become.
  • the positron lifetime ⁇ 3 of the third component when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond is X
  • Y is the positron lifetime ⁇ 3 of the third component when a positron is injected at 3 keV from the surface of the resin layer containing a compound having a siloxane bond. 0.88 ⁇ X / Y ⁇ 0.99 It is preferable to satisfy.
  • the gas separation membrane according to any one of [24] to [26] preferably further includes a layer containing a polyimide compound.
  • the layer containing the polyimide compound preferably has a thickness of 0.03 to 0.3 ⁇ m.
  • the thickness of the resin layer containing a compound having a siloxane bond is preferably 0.1 to 5 ⁇ m.
  • the gas separation membrane according to any one of [24] to [30] preferably further includes a support.
  • the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more
  • Condition P4 including an oxygen atom infiltration treatment step for infiltrating oxygen atoms into the resin layer precursor containing a compound having a siloxane bond,
  • the method for producing a gas separation membrane according to [34] preferably satisfies the condition P1.
  • the resin layer containing a compound having a siloxane bond preferably contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  • a resin layer containing a compound having a siloxane bond is preferably formed on a support.
  • the method for producing a gas separation membrane according to [34] preferably satisfies the condition P4.
  • the resin layer containing a compound having a siloxane bond preferably contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  • substituents when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. Even when not specifically stated, when a plurality of substituents and the like are close to each other, they may be connected to each other or condensed to form a ring.
  • the manufacturing method of a gas separation membrane with high at least one of gas permeability under high pressure and gas separation selectivity can be provided.
  • a gas separation membrane module having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure it is possible to provide a gas separation membrane module having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure.
  • the second aspect of the present invention it is possible to provide a gas separation membrane having a high bending resistance and at least one of gas permeability and gas separation selectivity under high pressure.
  • a gas separation membrane module and a gas separation device having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and high bending resistance.
  • the third aspect of the present invention it is possible to provide a gas separation membrane that has high gas permeability under high pressure and gas separation selectivity and is excellent in pressure resistance.
  • a gas separation membrane module and a gas separation device having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and having excellent pressure resistance.
  • FIG. 1 A schematic diagram of the polydimethylsiloxane film
  • FIG. 2 A schematic diagram of the resin layer containing the compound which has a siloxane bond in an example of the gas separation membrane of this invention is represented.
  • FIG. 3 A schematic view of a polydimethylsiloxane film in which oxygen atoms are uniformly introduced in the film thickness direction. It is a schematic diagram which shows another example of the gas separation membrane of this invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the gas separation membrane of the present invention is a gas separation membrane that satisfies any one of the following conditions 1 to 4;
  • Condition 1 a gas separation membrane having a resin layer containing a compound having a siloxane bond, A gas separation membrane in which a resin layer containing a compound having a siloxane bond satisfies the following formulas 1 and 2; Formula 1 0.9 ⁇ A / B ⁇ 0.55 Formula 2 B ⁇ 1.7
  • A is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms.
  • B represents an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond
  • Condition 2 porous support A, A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A, The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
  • a resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
  • the thickness of GLe is 50 to 1000 nm, The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
  • R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3);
  • Condition 3 a gas separation membrane having a resin layer containing a compound having a siloxane bond, A gas separation membrane having a minimum value Si 0 of 1 to 40% of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond;
  • Condition 4 a gas separation membrane having a resin layer containing a compound having a siloxane bond, A gas separation membrane in which a positron lifetime ⁇ 3 of a third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of a resin layer containing a compound having a siloxane bond.
  • the method for producing the gas separation membrane of the present invention is not particularly limited, but is preferably a method for producing a gas separation membrane that satisfies the following condition P1 or the following condition P4;
  • Condition P1 including an oxygen atom permeation treatment step of permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more;
  • Condition P4 including an oxygen atom infiltration treatment step for infiltrating oxygen atoms into the resin layer precursor containing a compound having a siloxane bond, A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more, and using anode coupling at an input power
  • the mode that satisfies condition 1 is the first mode
  • the mode that satisfies condition 2 is the second mode
  • the mode that satisfies condition 3 is the third mode
  • the mode that satisfies condition 4 is the fourth mode.
  • the gas separation membrane of the first aspect that satisfies the condition 1 is preferably manufactured by a method for manufacturing a gas separation membrane that satisfies the condition P1.
  • the gas separation membrane according to the fourth aspect that satisfies the condition 4 is preferably manufactured by a method for manufacturing a gas separation membrane that satisfies the condition P4.
  • the gas separation membrane according to the first aspect of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond, and the resin layers containing the compound having a siloxane bond are represented by the following formulas 1 and 2.
  • A is a resin containing a compound having the aforementioned siloxane bond at a depth of 10 nm (preferably a depth of 10 nm toward the support) from the surface of the resin layer containing the aforementioned compound having a siloxane bond.
  • the gas separation membrane of the present invention has high gas permeability at high pressure and / or gas separation selectivity.
  • a resin layer containing a compound having a siloxane bond satisfies the above formulas 1 and 2 to obtain a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure. be able to.
  • separation selectivity is expressed by incorporating oxygen atoms not only into the surface of the resin layer containing a compound having a siloxane bond but also into the thickness direction.
  • the layer having separation selectivity is a film having a thickness of 0.1 to 30 ⁇ m, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side.
  • the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) is 1
  • a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment.
  • the structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
  • the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases.
  • the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention has the resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced with gradation from the surface as shown in FIG. 6B. .
  • Sites where oxygen atoms are introduced form pores by siloxane bonds.
  • the introduction of oxygen reduces the thermal motion of the polymer. For this reason, the hole which can permeate
  • oxygen atoms are present in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention.
  • the densely introduced portion is thinner than the polydimethylsiloxane film 12 into which oxygen atoms are uniformly introduced in the film thickness direction.
  • the polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner.
  • the present invention can achieve extremely high gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity.
  • the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
  • the gas separation membrane of the present invention is preferably produced by the method for producing a gas separation membrane of the present invention described later. Since the gas separation membrane obtained by the production method of the present invention has high performance, the gas separation membrane in the product process claim defines a gas separation membrane having high performance.
  • the mechanism of gas separation membrane performance is considered to be determined by the size of the pores in the plane of the layer that contributes to gas separation, but it takes time and money to identify the pore size even with an electron microscope. This is impractical at the time of filing. Instead, the present specification has found that the correlation between the values of A / B and B and the performance of the gas separation membrane is high, and has found that a gas separation membrane having good performance can be provided within this range.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
  • a thin layer composite membrane sometimes referred to as a gas separation composite membrane
  • an asymmetric membrane or a hollow fiber and more preferably a thin layer composite membrane.
  • a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
  • FIG. 1 An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
  • FIG. 2 Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond.
  • a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
  • the gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers.
  • the gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer.
  • Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
  • “on the support” means that another layer may be interposed between the support and the layer having separation selectivity.
  • the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
  • the resin layer containing a compound having a siloxane bond satisfies the following formula 1 and the following formula 2.
  • Formula 1 0.9 ⁇ A / B ⁇ 0.55 Formula 2 B ⁇ 1.7
  • A represents the number of silicon atoms in the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond.
  • a in the above formula 1 represents oxygen in the “surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm (in the direction of the support) from the surface of the resin layer containing a compound having a siloxane bond” 7. It means the O / Si ratio, which is the ratio of the number of atoms to the number of silicon atoms.
  • the gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support.
  • the support is preferably a thin and porous material in order to ensure sufficient gas permeability.
  • the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane.
  • a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
  • the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping).
  • the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
  • the porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the porous structure of this porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%.
  • the molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 ⁇ 10 ⁇ 5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 ⁇ cm ⁇ sec ⁇ cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit).
  • the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
  • the resin layer containing the compound having a siloxane bond satisfies the following formula 1 and the following formula 2.
  • Formula 1 0.9 ⁇ A / B ⁇ 0.55 Formula 2 B ⁇ 1.7
  • A represents the number of silicon atoms in the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond.
  • a / B is preferably 0.60 or more, more preferably A / B is 0.63 or more, and A / B is 0.65 or more. It is particularly preferred that In the resin layer containing the compound having a siloxane bond, B is preferably 1.95 or more.
  • the ratio of the number of oxygen atoms to the number of silicon atoms in each surface of a resin layer containing a compound having a siloxane bond that is, a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond.
  • O / Si ratio (A) which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a ratio to the number of silicon atoms, and the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond
  • the O / Si ratio (B), which is the ratio to the number can be measured as a relative amount.
  • the O / Si ratio (C) which is the ratio of the number of atoms to the number of silicon atoms, can also be measured as a relative amount in the same manner as the aforementioned O / Si ratio (A) and O / Si ratio (B).
  • the carbon / silicon ratio which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, is also the O / Si ratio (A) or the O / Si ratio (B) described above. Similarly, it can be measured as a relative amount.
  • O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms;
  • the O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond, is calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
  • the carbon / silicon ratio which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • a porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc.
  • Quantera SXM manufactured by the company, X-ray source: Al—K ⁇ ray (1490 eV, 25 W, diameter of 100 ⁇ m), measurement area: 300 ⁇ m ⁇ 300 ⁇ m, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond
  • An O / Si ratio (B) which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
  • an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
  • C 60 ions Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm ⁇ 2 mm.
  • An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond.
  • A O / Si ratio
  • the depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
  • O / Si ratio (A) which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond to the number of silicon atoms
  • the value of A / B is calculated from the O / Si ratio (B) which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • O / Si ratio (A) which is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond.
  • O / Si ratio (C) which is the ratio of the number of oxygen atoms in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms Ask for.
  • C / B is calculated from the O / Si ratio (B) and the O / Si ratio (C).
  • the surface of the resin layer containing the compound having a siloxane bond described above is O 2 when the O / Si ratio is measured from the surface of the gas separation membrane (preferably the surface opposite to the support). / Si ratio is the maximum, and the number of silicon atoms is 3% (atomic%) or more.
  • a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present).
  • the surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that it is “surface”.
  • the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide)
  • the surface of the resin layer containing a compound having a siloxane bond that is, the O / Si ratio is set to the above-mentioned gas separation membrane.
  • the resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
  • a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present).
  • the surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more.
  • a compound having a siloxane bond in a state in which a resin layer containing a compound having a siloxane bond is formed on the porous support (without any other layer (for example, a layer containing polyimide)). From “the surface of the resin layer”, “the surface where the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane and the number of silicon atoms is 3% (atomic%) or more” "Means.
  • the resin layer containing a compound having a siloxane bond is a resin containing a compound having a siloxane bond.
  • the O / Si (A) ratio which is the ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the layer to the number of silicon atoms, exceeds 1.0 and is 3.0.
  • the following is preferable, 1.1 to 2.4 is more preferable, and 1.3 to 2.35 is particularly preferable.
  • the O / Si ratio (C) which is the ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms, is It is preferably 1.0 to 2.4, and particularly preferably 1.05 to 2.3.
  • the value of C / B is preferably 0.50 to 0.95, more preferably 0.50 to 0.90, and particularly preferably 0.50 to 0.85.
  • the ratio of the number of carbon atoms to the number of silicon atoms (carbon / silicon ratio) on the surface of the resin layer containing a compound having a siloxane bond is preferably 1.6 or less.
  • 0.1 to 1.3 is more preferable, and 0.1 to 1.1 is particularly preferable.
  • the gel fraction of the gas separation membrane is preferably 45% or more from the viewpoint of enhancing storage resistance.
  • the wet heat durability of the gas separation membrane can be improved by controlling the gel fraction of the gas separation membrane.
  • the performance of the gas separation membrane is stabilized with respect to the environment at the time of storage, so that it does not deviate from the range of the gas separation performance defined in the specifications at the time of shipment.
  • the yield after shipment improves.
  • the gel fraction of the gas separation membrane is more preferably greater than 55% from the viewpoint of enhancing the wet heat (transport) resistance in addition to the storage resistance, and particularly preferably 70% or more.
  • the performance of the gas separation membrane is stable with respect to the humid heat environment during transportation, it does not deviate from the range of the gas separation performance defined in the specifications at the time of shipment. Moreover, the yield after shipment improves.
  • the value measured by the following method is adopted as the gel fraction of the gas separation membrane.
  • a sample is prepared by applying and curing a resin layer containing a compound having a siloxane bond of 10 ⁇ m or less on a porous support.
  • the signal intensity Xa of the Si component is measured for the sample by XRF measurement.
  • a resin layer containing a compound having a siloxane bond is applied and cured, and then immersed in a chloroform solvent for 24 hours to prepare a sample from which eluted components are extracted. Thereafter, the XRF measurement of the sample from which the eluted component is extracted is performed, and the signal intensity Xb of the Si component is measured. Xb / Xa * 100% was defined as the gel fraction.
  • the solvent used for extraction may be other than chloroform, and examples thereof include hexane.
  • the value represented by the following formula of the resin layer containing the compound having a siloxane bond is preferably 5000 nm or less, more preferably 900 nm or less, and particularly preferably 100 to 900 nm. . formula: Thickness of resin layer containing compound having siloxane bond ⁇ (1 ⁇ gel fraction / 100)
  • a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
  • the resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond.
  • the compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”.
  • the compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
  • the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
  • R 11 represents a substituent
  • * represents a bonding site with # in General Formula (2) or General Formula (3)
  • # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
  • the hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
  • * represents a binding site with # in general formula (2) or general formula (3)
  • # in general formula (2) or general formula (3) Represents the binding site of *.
  • * may be a bonding site with an oxygen atom in the general formula (1) described later
  • # may be a bonding site with a silicon atom in the general formula (1) described later.
  • each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  • the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
  • R in the general formula (1) is preferably an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group in the general formula (1).
  • an alkyl group, an amino group, an epoxy group or a carboxyl group is more preferred, and an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group is particularly preferred.
  • the alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
  • the alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • the aryl group represented by R in the general formula (1) an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • the fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. .
  • the fluorinated alkyl group represented by R may be linear, branched or cyclic.
  • the alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group.
  • the alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
  • the compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1).
  • Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
  • the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
  • the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond.
  • the ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ⁇ 600 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond.
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%. Furthermore, in the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 30 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3).
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group.
  • functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups.
  • the resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups.
  • Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group.
  • the polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group.
  • Examples of the dialkylsiloxane group include a group represented by — ⁇ O—Si (CH 3 ) 2 ⁇ n2 — (n2 is, for example, 1 to 100).
  • a poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
  • Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi).
  • PDMS polydimethylsiloxane
  • Polydiphenylsiloxane Polydiphenylsiloxane
  • Polydi trifluoropropyl siloxane
  • poly (1-trimethylsilyl-1-propyne) At least one selected from PTMSP, polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
  • a commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond.
  • a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
  • PDMS polydimethylsiloxane
  • X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • the material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition.
  • the organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
  • the film thickness of the resin layer containing the compound which has a siloxane bond is 0.1 micrometer or more.
  • the thickness is preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 4 ⁇ m, and particularly preferably 0.3 to 3 ⁇ m.
  • the film thickness of the resin layer containing a compound having a siloxane bond can be determined by SEM.
  • the film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
  • the gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
  • the resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
  • the polyimide compound is preferably a polyimide having a reactive group.
  • the resin of the additional resin layer is a polyimide having a reactive group
  • the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
  • the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group. More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
  • the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
  • the polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas.
  • 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
  • R represents a group having a structure represented by any of the following formulas (Ia) to (Ih).
  • * represents a bonding site with the carbonyl group of the formula (I).
  • R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
  • X 1 , X 2 , X 3 X 1 , X 2 and X 3 represent a single bond or a divalent linking group.
  • divalent linking groups —C (R x ) 2 — (R x represents a hydrogen atom or a substituent.
  • R x When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable.
  • R x represents a substituent, specific examples thereof include the substituent group Z described below.
  • an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • ⁇ L L represents —CH 2 ⁇ CH 2 — or —CH 2 —, preferably —CH 2 ⁇ CH 2 —.
  • R 1 , R 2 R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituent any one selected from the substituent group Z shown below can be used.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
  • R 4 , R 5 R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other.
  • Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable.
  • M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
  • R 6 , R 7 , R 8 R 6 , R 7 and R 8 represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 J 1 represents a single bond or a divalent linking group.
  • As the linking group * —COO — N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ⁇ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group.
  • J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
  • a 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S ( ⁇ O) 2 OH. It is more preferable to show the group selected.
  • the preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below.
  • a 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alky
  • an aryl group having 6 to 12 carbon atoms such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.
  • amino group amino group, alkylamino group, arylamino group, hetero
  • a cyclic amino group preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.
  • an alkoxy group preferably having a carbon number
  • an aryloxy group preferably Is an aryloxy group having
  • a heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.
  • a heterocyclic thio group preferably having 1 carbon atom
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms.
  • silyl group examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably).
  • Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group.
  • a ring or an unsaturated heterocyclic ring may be formed.
  • the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
  • the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
  • the molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic dianhydride
  • a specific diamine tetracarboxylic dianhydride
  • the method described in a general book for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.
  • polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 1 below.
  • y is preferably not 0.
  • a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
  • the resin of the additional resin layer is polyimide
  • P84 or P84HT sold under the name P84HT is also preferable.
  • celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected.
  • the substitution degree of all acyl groups is preferably 2.0 to 2.7.
  • Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
  • polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
  • Additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond.
  • additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
  • the film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
  • the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, and 0.3 ⁇ m or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 ⁇ m or less.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 ⁇ m or more, and is practically preferably 0.03 ⁇ m or more from the viewpoint of film formation, More preferably, it is 1 ⁇ m or more.
  • the gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer.
  • the protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
  • the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
  • the film thickness of the protective layer is preferably 20 nm to 3 ⁇ m, more preferably 50 nm to 2 ⁇ m, and particularly preferably 100 nm to 1 ⁇ m.
  • the separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method.
  • a gas separation purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • the gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas.
  • the acid gas examples include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
  • the aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
  • the gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • the gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane.
  • the property ⁇ is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
  • the selective gas permeation involves a dissolution / diffusion mechanism into the membrane.
  • a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility.
  • the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
  • the method for producing the gas separation membrane of the present invention is not particularly limited. In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond.
  • the specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
  • the method for producing a gas separation membrane of the present invention is preferably the following method for producing a gas separation membrane of the present invention.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step in which oxygen atoms permeate a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 10 cm 3. (STP) / min or higher and a plasma treatment with an input power of 23 W or more.
  • the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
  • the method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
  • the method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
  • the method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
  • the coating method is not particularly limited, and a known method can be used. For example, a spin coating method, a dip coating method, or a bar coating method can be appropriately used.
  • the resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions.
  • curable compositions there is no restriction
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
  • Integrated light intensity be greater than 0.05J / cm 2 (UV-A ), preferably in view of enhancing the gel fraction of the gas separation membrane, 0.1 J / cm 2 and (UV-A) More preferably, it is 0.1 to 60 J / cm 2 (UV-A), particularly preferably 0.1 to 5 J / cm 2 (UV-A).
  • Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane.
  • PDMS polydimethylsiloxane
  • polydiphenylsiloxane polydiphenylsiloxane
  • polydi (trifluoropropyl) siloxane examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond.
  • polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
  • a specific treatment for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond.
  • the process includes a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms.
  • a certain O / Si ratio (A) and an O / Si ratio (B) which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond described above satisfy the above formula 1. It is more preferable to perform the above-described specific processing.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
  • the oxygen atom permeation treatment process described above is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
  • a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned.
  • Plasma treatment conditions oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
  • the plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more. On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions.
  • the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll.
  • the aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
  • the cumulative energy amount by the plasma treatment is preferably 25 ⁇ 500000J / cm 2, and more preferably 2500 ⁇ 100000J / cm 2.
  • the plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber.
  • an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere.
  • gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere.
  • Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table).
  • a method in which a plasma jet is blown out in a spot manner from a circular nozzle There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
  • the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred.
  • the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min.
  • the oxygen flow rate is 45 cm 3 (STP) / min. It may be less.
  • the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
  • the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W. Corona treatment or the like can be used instead of plasma treatment.
  • the method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
  • the method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond).
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., and ⁇ 10 to 80 ° C. More preferred is 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
  • the manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
  • the method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply.
  • an organic solvent the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 2000 mW / cm 2 .
  • the gas mixture can be separated.
  • the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined.
  • the main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide.
  • the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • the gas separation membrane module of the present invention has the gas separation membrane of the present invention.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • the gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
  • the gas separation membrane of the present invention comprises a porous support A, A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A,
  • the compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
  • a resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
  • the thickness of GLe is 50 to 1000 nm,
  • the thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
  • the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%.
  • Gas separation membrane In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • the gas separation membrane of the present invention has high bend resistance and at least one of gas permeability under high pressure and gas separation selectivity.
  • the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%.
  • a resin layer containing a compound in which oxygen atoms have a siloxane bond (the resin layer containing a compound having a siloxane bond functions as a layer having a high gas separation selectivity and a so-called separation selectivity) to the inside in the thickness direction. It will penetrate.
  • oxygen does not enter sufficiently to have a gas separation selectivity from the surface of the resin layer containing a compound having a siloxane bond to a depth of 20 nm.
  • the surface of the resin layer containing the compound having a bond is modified so that many oxygen atoms are taken in.
  • the layer having separation selectivity is a film having a thickness of 0.1 to 30 ⁇ m, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side.
  • the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) is 1 Means a layer of 5 or more.
  • a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment.
  • the structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
  • the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases.
  • the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention has the resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced with gradation from the surface as shown in FIG. 6B. .
  • Sites where oxygen atoms are introduced form pores by siloxane bonds.
  • the introduction of oxygen reduces the thermal motion of the polymer. For this reason, the hole which can permeate
  • oxygen atoms are present in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention.
  • the densely introduced portion is thinner than the polydimethylsiloxane film 12 into which oxygen atoms are uniformly introduced in the film thickness direction.
  • the polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner.
  • the present invention can achieve extremely high gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity.
  • the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
  • the gas separation membrane of the present invention includes a region GLi present in the porous support B and a region GLe present on the porous support B, the thickness of GLe is 50 to 1000 nm, and the thickness of GLi is When it is 20 nm or more and is 10 to 350% of the thickness of GLe, the resin layer containing a part of the porous support and the compound having a siloxane bond is integrated, and the bending resistance is also improved. .
  • preferred embodiments of the gas separation membrane of the present invention will be described.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
  • a thin layer composite membrane sometimes referred to as a gas separation composite membrane
  • an asymmetric membrane or a hollow fiber and more preferably a thin layer composite membrane.
  • a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
  • FIG. 1 An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin-layer composite membrane, which has a porous support A (reference numeral 4) and a resin layer 3 containing a compound having a siloxane bond. It is. As shown in FIG. 7, in the gas separation membrane of the present invention, the resin layer containing a compound having a siloxane bond has a region GLi present in the porous support B and a region GLe present on the porous support B. Including. Another example of the gas separation membrane 10 of the present invention shown in FIG.
  • the gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers.
  • the gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer.
  • Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
  • “on the support” means that another layer may be interposed between the support and the layer having separation selectivity.
  • the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
  • the gas separation membrane of the present invention has a porous support A and a resin layer containing a compound having a siloxane bond located on the porous support A.
  • the porous support A is preferably a thin and porous material in order to ensure sufficient gas permeability.
  • the resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B. That is, it is a thin-layer composite film in which the resin layer 3 containing a compound having a siloxane bond is formed and arranged in (inside) and on (on the surface) the porous support.
  • the resin layer 3 containing a compound having a siloxane bond By forming the resin layer 3 containing a compound having a siloxane bond on the surface of the porous support, a part of the porous support is soaked and filled with the compound having a siloxane bond.
  • the porous support A that is not filled with a resin layer containing a compound having a siloxane bond, and the aforementioned GLi in which a part of the resin layer containing a compound having a siloxane bond is present in the porous support B and
  • the above-mentioned GLe in which the rest of the resin layer containing a compound having a siloxane bond is present on the porous support B is formed, and has the advantage of having both high gas separation selectivity, high gas permeability, and bending resistance.
  • the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping).
  • the porous support A preferably has a porous layer on the resin layer 3 side containing a compound having a siloxane bond, and is arranged on the resin layer 3 side containing a compound having a siloxane bond. More preferably, it is a laminated body of a porous layer and a nonwoven fabric (Non-Woven).
  • the porous layer preferably applied to the porous support A is not particularly limited as long as it has the purpose of meeting mechanical strength and high gas permeability. However, it is preferably a porous film of an organic polymer, and the thickness thereof is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the porous structure of this porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%.
  • the molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 ⁇ 10 ⁇ 5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 ⁇ cm ⁇ sec ⁇ cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit).
  • the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
  • the resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B,
  • the thickness of GLe is 50 to 1000 nm,
  • the thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
  • the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. .
  • the thickness of GLe is 50 to 1000 nm, preferably 200 to 900 nm, and more preferably 300 to 800 nm.
  • the stress relaxation action against bending is improved, and it is formed above the inside of the resin layer containing the compound having a siloxane bond (region opposite to the porous support A).
  • region with a high silica component becomes favorable.
  • the thickness of GLe is equal to or less than the upper limit value, the gas separation performance is improved without inhibiting the gas permeability.
  • the thickness of GLi is 20 nm or more, and the absolute value of the thickness of GLi can be set in an arbitrary range unless it is contrary to the spirit of the present invention.
  • the thickness of GLi (GLi thickness ratio [vs. GLe%]) is 10 to 350%, preferably 20 to 90%, preferably 20 to 60% of the thickness of GLe. More preferably, it is 21.2 to 60%.
  • the adhesion with the porous support A is improved, so that the inside of the resin layer containing the compound having a siloxane bond (porous
  • the bending resistance with respect to the region having a high silica component (the content of the repeating unit represented by the general formula (3) is high) formed in the region opposite to the support A is improved.
  • the ratio of the thickness of GLi [vs. GLe%] is less than or equal to the upper limit, that is, when the penetration rate of GLi becomes small to some extent, the gas separation performance is improved without hindering gas permeability.
  • the gas separation membrane of the present invention comprises the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm.
  • the difference is 30 to 90%, and 40 to 90% is preferable from the viewpoint of bending resistance.
  • the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is not less than the lower limit. The desired selectivity with respect to gas permeability is obtained.
  • the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm is preferably 30 to 95%, more preferably 40 to 95%, and more preferably 45 to 90%.
  • the content of the repeating unit represented by the general formula (3) in the GLi surface layer of 20 nm is preferably 1 to 10%, more preferably 3 to 8%, and more preferably 4 to 6%. It is particularly preferred that
  • the thickness of the resin layer containing a compound having a siloxane bond is not particularly limited, but the thickness of the resin layer containing a compound having a siloxane bond is 0.
  • the thickness is preferably 1 ⁇ m or more from the viewpoint of film formation ease, more preferably 0.1 to 5 ⁇ m, particularly preferably 0.1 to 4 ⁇ m, and more preferably 0.3 to 3 ⁇ m. Particularly preferred.
  • GLe and GLi in the present invention are confirmed from the analysis in the depth direction of TOF-SIMS.
  • the maximum intensity of the peak intensity derived from silicone is defined as GLe where the peak intensity continuously present from the peak position is 90% or more, and the range is 20% or more and less than 90% Is defined as GLi, and the range of less than 20% is designated as porous support A.
  • the film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
  • O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms;
  • the carbon / silicon ratio which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • a porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc.
  • Quantera SXM manufactured by the company, X-ray source: Al—K ⁇ ray (1490 eV, 25 W, diameter of 100 ⁇ m), measurement area: 300 ⁇ m ⁇ 300 ⁇ m, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond
  • An O / Si ratio (B) which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
  • an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
  • C 60 ions Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm ⁇ 2 mm.
  • An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond.
  • A O / Si ratio
  • the depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
  • the surface of the resin layer containing the compound having a siloxane bond described above was measured for the O / Si ratio from the surface of the gas separation membrane (preferably the surface opposite to the porous support A).
  • the O / Si ratio is maximum, and the number of silicon atoms is 3% (atomic%) or more.
  • the above-described method has a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support A (a state without any other layer (for example, a layer containing polyimide)).
  • the surface of the resin layer containing the compound indicates that “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that the surface
  • the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide)
  • the surface of the resin layer containing a compound having a siloxane bond that is, the O / Si ratio is set to the above-mentioned gas separation membrane.
  • the resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
  • A O / Si ratio
  • the surface of the resin layer containing the compound indicates that “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more.
  • a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
  • the resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond.
  • the compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”.
  • the compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
  • the compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
  • R 11 represents a substituent
  • * represents a bonding site with # in General Formula (2) or General Formula (3)
  • # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
  • the hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
  • * represents a binding site with # in general formula (2) or general formula (3)
  • # in general formula (2) or general formula (3) Represents the binding site of *.
  • * may be a bonding site with an oxygen atom in the general formula (1) described later
  • # may be a bonding site with a silicon atom in the general formula (1) described later.
  • each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  • the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3).
  • R in the general formula (1) is preferably independently an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and an alkyl group having 1 or more carbon atoms, an amino group or an epoxy group.
  • a carboxyl group is more preferable, and an alkyl group having 1 or more carbon atoms, an epoxy group, or a carboxyl group is particularly preferable.
  • the alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
  • the alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • the aryl group represented by R in the general formula (1) an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • the fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. .
  • the fluorinated alkyl group represented by R may be linear, branched or cyclic.
  • the alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group.
  • the alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
  • the compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1).
  • Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
  • the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
  • the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond.
  • the ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ⁇ 600 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3) is represented by the above-described compound having the siloxane bond included in the resin layer containing the compound having the siloxane bond at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond described above.
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group.
  • functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups.
  • the resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups.
  • Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group.
  • the polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group.
  • Examples of the dialkylsiloxane group include a group represented by — ⁇ O—Si (CH 3 ) 2 ⁇ n2 — (n2 is, for example, 1 to 100).
  • a poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
  • Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi).
  • PDMS polydimethylsiloxane
  • Polydiphenylsiloxane Polydiphenylsiloxane
  • Polydi trifluoropropyl siloxane
  • poly (1-trimethylsilyl-1-propyne) At least one selected from PTMSP, polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
  • a commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond.
  • a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
  • PDMS polydimethylsiloxane
  • X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • the material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition.
  • the organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
  • the gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
  • the resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
  • the polyimide compound is preferably a polyimide having a reactive group.
  • the resin of the additional resin layer is a polyimide having a reactive group
  • the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
  • the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group. More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
  • the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
  • the polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas.
  • 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
  • R represents a group having a structure represented by any of the following formulas (Ia) to (Ih).
  • * represents a bonding site with the carbonyl group of the formula (I).
  • R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
  • X 1 , X 2 , X 3 X 1 , X 2 and X 3 represent a single bond or a divalent linking group.
  • divalent linking groups —C (R x ) 2 — (R x represents a hydrogen atom or a substituent.
  • R x When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable.
  • R x represents a substituent, specific examples thereof include the substituent group Z described below.
  • an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • ⁇ L L represents —CH 2 ⁇ CH 2 — or —CH 2 —, preferably —CH 2 ⁇ CH 2 —.
  • R 1 , R 2 R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituent any one selected from the substituent group Z shown below can be used.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
  • R 4 , R 5 R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other.
  • Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable.
  • M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
  • R 6 , R 7 , R 8 R 6 , R 7 and R 8 represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 J 1 represents a single bond or a divalent linking group.
  • As the linking group * —COO — N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ⁇ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group.
  • J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
  • a 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S ( ⁇ O) 2 OH. It is more preferable to show the group selected.
  • the preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below.
  • a 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alky
  • an aryl group having 6 to 12 carbon atoms such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.
  • amino group amino group, alkylamino group, arylamino group, hetero
  • a cyclic amino group preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.
  • an alkoxy group preferably having a carbon number
  • an aryloxy group preferably Is an aryloxy group having
  • a heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.
  • a heterocyclic thio group preferably having 1 carbon atom
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms.
  • silyl group examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably).
  • Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group.
  • a ring or an unsaturated heterocyclic ring may be formed.
  • the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
  • the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
  • the molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic dianhydride
  • a specific diamine tetracarboxylic dianhydride
  • the method described in a general book for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.
  • polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 2 below.
  • y is preferably not 0.
  • a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
  • the resin of the additional resin layer is polyimide
  • P84 or P84HT sold under the name P84HT is also preferable.
  • celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected.
  • the substitution degree of all acyl groups is preferably 2.0 to 2.7.
  • Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
  • polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
  • the film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
  • the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, and 0.3 ⁇ m or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 ⁇ m or less.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 ⁇ m or more, and is practically preferably 0.03 ⁇ m or more from the viewpoint of film formation, More preferably, it is 1 ⁇ m or more.
  • the gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer.
  • the protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
  • the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
  • the film thickness of the protective layer is preferably 20 nm to 3 ⁇ m, more preferably 50 nm to 2 ⁇ m, and particularly preferably 100 nm to 1 ⁇ m.
  • the separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method.
  • a gas separation purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • the gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas.
  • the acid gas examples include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
  • the aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
  • the gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • the gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane.
  • the property ⁇ is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
  • the selective gas permeation involves a dissolution / diffusion mechanism into the membrane.
  • a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility.
  • the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
  • the method for producing the gas separation membrane of the present invention is not particularly limited. In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond.
  • the specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that In manufacturing the gas separation membrane of the present invention, the thickness of GLe and GLi can be controlled by adjusting the following parameters according to the coating method.
  • Viscosity of composition coating liquid
  • solid content concentration time to cure after coating
  • the thicknesses of GLe and GLi can also be controlled by adjusting the amount of coating solution and the spin coating rotational speed.
  • the method for producing a gas separation membrane of the present invention comprises a porous support A (reference numeral 4) and a laminate of a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from the one surface side of the resin layer precursor 2 containing a compound having a hydrogen atom.
  • a specific treatment oxygen atom permeation treatment 5
  • the method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
  • the method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
  • the method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
  • the solid content concentration (viscosity) of the composition is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and particularly preferably 3 to 30% by mass.
  • the dropping amount of the composition is preferably 0.001 to 1 ml / cm 2 , more preferably 0.002 to 0.5 ml / cm 2 , and 0.005 to 0.3 ml / cm 2 . It is particularly preferred.
  • a coating method of a composition Although a well-known method can be used, For example, a spin coat method, a dip coat method, and a bar coat method can be used suitably.
  • the spin coating rotation speed is preferably 100 to 10,000 rpm (round per minute), more preferably 500 to 9000 rpm, and particularly preferably 700 to 8000 rpm.
  • the larger the spin coating speed the easier it is to make GLi thinner.
  • the resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions.
  • the time from application of the composition to curing is preferably from 0.01 to 60 minutes, more preferably from 0.02 to 50 minutes, and particularly preferably from 0.03 to 30 minutes. The shorter the time until curing after application of the composition, the easier it is to make GLi thinner.
  • Electron beam an ultraviolet-ray (UV), visible light, or infrared irradiation can be used.
  • UV ultraviolet-ray
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
  • Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane.
  • PDMS polydimethylsiloxane
  • polydiphenylsiloxane polydiphenylsiloxane
  • polydi (trifluoropropyl) siloxane examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond.
  • polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
  • a specific treatment oxygen atom permeation treatment for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond. It is preferable to include a step, and the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm It is more preferable to perform the above-described specific treatment until the amount reaches 30 to 90%.
  • the method for producing a gas separation membrane includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, It is preferable that the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
  • a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned. Plasma treatment conditions: oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
  • the plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more. On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions.
  • the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll.
  • the aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
  • the cumulative energy amount by the plasma treatment is preferably 25 ⁇ 500000J / cm 2, and more preferably 2500 ⁇ 100000J / cm 2.
  • the plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber.
  • an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere.
  • gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere.
  • Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table).
  • a method in which a plasma jet is blown out in a spot manner from a circular nozzle There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
  • the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred.
  • the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min.
  • the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
  • the input power is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
  • Corona treatment or the like can be used instead of plasma treatment.
  • the method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
  • the method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond).
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., and ⁇ 10 to 80 ° C. More preferred is 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
  • the manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
  • the method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply.
  • an organic solvent the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 2000 mW / cm 2 .
  • the gas mixture can be separated.
  • the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined.
  • the main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide.
  • the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • the gas separation membrane module of the present invention has the gas separation membrane of the present invention.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • the gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
  • the gas separation membrane of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond,
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40%.
  • the gas separation membrane of the present invention has high gas permeability at high pressure and gas separation selectivity, and is excellent in pressure resistance.
  • the layer having separation selectivity is a film having a thickness of 0.1 to 30 ⁇ m, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side.
  • the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) is 1 Means a layer of 5 or more.
  • a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment.
  • the structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
  • the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases.
  • the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity and is excellent in pressure resistance.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40%.
  • FIG. 6B is a schematic view of a resin layer containing a compound having a siloxane bond in an example of the gas separation membrane of the present invention.
  • the compound containing the siloxane bond is included.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer is easily set to 1 to 40%. Sites where oxygen atoms are introduced form pores by siloxane bonds. In addition, the introduction of oxygen reduces the thermal motion of the polymer.
  • the gas separation membrane of the present invention in which the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40% Has produced pores that can selectively permeate many gases.
  • the polydimethylsiloxane film 11 that has not been subjected to the oxygen atom permeation treatment step as shown in FIG. 6A is a peak of Si 2+ and Si 3+ in ESCA depth analysis of a resin layer containing a compound having a siloxane bond.
  • the minimum value Si 0 of the ratio to the total Si peak is over 40%.
  • the resin layer polydimethylsiloxane film 11 not subjected to the oxygen atom permeation treatment step as shown in FIG. 6A
  • High gas separation selectivity can be obtained by the configuration of the gas separation membrane.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 40% or less.
  • the pressure resistance is excellent.
  • the mechanism that the pressure resistance is excellent when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is 40% or less is as follows. Although not bound by theory, the present inventors speculate that it is as follows. When considered from a comparison with a crystalline glass film made of only Si 4+ , the density of the film decreases as the ratio of Si 2+ and Si 3+ increases. Therefore, also in the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak is 40% or less, so that the membrane has sufficient pressure resistance. It is thought that it is obtained.
  • a silica film in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. 6C without using gradation of oxygen atom introduction in the film thickness direction using a CVD (Chemical Vapor Deposition) method or the like is possible.
  • a CVD Chemical Vapor Deposition
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is less than 1%.
  • the site where oxygen atoms are introduced densely is compared with the silica membrane 12 where oxygen atoms are introduced uniformly in the film thickness direction. And thin.
  • the silica membrane into which oxygen atoms are uniformly introduced in the film thickness direction is as thin as the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to do.
  • the gas separation membrane of the present invention can achieve both extremely high gas permeability and pressure resistance than the silica membrane into which oxygen atoms are uniformly introduced in the film thickness direction. It should be noted that the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity. In addition, the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane.
  • the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
  • preferred embodiments of the gas separation membrane of the present invention will be described.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
  • a thin layer composite membrane sometimes referred to as a gas separation composite membrane
  • an asymmetric membrane or a hollow fiber and more preferably a thin layer composite membrane.
  • a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
  • FIG. 1 An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
  • FIG. 2 Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond.
  • a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
  • the gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers.
  • the gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer.
  • Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
  • “on the support” means that another layer may be interposed between the support and the layer having separation selectivity.
  • the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
  • the surface of the resin layer 3 containing a compound having a siloxane bond is represented by reference numeral 6.
  • d is 10 nm
  • the surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (toward the support).
  • a surface parallel to 6 is represented by reference numeral 7"
  • the surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (toward the support) It is.
  • the gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support.
  • the support is preferably a thin and porous material in order to ensure sufficient gas permeability.
  • the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane.
  • a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
  • the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping).
  • the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
  • the porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the porous structure of this porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%.
  • the molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 ⁇ 10 ⁇ 5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 ⁇ cm ⁇ sec ⁇ cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit).
  • the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is 1 to 40%. is there. Note that the total Si peak is the total of Si 2+ , Si 3+ and Si 4+ peaks (also referred to as all Si) in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 3 to 35%. Is preferable, and 4 to 30% is more preferable.
  • the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is equal to or lower than the upper limit value, the gas permeation performance and the pressure resistance are It becomes good.
  • the pressure resistance does not change much.
  • gas permeation performance is improved.
  • a method for controlling the ratio of the Si 2+ peak and the Si 3+ peak to the total Si peak for example, when surface modification is performed by plasma treatment, plasma input power (W number), plasma treatment time (irradiation time), introduced O it can be controlled by adjusting the 2 gas flow rate.
  • the gas separation membrane of the present invention has a depth of 10 nm from the position having the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond.
  • the ratio Si 10 with respect to the total Si peak Si 2+ and Si 3+, the difference between the minimum value Si 0 percentage relative to the peak of the total Si peak of Si 2+ and Si 3+ .DELTA.1 is 50-90% at a 55 to 85% is more preferable, and 60 to 80% is particularly preferable.
  • the gas separation membrane of the present invention has a depth of 20 nm from the position having the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond.
  • the ratio Si 20 with respect to the total Si peak Si 2+ and Si 3+ the difference between the minimum value Si 0 percentage relative to the peak of the total Si peak of Si 2+ and Si 3+ Delta] 2 is 55 to 90% in 60 to 85% is more preferable, and 65 to 80% is particularly preferable.
  • the pressure resistance can be maintained while having good gas permeation performance by being in the above preferred range.
  • the resin layer containing a compound having an oxygen atom having a siloxane bond (the resin layer containing the compound having a siloxane bond functions as a layer having high separation selectivity so-called separation selectivity). It penetrates to the inside in the thickness direction.
  • the resin layer containing a compound having a siloxane bond is the outermost layer of the gas separation membrane, “surface of the resin layer containing a compound having a siloxane bond” 6 in FIG.
  • the surface on the opposite side of the support 4 is a position having a minimum value (Si 0 ) of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak.
  • a resin containing a compound having a siloxane bond is also used when the resin layer containing a compound having a siloxane bond is not the outermost layer of the gas separation membrane, and other layers such as the additional resin layer 1 in FIG. The interface between the layer and another layer (such as the additional resin layer 1 in FIG.
  • Si 2+ and Si 3+ peaks is preferably a position having a minimum value (Si 0 ) of the ratio of all Si peaks.
  • the surface of the resin layer containing a compound having a siloxane bond in the corona treatment or plasma treatment aiming only to improve the adhesion by modifying the surface, that is, the ratio of the Si 2+ and Si 3+ peaks to the total Si peak From the position having the minimum value (Si 0 ) to the depth of 10 nm or the depth of 20 nm, oxygen does not enter sufficiently to have gas separation selectivity.
  • the resin layer containing the compound having a siloxane bond satisfy the preferable range of ⁇ 1 or ⁇ 2, at least one of gas permeability and gas separation selectivity under high pressure can be further increased.
  • separation selectivity can be expressed more by incorporating oxygen atoms not only into the surface of the resin layer containing the compound having a siloxane bond but also into the thickness direction.
  • a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
  • the resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond.
  • the compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”.
  • the compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
  • the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
  • R 11 represents a substituent
  • * represents a bonding site with # in General Formula (2) or General Formula (3)
  • # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
  • the hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
  • * represents a binding site with # in general formula (2) or general formula (3)
  • # in general formula (2) or general formula (3) Represents the binding site of *.
  • * may be a bonding site with an oxygen atom in the general formula (1) described later
  • # may be a bonding site with a silicon atom in the general formula (1) described later.
  • each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  • the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
  • R in the general formula (1) is preferably independently an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and an alkyl group having 1 or more carbon atoms, an amino group or an epoxy group.
  • a carboxyl group is more preferable, and an alkyl group having 1 or more carbon atoms, an epoxy group, or a carboxyl group is particularly preferable.
  • the alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
  • the alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • the aryl group represented by R in the general formula (1) an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • the fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. .
  • the fluorinated alkyl group represented by R may be linear, branched or cyclic.
  • the alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group.
  • the alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
  • the compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1).
  • Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
  • the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
  • the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond.
  • the ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ⁇ 600 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond.
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group.
  • functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups.
  • the resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups.
  • Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group.
  • the polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group.
  • Examples of the dialkylsiloxane group include a group represented by — ⁇ O—Si (CH 3 ) 2 ⁇ n2 — (n2 is, for example, 1 to 100).
  • a poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
  • Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi).
  • PDMS polydimethylsiloxane
  • Polydiphenylsiloxane Polydiphenylsiloxane
  • Polydi trifluoropropyl siloxane
  • poly (1-trimethylsilyl-1-propyne) At least one selected from PTMSP, polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
  • a commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond.
  • a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
  • PDMS polydimethylsiloxane
  • X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • the material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition.
  • the organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
  • the thickness of the resin layer containing a compound having a siloxane bond is preferably 150 to 900 nm, particularly preferably 0.1 to 4 ⁇ m, and preferably 0.3 to 3 ⁇ m. More particularly preferred.
  • the pressure resistance can be maintained while having good gas permeation performance.
  • the gas permeation performance is good although the pressure resistance is not much changed.
  • the pressure resistance is good.
  • the measurement of the thickness of the resin layer containing the compound having a siloxane bond is confirmed from the analysis in the depth direction of TOF-SIMS.
  • the film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition. Moreover, as a method of controlling the thickness of the resin layer containing a compound having a siloxane bond, it can be controlled by adjusting the following parameters in accordance with the coating method. Viscosity of composition (coating liquid), solid content concentration, time to cure after coating, etc. For example, when applying by spin coating, the thickness of the resin layer containing a compound having a siloxane bond can also be controlled by adjusting the amount of coating solution and the spin coating rotation speed.
  • the gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
  • the resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
  • the polyimide compound is preferably a polyimide having a reactive group.
  • the resin of the additional resin layer is a polyimide having a reactive group
  • the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
  • the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group. More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
  • the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
  • the polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas.
  • 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
  • R represents a group having a structure represented by any of the following formulas (Ia) to (Ih).
  • * represents a bonding site with the carbonyl group of the formula (I).
  • R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
  • X 1 , X 2 , X 3 X 1 , X 2 and X 3 represent a single bond or a divalent linking group.
  • divalent linking groups —C (R x ) 2 — (R x represents a hydrogen atom or a substituent.
  • R x When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable.
  • R x represents a substituent, specific examples thereof include the substituent group Z described below.
  • an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • ⁇ L L represents —CH 2 ⁇ CH 2 — or —CH 2 —, preferably —CH 2 ⁇ CH 2 —.
  • R 1 , R 2 R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituent any one selected from the substituent group Z shown below can be used.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
  • R 4 , R 5 R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other.
  • Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable.
  • M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
  • R 6 , R 7 , R 8 R 6 , R 7 and R 8 represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 J 1 represents a single bond or a divalent linking group.
  • As the linking group * —COO — N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ⁇ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group.
  • J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
  • a 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S ( ⁇ O) 2 OH. It is more preferable to show the group selected.
  • the preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below.
  • a 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alky
  • an aryl group having 6 to 12 carbon atoms such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.
  • amino group amino group, alkylamino group, arylamino group, hetero
  • a cyclic amino group preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.
  • an alkoxy group preferably having a carbon number
  • an aryloxy group preferably Is an aryloxy group having
  • a heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.
  • a heterocyclic thio group preferably having 1 carbon atom
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms.
  • silyl group examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably).
  • Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group.
  • a ring or an unsaturated heterocyclic ring may be formed.
  • the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
  • the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
  • the molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic dianhydride
  • a specific diamine tetracarboxylic dianhydride
  • the method described in a general book for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.
  • polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 3 below.
  • y is preferably not 0.
  • a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
  • the resin of the additional resin layer is polyimide
  • P84 or P84HT sold under the name P84HT is also preferable.
  • celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected.
  • the substitution degree of all acyl groups is preferably 2.0 to 2.7.
  • Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
  • polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
  • Additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond.
  • additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
  • the film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
  • the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, and 0.3 ⁇ m or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 ⁇ m or less.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 ⁇ m or more, and is practically preferably 0.03 ⁇ m or more from the viewpoint of film formation, More preferably, it is 1 ⁇ m or more.
  • the gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer.
  • the protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
  • the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
  • the film thickness of the protective layer is preferably 20 nm to 3 ⁇ m, more preferably 50 nm to 2 ⁇ m, and particularly preferably 100 nm to 1 ⁇ m.
  • the separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method.
  • a gas separation purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • the gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas.
  • the acid gas examples include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
  • the aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
  • the gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • the gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane.
  • the property ⁇ is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
  • the selective gas permeation involves a dissolution / diffusion mechanism into the membrane.
  • a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility.
  • the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
  • the method for producing the gas separation membrane of the present invention is not particularly limited. In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond.
  • the specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step for permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 10 cm. 3 (STP) / min or more of the carrier gas is preferable and the plasma processing is preferably performed with an input power of 23 W or more.
  • the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
  • the method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
  • the method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
  • the method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
  • the solid content concentration (viscosity) of the composition is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and particularly preferably 3 to 11% by mass.
  • the dropping amount of the composition is preferably 0.001 to 1 ml / cm 2 , more preferably 0.002 to 0.5 ml / cm 2 , and 0.005 to 0.05 ml / cm 2 . It is particularly preferred.
  • limiting in particular as a coating method of a composition Although a well-known method can be used, For example, a spin coat method, a dip coat method, and a bar coat method can be used suitably.
  • the spin coating rotation speed is preferably 100 to 10,000 rpm (round per minute), more preferably 500 to 2500 rpm, and particularly preferably 700 to 1500 rpm.
  • the larger the spin coat rotation speed the easier it is to make the resin layer containing the compound having a siloxane bond thinner.
  • the resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions.
  • the time until the composition is cured after application of the composition is preferably 0.01 to 60 minutes, more preferably 0.02 to 50 minutes, and particularly preferably 0.5 to 2 minutes. When the time until curing after application of the composition is in a preferable range, it is easy to obtain good adhesion to the support and good surface smoothness of the cured film.
  • Electron beam an ultraviolet-ray (UV), visible light, or infrared irradiation can be used.
  • UV ultraviolet-ray
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
  • Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane.
  • PDMS polydimethylsiloxane
  • polydiphenylsiloxane polydiphenylsiloxane
  • polydi (trifluoropropyl) siloxane examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond.
  • polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
  • a specific treatment oxygen atom permeation treatment for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond.
  • a minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond preferably ⁇ 1 and ⁇ 2 respectively. It is more preferable to perform the specific process described above until the above range is reached.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, It is preferable that the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
  • STP oxygen flow rate
  • Plasma treatment conditions oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
  • the plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more. On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions.
  • the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll.
  • the aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
  • the cumulative energy amount by the plasma treatment is preferably 25 ⁇ 500000J / cm 2, and more preferably 2500 ⁇ 100000J / cm 2.
  • the plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber.
  • an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere.
  • gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere.
  • Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table).
  • a method in which a plasma jet is blown out in a spot manner from a circular nozzle There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
  • the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred.
  • the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min.
  • the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
  • the input power is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
  • Corona treatment or the like can be used instead of plasma treatment.
  • the method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
  • the method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond).
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., and ⁇ 10 to 80 ° C. More preferred is 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
  • the manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
  • the method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply.
  • an organic solvent the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 2000 mW / cm 2 .
  • the gas mixture can be separated.
  • the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined.
  • the main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide.
  • the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • the gas separation membrane module of the present invention has the gas separation membrane of the present invention.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • the gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
  • the gas separation membrane of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond, and is obtained when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond.
  • the three-component positron lifetime ⁇ 3 is 3.40 to 4.20 ns. With such a configuration, the gas separation membrane of the present invention has high gas permeability at high pressure and / or gas separation selectivity.
  • the positron lifetime ⁇ 3 of the third component is 3.40 to 4.20 ns when a positron is injected from the surface of the resin layer containing a compound having a siloxane bond with an intensity of 1 keV
  • a gas separation membrane having at least one of gas permeability under high pressure and gas separation selectivity can be obtained.
  • the layer having separation selectivity is a film having a thickness of 1 to 30 ⁇ m, and the obtained film is carbon dioxide (at a temperature of 40 ° C., the total pressure on the gas supply side is set to 0.5 MPa.
  • the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) (PCO 2 / PCH 4 ) when pure gases of CO 2 ) and methane (CH 4 ) are supplied is 1.5. It means the layer which becomes the above.
  • a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment.
  • the structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
  • the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship.
  • the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases. Therefore, it has been difficult for conventional gas separation membranes to increase both gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
  • the gas separation membrane of the present invention preferably has a resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced from the surface with gradation as shown in FIG. 6B.
  • the polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner.
  • the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity.
  • the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane.
  • the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
  • preferred embodiments of the gas separation membrane of the present invention will be described.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
  • a thin layer composite membrane sometimes referred to as a gas separation composite membrane
  • an asymmetric membrane or a hollow fiber and more preferably a thin layer composite membrane.
  • a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
  • FIG. 1 An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
  • FIG. 2 Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond.
  • a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
  • the gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers.
  • the gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer.
  • Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
  • “on the support” means that another layer may be interposed between the support and the layer having separation selectivity.
  • the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
  • the surface of the resin layer 3 containing a compound having a siloxane bond is represented by reference numeral 6.
  • d is 10 nm
  • the surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (toward the support).
  • a surface parallel to 6 is represented by reference numeral 7"
  • the surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (toward the support) It is.
  • the gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support.
  • the support is preferably a thin and porous material in order to ensure sufficient gas permeability.
  • the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane.
  • a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
  • the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping).
  • the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
  • the porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the porous structure of this porous layer usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%.
  • the molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 ⁇ 10 ⁇ 5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 ⁇ cm ⁇ sec ⁇ cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit).
  • the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
  • the gas separation membrane of the present invention has a third component positron lifetime ⁇ 3 of 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond. It is preferably 3.40 to 4.11 ns, more preferably 3.40 to 4.10 ns, and particularly preferably 3.40 to 3.99.
  • the positron annihilation method is a method that utilizes the fact that positrons are extremely small and evaluates pores (free volume holes) having a diameter of about 1 to 10 nm, which is difficult to measure by other methods.
  • the vacancies in the layer containing a polymer compound such as a polymer are analyzed by analyzing the third component, which is a long-life component of the positron lifetime spectrum, and measuring the positron lifetime ⁇ 3 of the third component (o-Ps). Can be calculated. Positrons combine with electrons in the polymer to form ortho-positronium o-Ps. This o-Ps is considered to be trapped in the vacancies and disappear. The lifetime ⁇ 3 of o-Ps at that time is expressed as a function of the radius R of the hole.
  • the analysis of the positron lifetime can be performed using the nonlinear least square program POSITRONFIT.
  • the relative intensity I3 of the third component representing the porosity of the holes is also calculated.
  • a positron beam device using an electron linear accelerator it is possible to change the positron implantation energy, and it is possible to obtain information on the surface vacancies at a lower energy and at a higher energy.
  • an implantation energy of 1 keV information of about 20 nm mainly from the surface in the depth direction can be obtained.
  • an implantation energy of 3 keV information of 200 nm mainly from the surface in the depth direction can be obtained.
  • the positron lifetime ⁇ 3 of the third component is 3.40 to 4.20 ns, for example, when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond, the compound having a siloxane bond is included.
  • pores having a pore diameter of 0.78 to 0.86 nm are expected to exist.
  • a resin layer containing a compound having a siloxane bond is formed by having such pores having a diameter of about 20 nm in the depth direction (support direction) from the surface of the resin layer containing a compound having a siloxane bond.
  • the gas separation membrane of the present invention is a resin layer containing a compound having a siloxane bond having X as the third component positron lifetime ⁇ 3 when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond.
  • Y is the positron lifetime ⁇ 3 of the third component when a positron is implanted at 3 keV from the surface of 0.88 ⁇ X / Y ⁇ 0.99
  • 0.88 ⁇ X / Y ⁇ 0.98 More preferably, 0.88 ⁇ X / Y ⁇ 0.97 It is particularly preferable to satisfy With an implantation energy of 1 keV, information of about 20 nm mainly from the surface in the depth direction can be obtained. With an implantation energy of 3 keV, information of 200 nm mainly from the surface in the depth direction can be obtained.
  • oxygen does not sufficiently enter from the surface of the resin layer containing a compound having a siloxane bond to a sufficient depth so as to have gas separation selectivity.
  • the gas separation membrane of the present invention has a gas permeability that the relative intensity I3 of the third component is 13 to 41% when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. From the viewpoint of increasing both gas separation selectivity, it is preferably 13 to 40%, more preferably 13 to 39%, and particularly preferably 13 to 33%.
  • the relative intensity I3 of the third component represents the porosity of free holes (free volume holes).
  • the resin layer containing a compound having a siloxane bond When the relative intensity I3 of the third component when a positron is shot at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond is, for example, 13 to 41%, the resin layer containing the compound having a siloxane bond It is expected that the porosity at about 20 nm in the depth direction (support direction) from the surface is 13 to 41%.
  • the resin layer containing a compound having a siloxane bond Since the porosity at about 20 nm in the depth direction (support direction) from the surface of the resin layer containing a compound having a siloxane bond is in such a range, the resin layer containing a compound having a siloxane bond is CO 2 and In the separation of CH 4 , it has an appropriate porosity, and can improve both gas permeability and gas separation selectivity.
  • O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms;
  • the carbon / silicon ratio which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • a porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc.
  • Quantera SXM manufactured by the company, X-ray source: Al—K ⁇ ray (1490 eV, 25 W, diameter of 100 ⁇ m), measurement area: 300 ⁇ m ⁇ 300 ⁇ m, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond
  • An O / Si ratio (B) which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
  • an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
  • C 60 ions Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm ⁇ 2 mm.
  • An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond.
  • A O / Si ratio
  • the depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
  • the surface of the resin layer containing the compound having a siloxane bond described above is O 2 when the O / Si ratio is measured from the surface of the gas separation membrane (preferably the surface opposite to the support). / Si ratio is the maximum, and the number of silicon atoms is 3% (atomic%) or more.
  • a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present).
  • the surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that it is “surface”.
  • the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide)
  • the surface of the resin layer containing a compound having a siloxane bond that is, the O / Si ratio is set to the above-mentioned gas separation membrane.
  • the resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
  • a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present).
  • the surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more.
  • a compound having a siloxane bond in a state in which a resin layer containing a compound having a siloxane bond is formed on the porous support (without any other layer (for example, a layer containing polyimide)). From “the surface of the resin layer”, “the surface where the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane and the number of silicon atoms is 3% (atomic%) or more” "Means.
  • a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
  • the resin layer containing a compound having a siloxane bond includes a compound having a siloxane bond.
  • the compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”.
  • the compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
  • the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
  • R 11 represents a substituent
  • * represents a bonding site with # in General Formula (2) or General Formula (3)
  • # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  • R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
  • the hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
  • * represents a binding site with # in general formula (2) or general formula (3)
  • # in general formula (2) or general formula (3) Represents the binding site of *.
  • * may be a bonding site with an oxygen atom in the general formula (1) described later
  • # may be a bonding site with a silicon atom in the general formula (1) described later.
  • each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  • the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
  • R in the general formula (1) is preferably an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group in the general formula (1).
  • an alkyl group, an amino group, an epoxy group or a carboxyl group is more preferred, and an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group is particularly preferred.
  • the alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
  • the alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • the aryl group represented by R in the general formula (1) an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
  • the fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. .
  • the fluorinated alkyl group represented by R may be linear, branched or cyclic.
  • the alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group.
  • the alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
  • n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
  • the compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1).
  • Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
  • the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
  • the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond.
  • the ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ⁇ 600 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond.
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
  • the resin layer containing the compound having the siloxane bond described above at a depth of 100 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1).
  • the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 100 nm from the surface of the resin layer including the compound having the siloxane bond.
  • the ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group.
  • functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups.
  • the resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups.
  • Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
  • the compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group.
  • the polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group.
  • Examples of the dialkylsiloxane group include a group represented by — ⁇ O—Si (CH 3 ) 2 ⁇ n2 — (n2 is, for example, 1 to 100).
  • a poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
  • Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi).
  • PDMS polydimethylsiloxane
  • Polydiphenylsiloxane Polydiphenylsiloxane
  • Polydi trifluoropropyl siloxane
  • poly (1-trimethylsilyl-1-propyne) At least one selected from PTMSP, polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
  • a commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond.
  • a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
  • PDMS polydimethylsiloxane
  • X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • the material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition.
  • the organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
  • the film thickness (synonymous with the thickness) of the resin layer containing a compound having a siloxane bond is not particularly limited, but the thickness of the resin layer containing the compound having a siloxane bond is 0.1 ⁇ m or more. From the viewpoint of ease, it is preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 4 ⁇ m, and particularly preferably 0.3 to 3 ⁇ m.
  • the thickness of the resin layer containing a compound having a siloxane bond can be determined by SEM.
  • the film thickness of the resin layer containing a compound having a siloxane bond is made thinner than the above upper limit, the effect of expanding the pore diameter due to the CO 2 swelling of the resin layer containing the compound having a siloxane bond can be suppressed, and gas separation selection can be performed. A tendency to increase sex has been observed.
  • the thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
  • the gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
  • the resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
  • the polyimide compound is preferably a polyimide having a reactive group.
  • the resin of the additional resin layer is a polyimide having a reactive group
  • the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
  • the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group. More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
  • the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
  • the polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas.
  • 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
  • R represents a group having a structure represented by any of the following formulas (Ia) to (Ih).
  • * represents a bonding site with the carbonyl group of the formula (I).
  • R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
  • X 1 , X 2 , X 3 X 1 , X 2 and X 3 represent a single bond or a divalent linking group.
  • divalent linking groups —C (R x ) 2 — (R x represents a hydrogen atom or a substituent.
  • R x When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable.
  • R x represents a substituent, specific examples thereof include the substituent group Z described below.
  • an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • ⁇ L L represents —CH 2 ⁇ CH 2 — or —CH 2 —, preferably —CH 2 ⁇ CH 2 —.
  • R 1 , R 2 R 1 and R 2 represent a hydrogen atom or a substituent.
  • substituent any one selected from the substituent group Z shown below can be used.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
  • R 4 , R 5 R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other.
  • Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later.
  • the structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable.
  • M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
  • R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
  • R 6 , R 7 , R 8 R 6 , R 7 and R 8 represent a substituent.
  • R 7 and R 8 may be bonded to each other to form a ring.
  • L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • J 1 J 1 represents a single bond or a divalent linking group.
  • As the linking group * —COO — N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ⁇ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group.
  • J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
  • a 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S ( ⁇ O) 2 OH. It is more preferable to show the group selected.
  • the preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below.
  • a 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alky
  • an aryl group having 6 to 12 carbon atoms such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.
  • amino group amino group, alkylamino group, arylamino group, hetero
  • a cyclic amino group preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.
  • an alkoxy group preferably having a carbon number
  • an aryloxy group preferably Is an aryloxy group having
  • a heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • a carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.
  • a heterocyclic thio group preferably having 1 carbon atom
  • a heterocyclic thio group e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms.
  • silyl group examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably).
  • Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group.
  • a ring or an unsaturated heterocyclic ring may be formed.
  • the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
  • the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
  • the molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine.
  • a specific bifunctional acid anhydride tetracarboxylic dianhydride
  • a specific diamine tetracarboxylic dianhydride
  • the method described in a general book for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.
  • polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 4 below.
  • y is preferably not 0.
  • a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
  • the resin of the additional resin layer is polyimide
  • P84 or P84HT sold under the name P84HT is also preferable.
  • celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected.
  • the substitution degree of all acyl groups is preferably 2.0 to 2.7.
  • Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
  • polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
  • Additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond.
  • additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
  • the thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
  • the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 ⁇ m or less, preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, and preferably 0.3 ⁇ m or less. More particularly preferred, it is even more particularly preferred that it is 0.2 ⁇ m or less.
  • the thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 ⁇ m or more, and is practically preferably 0.03 ⁇ m or more from the viewpoint of film formation, More preferably, it is 1 ⁇ m or more.
  • the gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer.
  • the protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
  • the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
  • the thickness of the protective layer is preferably 20 nm to 3 ⁇ m, more preferably 50 nm to 2 ⁇ m, and particularly preferably 100 nm to 1 ⁇ m.
  • the separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method.
  • a gas separation purification method for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc.
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • the gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas.
  • the acid gas examples include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
  • the aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
  • the gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
  • the carbon dioxide permeation rate at 40 ° C. and 6 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable, and 30 to 300 GPU is more preferable.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • the gas separation membrane of the present invention is a gas separation selection which is a ratio of the permeation flux of carbon dioxide to the permeation flux of methane at 40 ° C. and 6 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane.
  • the property ⁇ is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and particularly preferably 50 or more.
  • the selective gas permeation involves a dissolution / diffusion mechanism into the membrane.
  • a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility.
  • the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
  • the method for producing the gas separation membrane of the present invention is not particularly limited. In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond.
  • the specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
  • the method for producing a gas separation membrane of the present invention is preferably the following method for producing a gas separation membrane of the present invention.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step for permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 45 cm 3. (STP) / Plasma treatment using a carrier gas of at least min and using anode coupling at an input power of 23 W or more.
  • the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
  • the method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
  • the method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
  • the method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
  • the coating method is not particularly limited, and a known method can be used. For example, a spin coating method, a dip coating method, or a bar coating method can be appropriately used.
  • the resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions.
  • curable compositions there is no restriction
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 2000 mW / cm 2 .
  • Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane.
  • PDMS polydimethylsiloxane
  • polydiphenylsiloxane polydiphenylsiloxane
  • polydi (trifluoropropyl) siloxane examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond.
  • polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
  • a specific treatment oxygen atom permeation treatment for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond.
  • the process includes the steps described above until the positron lifetime ⁇ 3 of the third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond. It is more preferable to perform a specific process.
  • the method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
  • the above-described oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more and using anode coupling at an input power of 23 W or more.
  • Plasma treatment conditions oxygen flow rate 45 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more, anode coupling.
  • the plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more. On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions.
  • the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll.
  • the aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
  • the cumulative energy amount by the plasma treatment is preferably 25 ⁇ 500000J / cm 2, and more preferably 2500 ⁇ 100000J / cm 2.
  • the plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber.
  • an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere.
  • gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere.
  • Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table).
  • a method in which a plasma jet is blown out in a spot manner from a circular nozzle There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
  • the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred.
  • the oxygen flow 45cm 3 (STP) / min or more it is preferably, 50 ⁇ 100cm 3 (STP) / min is 50cm 3 (STP) / min or more It is more preferable.
  • the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
  • the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
  • the method for producing a gas separation membrane of the present invention it is preferable to use anode coupling as the plasma treatment condition from the viewpoint of gas separation selectivity. Corona treatment or the like can be used instead of plasma treatment.
  • the method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
  • the method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond).
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., and ⁇ 10 to 80 ° C. More preferred is 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
  • the manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
  • the method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply.
  • an organic solvent the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned.
  • a coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
  • the irradiation time is preferably 1 to 30 seconds.
  • the radiant energy is preferably 10 to 2000 mW / cm 2 .
  • the gas mixture can be separated.
  • the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined.
  • the main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen. That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide.
  • the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
  • the method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • the gas separation membrane module of the present invention has the gas separation membrane of the present invention.
  • the gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection
  • the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • the gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
  • a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond is sampled by sampling the center of the porous support on which the resin layer containing the compound having a siloxane bond has been subjected to plasma treatment.
  • O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing to the number of silicon atoms, and the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms
  • the ratio O / Si (B) was calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
  • ESCA Electron Spectroscopy FOR Chemical Analysis.
  • a porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc.
  • Quantera SXM manufactured by the company, X-ray source: Al—K ⁇ ray (1490 eV, 25 W, diameter of 100 ⁇ m), measurement area: 300 ⁇ m ⁇ 300 ⁇ m, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond
  • O / Si ratio (B) which is the ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, was calculated.
  • the carbon / silicon ratio which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, was also calculated in the same manner.
  • an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) was performed with C 60 ions. That is, Physical Electronics, Inc. The ion beam intensity was C 60 + : 10 keV, 10 nA, and a 2 mm ⁇ 2 mm region was etched by 10 nm with a Quantera SXM attached C 60 ion gun.
  • An ESCA apparatus was used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond.
  • the depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
  • O / Si ratio (A) which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond to the number of silicon atoms
  • a / B is calculated from the O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, 6.
  • O / Si ratio (A) which is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond.
  • O / Si ratio (C) which is the ratio of the number of oxygen atoms in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms Asked.
  • C / B was computed from O / Si ratio (B) and O / Si ratio (C), and it described in Table 5 and Table 6 below.
  • Tables 5 and 6 below show the values of the carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  • the surface of the resin layer containing the compound having a siloxane bond has the maximum O / Si ratio when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% ( Atomic%) or more.
  • O / Si ratio which is the ratio of the number of oxygen atoms to the number of silicon atoms in a resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond
  • O / Si ratio is measured from the surface of the gas separation membrane, the surface where the O / Si ratio is maximum and the number of silicon atoms is 3% (atomic%) or more is specified. did.
  • a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present).
  • the surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more.
  • the surface of the resin layer containing a compound having a siloxane bond is a repeating unit represented by the general formula (1) and a repeating unit represented by at least the general formula (2) or the general formula (3). It was confirmed by the following method that a compound having a siloxane bond having a unit was included.
  • the Si2p spectrum was measured by ESCA, and the valence of Si (Si 2+ , Si 3+ and Si 4+ ) was separated and quantified from the curve fitting of the obtained peak.
  • a resin layer containing a compound having a siloxane bond at a depth of 10 nm and 30 nm from the surface of the resin layer containing a compound having a siloxane bond is a repeating unit represented by the general formula (1) and at least the general formula (2) It was confirmed by the following method that it contains a compound having a siloxane bond having a repeating unit represented by formula (3) or a repeating unit represented by formula (3).
  • the Si2p spectrum was measured by ESCA using the same etching treatment as in Example, and the valences of Si (Si 2+ , Si 3+ and Si 4+ ) were separated and quantified from the curve fitting of the obtained peaks.
  • the ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 1 to 8, while 5 to 400 in Examples 9 to 12. It was confirmed by the same method that it was mol%.
  • the repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing the compound having a siloxane bond is 3 to 400 mol% in Examples 1 to 8, while 5 to 300 in Examples 9 to 12. It was confirmed by the same method that it was mol%.
  • Example 2 the input power of the plasma treatment of the resin layer precursor containing the compound having a siloxane bond was changed from 25 W as shown in the following table, respectively. A gas separation membrane was obtained.
  • Example 8 was the same as Example 8 except that the resin layer precursor material containing a compound having a siloxane bond was changed from PDMS to Polydiphenyl siloxane and Poly [methyl (3,3,3-trifluoropropyl) siloxane], respectively.
  • gas separation membranes of Examples 9 to 10 were obtained.
  • Polyphenyl siloxane is available under the trade name 482153 manufactured by Sigma Aldrich
  • Poly [methyl (3,3-trifluoropropyl) siloxane] (abbreviated as PMTFPS) is available under the trade name 48 available from Sigma Aldrich 45. Use.
  • Example 11 In Example 4, after the oxygen atom permeation treatment, a polymerizable radiation curable composition was further spin-coated on the resin layer containing the compound having a siloxane bond, and the UV intensity was 24 kW / m and the treatment time was 10 seconds. The sample was subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under the following UV treatment conditions, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a second layer having a thickness of 1 ⁇ m was formed.
  • UV treatment Fusion UV System, Light Hammer 10, D-bulb
  • a porous support on which a resin layer precursor containing a compound having a siloxane bond in the second layer is formed is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), the carrier gas conditions are oxygen flow rate 20 cm 3 (STP) / min, argon A plasma treatment, which is a second oxygen atom infiltration treatment, was performed at a flow rate of 100 cm 3 (STP) / min, a degree of vacuum of 30 Pa, an input power of 100 W, and a treatment time of 10 seconds.
  • the obtained gas separation membrane was used as the gas separation membrane of Example 11.
  • Example 12 In Example 11, after the second oxygen atom permeation treatment was performed on the resin layer precursor containing a compound having a siloxane bond in the second layer, the resin layer containing a compound having a siloxane bond in the second layer was applied. Further, a polymerizable radiation curable composition was spin-coated, and subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions with a UV intensity of 24 kW / m and a treatment time of 10 seconds. Dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a third layer having a thickness of 1 ⁇ m was formed.
  • UV treatment Fusion UV System, Light Hammer 10, D-bulb
  • a porous support formed with a resin layer containing a compound precursor having a siloxane bond in the third layer is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), and the carrier gas conditions are oxygen flow rate 20 cm 3 (STP) / min, argon The flow rate was 100 cm 3 (STP) / min, the degree of vacuum was 30 Pa, the input power was 100 W, and the plasma treatment, which is the third oxygen atom infiltration treatment, was performed in a treatment time of 10 seconds.
  • the obtained gas separation membrane was used as the gas separation membrane of Example 12.
  • Example 1 a gas separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that the input power for plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W to 10 W.
  • Comparative Example 2 A gas separation membrane of Comparative Example 2 was obtained in the same manner as in Example 1, except that the carrier gas condition was changed from 20 cm 3 (STP) / min to 0 cm 3 (STP) / min in Example 1.
  • a mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2
  • CO 2 partial pressure 0.65 MPa
  • a mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2
  • CO 2 partial pressure 0.65 MPa
  • the polymer (P-101) is abbreviated as PI.
  • Example 14 An additional resin layer is formed in the same manner as in Example 13 except that a resin layer containing a compound having a siloxane bond, which is obtained by plasma-treating a resin layer containing a compound having a siloxane bond under the same conditions as in Example 6, A gas separation membrane of Example 14 was obtained.
  • Example 15 An additional resin layer is formed in the same manner as in Example 13 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 7 is used. A gas separation membrane of Example 15 was obtained.
  • the gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ).
  • the CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
  • barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / cm 2 ⁇ sec ⁇ cmHg) representing a transmission coefficient.
  • the unit of GPU is represented by the symbol Q
  • the unit of barrer is represented by the symbol P.
  • the evaluation is AA
  • the evaluation is A
  • the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more.
  • the evaluation is B, When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
  • Example 16 to 19 From the following Examples 16 to 19, it was found that the storage resistance and wet heat resistance were improved by reducing the flowable PDMS. Details are described below. A polymerizable radiation-curable composition containing PDMS as a compound having a siloxane bond having a thickness of 600 nm was applied on a PAN porous support in the same manner as in Example 6 and described in Table 7 below. In this way, samples having different gel fractions were prepared by changing the UV irradiation conditions.
  • Example 7 Specifically, from the UV processing conditions of Example 1 made by Fusion UV System, Light Hammer 10, UV intensity of 9 kW / m 2 using a D-bulb, and UV irradiation time of 10 seconds, the same apparatus was used to obtain a UV integrated light amount ( Adjustment was made by changing the irradiation intensity of the UV-A irradiation lamp so that the integrated energy amount was a value shown in Table 7 below. Thereafter, samples having different gel fractions and subjected to plasma treatment under the conditions shown in Table 7 below, which are similar to those of Example 6, were used as gas separation membranes of Examples 16-19. About the obtained gas separation membrane, the characteristic was evaluated similarly to Example 1, and the obtained result was described in following Table 7.
  • ⁇ Gel fraction> Separately prepare a sample for gel fraction measurement up to UV irradiation in the same manner as the gas separation membranes of Examples 16 to 19, and measure the gel fraction of the resin layer containing the compound having a siloxane bond by the following method. did. A sample for gel fraction measurement having a resin layer containing a compound having a siloxane bond on a support was cut out to prepare a sample. The sample was immersed in a chloroform solvent for 24 hours, and the signal intensity of the Si component in XRF (X-ray fluorescence analysis) before and after immersion was measured.
  • XRF X-ray fluorescence analysis
  • XRF was measured using an XRF-1700 (trade name, manufactured by Shimadzu Corporation) as a measuring device, with an X-ray voltage / current of 40 kV / 95 mA, a diaphragm of 30 mm ⁇ (diameter), and a sample mask of 30 mm ⁇ (diameter).
  • Xa the signal intensity of the Si component of the sample before immersion
  • Xb the signal intensity of the Si component of the sample after immersion
  • Xb / Xa * 100 (%) was taken as the gel fraction of the gas separation membrane.
  • the polymerizable radiation-curable composition soaks in a certain amount into the support, and the rest forms a resin layer containing a compound having a siloxane bond.
  • the sample is immersed in a chloroform solvent, in XRF, UV of both a polymerizable radiation curable composition soaked in a support and a polymerizable radiation curable composition in which a resin layer containing a compound having a siloxane bond is formed.
  • the components that have not been gelled by irradiation distill off, leaving the gelled components.
  • Xa and Xb continuously measure the signal intensity of the Si component in the depth direction from the surface of the resin layer containing the compound having a siloxane bond to the opposite surface of the support, and the Si component in the depth direction This is the sum of the signal intensities.
  • Table 7 The gas separation performance, storage resistance, and wet heat resistance were evaluated using a sample that was plasma-treated without being immersed in the chloroform solvent.
  • Storage resistance was evaluated according to the following criteria, comparing the results of gas permeability evaluation immediately after plasma treatment with the results of gas permeability evaluation of samples placed at room temperature in a 50% environment for 2 weeks.
  • the gas permeability changed by 50% or more was designated as B, and the gas permeability changed by less than 50% was designated as A.
  • the obtained results are shown in Table 7 below.
  • Examples 101 to 119 -modularization- Using the gas separation membranes produced in Examples 1 to 19, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869.
  • the obtained gas separation membrane modules were designated as gas separation membrane modules of Examples 101 to 119. It was confirmed that the produced gas separation membrane modules of Examples 101 to 119 were good according to the performance of the built-in gas separation membrane.
  • the produced gas separation membrane modules of Examples 101 to 119 are leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module).
  • 10 points of 1 cm ⁇ 1 cm are sampled randomly from within 10 cm ⁇ 10 cm of the center of one side, and the element ratio in the surface and depth direction is calculated according to the method of Example 1, and built-in at 9 points or more out of 10 points. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
  • Example 1001 ⁇ Preparation of polymerizable radiation-curable composition for forming a resin layer precursor containing a compound having a siloxane bond> (Preparation of radiation curable polymer having dialkylsiloxane group)
  • 39 g of UV9300 manufactured by Momentive
  • 10 g of X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • 0.007 g was added and dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa ⁇ s at 25 ° C.).
  • the polymerizable radiation curable composition was subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions of a UV intensity of 24 kW / m 2 and a UV irradiation time of 10 seconds to form a siloxane bond.
  • UV treatment Fusion UV System, Light Hammer 10, D-bulb
  • the resin layer precursor containing a compound having the following was cured.
  • a region in which the compound having a siloxane bond is hardly filled becomes the porous support A, and the remaining region is present in the porous support B of the resin layer containing the compound having a siloxane bond. It became area
  • the region GLi (thickness 200 nm) present in the porous support B of the resin layer containing the compound having a siloxane bond and the porous support B of the resin layer containing the compound having a siloxane bond exist.
  • a resin layer precursor containing a compound having a siloxane bond including a region GLe (thickness 140 nm) to be formed was formed.
  • the thickness of the gas separation membrane of each Example and Comparative Example was measured as follows. Measurement was performed using a TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF) equipped with an Ar-Bac Ar-GCIB gun. Bi3 ++ (30 kV) was used as the primary ion source. A 20 eV electron gun was used in combination for charge neutralization. Ar-GCIB (Ar2500 +, 15 kV) was used for the depth direction analysis. The maximum peak strength derived from silicone was determined, and the thicknesses of GLe, GLi, and porous support A were determined.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF
  • Bi3 ++ (30 kV) was used as the primary ion source.
  • a 20 eV electron gun was used in combination for charge neutralization.
  • Ar-GCIB Ar2500 +, 15 kV was used for
  • the thickness values of the obtained GLe and GLi are shown in Table 8 below. Moreover, the ratio with respect to the thickness of thickness GLe of GLi was calculated
  • Si2P spectra were obtained from analysis in the depth direction by ESCA (Electron Spectroscopy FOR Chemical Analysis) analysis. From the curve fitting of the Si2P spectral peak, the valence (Si2 + , Si3 + and Si4 + ) of the silicon atom was separated and quantified.
  • the profile of Si 4+ , Si 3+ and Si 2+ with respect to the depth is measured, and the ratio of Si 4+ to the total Si component (total of Si 4+ , Si 3+ and Si 2+ ) is calculated as an integrated value from the surface layer to 20 nm, and GLe
  • the average value in N 5 measurement was adopted, and the results are shown in Table 8 below.
  • the difference between the content of the repeating unit represented by the general formula (3) of the surface layer 20 nm of GLe and the content of the repeating unit represented by the general formula (3) of the surface layer 20 nm of GLi was calculated, It described in Table 8.
  • the surface layer of GLe of the resin layer containing a compound having a siloxane bond, the surface of GLe is a repeating unit represented by the general formula (1), a repeating unit represented by the general formula (2), and It was confirmed that a compound having a siloxane bond having a repeating unit represented by the general formula (3) was included.
  • the depth of the resin layer containing a compound having a siloxane bond from the surface of the resin layer containing a compound having a siloxane bond in the direction of the support was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
  • the surface of the resin layer containing the aforementioned compound having a siloxane bond (GLe surface) can be similarly determined by measuring the O / Si ratio by ESCA. That is, the O / Si ratio is maximum when measured from the surface of the gas separation membrane opposite to the porous support A toward the porous support A, and the number of silicon atoms is 3% (Atomic). %) Or more is the surface of GLe.
  • Example 1002 to 1011 and Comparative Examples 1001 to 1004 In Example 1001, 1002 to 1011 and Comparative Examples 1001 to 1004 in the same manner as in Example 1001 except that the production conditions of the resin layer precursor containing the compound having a siloxane bond were changed as shown in Table 8 below. A gas separation membrane was obtained.
  • the gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ).
  • the CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
  • barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / cm 2 ⁇ sec ⁇ cmHg) representing a transmission coefficient.
  • the unit of GPU is represented by the symbol Q
  • the unit of barrer is represented by the symbol P.
  • the evaluation is AA
  • the evaluation is A
  • the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more.
  • the gas separation membrane of the present invention has high gas permeability (CO 2 permeability) and gas separation selectivity under high pressure and good bending resistance. It was found to be a gas separation membrane.
  • Example 1013 An additional resin layer is formed in the same manner as in Example 1012 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 1009 is used. A gas separation membrane of Example 1013 was obtained.
  • Example 1014 An additional resin layer is formed in the same manner as in Example 1012 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 1010 is used. A gas separation membrane of Example 1014 was obtained.
  • the gas separation performance and the bending resistance were all evaluated as AA.
  • Examples 1101 to 1114 -modularization- Using the gas separation membranes produced in Examples 1001 to 1014, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 1101 to 1114. It was confirmed that the produced gas separation membrane modules of Examples 1101 to 1114 were good according to the performance of the built-in gas separation membrane.
  • the produced gas separation membrane modules of Examples 1101 to 1114 are leafs (the leaf is a spiral type module in which the permeate side space is connected to the central tube and is bent into an envelope shape) 10 points of 1 cm ⁇ 1 cm are sampled randomly from within 10 cm ⁇ 10 cm of the center of one side of the sample, and the element ratio in the surface and depth direction is calculated according to the method of Example 1001. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
  • IO591 manufactured by Tokyo Chemical Industry Co., Ltd.
  • titanium isoporopoxide manufactured by aldrich
  • the resin layer precursor containing a compound having the following was cured. In this manner, a resin layer precursor containing a compound having a siloxane bond having a thickness of 120 nm and including a compound having a siloxane bond having a dialkylsiloxane group was formed on the porous support.
  • QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, while advancing the etching an area of 2mm ⁇ 2mm at an etching rate 10 nm / min, using ESCA apparatus, a siloxane bond
  • ESCA apparatus a siloxane bond
  • the ratio of the Si 2+ peak and the Si 3+ peak to the sum of the quantified total Si peaks (Si 2+ , Si 3+ and Si 4+ ) at each depth is calculated, and this is calculated in the depth direction of Si 2+ and Si 3+.
  • the minimum value (Si 0 ) was derived from the profile.
  • the surface of the outermost layer (on the side opposite to the support) of the resin layer containing the compound having a siloxane bond was compared with the Si 2+ and Si 3+ peaks of all Si peaks. It was a position having the minimum value (Si 0 ).
  • the ratio of Si 2+ and Si 3+ to the total Si peak at a depth of 10 nm from the position having the minimum value (Si 0 ) of the ratio of Si 2+ and Si 3+ to the total Si (Si 2+ + Si 3+ / all Si) The difference between the ratio (Si 10 ) (Si 2+ + Si 3+ / all Si) and the minimum value (Si 0 ) of the ratio of Si 2+ and Si 3+ to the total Si peak (Si 2+ + Si 3+ / all Si) ( Si 10 ) ⁇ (Si 0 ) was defined as ⁇ 1.
  • the compound having a siloxane bond included in the resin layer containing a compound having a siloxane bond on the surface of the resin layer containing the compound having a siloxane bond is represented by the general formula (3).
  • the ratio of the represented repeating unit to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 2001 and 2004 to 2013, On the other hand, in Examples 2002 and 2003, it was confirmed by the same method that it was 5 to 400 mol%.
  • the ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 2001 and 2004 to 2013, while 5 in Example 2002 and 2003. It was confirmed by the same method that it was ⁇ 400 mol%.
  • the repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 20 nm from the surface of the resin layer containing the compound having a siloxane bond The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 400 mol% in Examples 2001 and 2004 to 2013, while 5 in Example 2002 and 2003. It was confirmed by the same method that it was ⁇ 300 mol%.
  • the thickness of the resin layer containing the compound having a siloxane bond in the gas separation membrane of each Example and Comparative Example was measured as follows. Measurement was performed using a TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF) equipped with an Ar-Bac Ar-GCIB gun. Bi3 ++ (30 kV) was used as the primary ion source. A 20 eV electron gun was used in combination for charge neutralization. Ar-GCIB (Ar2500 +, 15 kV) was used for the depth direction analysis.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF
  • Bi3 ++ (30 kV) was used as the primary ion source.
  • a 20 eV electron gun was used in combination for charge neutralization.
  • Ar-GCIB Ar2500 +, 15 kV was used for the depth direction analysis.
  • Examples 2002 to 2013 and Comparative Example were the same as Example 2001 except that the production conditions and plasma treatment conditions of the resin layer precursor containing a compound having a siloxane bond were changed as shown in the following table. Gas separation membranes of 2001 to 2003 were obtained.
  • UV POLY201 produced by Arakawa Chemical Industries, Ltd., cation curable UV silicone resin
  • KF-102 produced by Shin-Etsu Chemical Co., Ltd.
  • the gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ).
  • the CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
  • barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / cm 2 ⁇ sec ⁇ cmHg) representing a transmission coefficient.
  • the unit of GPU is represented by the symbol Q
  • the unit of barrer is represented by the symbol P.
  • the evaluation is AA
  • the evaluation is A
  • the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more.
  • the bending resistance is preferably AA, A or B evaluation, more preferably AA or A evaluation, and particularly preferably AA evaluation.
  • AA 80% or more.
  • A 70% or more and less than 80%.
  • B 30% or more and less than 70%.
  • C Less than 30%. The obtained results are shown in Table 9 below.
  • the gas separation membrane of the present invention did not change much in pressure resistance, but it was found that at least one of gas permeability (CO 2 permeability) and gas separation selectivity under high pressure was high.
  • Example 2015 An additional resin layer was formed in the same manner as in Example 2014, except that a resin layer containing a compound having a siloxane bond, which was obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 2013, was used. A gas separation membrane of Example 2015 was obtained.
  • Examples 2101 to 2115 -modularization- Using the gas separation membranes produced in Examples 2001 to 2015, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869.
  • the obtained gas separation membrane module was used as the gas separation membrane module of Examples 2101 to 2115. It was confirmed that the produced gas separation membrane modules of Examples 2101 to 2115 were good according to the performance of the built-in gas separation membrane.
  • the produced gas separation membrane modules of Examples 2101 to 2115 are the leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module).
  • Example 3001 ⁇ Preparation of polymerizable radiation-curable composition for forming a resin layer precursor containing a compound having a siloxane bond> (Preparation of radiation curable polymer having dialkylsiloxane group)
  • 39 g of UV9300 manufactured by Momentive
  • 10 g of X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • 0.007 g was added and dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa ⁇ s at 25 ° C.).
  • Quantera SXM manufactured by the company, X-ray source: Al—K ⁇ ray (1490 eV, 25 W, diameter of 100 ⁇ m), measurement area: 300 ⁇ m ⁇ 300 ⁇ m, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond A spectrum on the surface of the resin layer was obtained. Etching with C60 ions was also performed. Specifically, Physical Electronics, Inc. With a Quantera SXM attached C60 ion gun, the ion beam intensity was C60 +: 10 keV, 10 nA, and a 2 mm ⁇ 2 mm region was etched by 10 nm and 100 nm.
  • the Si2P spectrum at a depth of 10 nm and 100 nm from the surface of the resin layer containing a compound having a siloxane bond to the support and the Si2P surface of the resin layer containing a compound having a siloxane bond are used.
  • a spectrum was obtained. From the curve fitting of the Si2P spectral peak, the valence (Si2 + , Si3 + and Si4 + ) of the silicon atom was separated and quantified.
  • the surface of the resin layer containing a compound having a siloxane bond and the resin layer containing a compound having a siloxane bond at a depth of 10 nm and 100 nm from the surface of the resin layer containing the compound having a siloxane bond to the support It is confirmed that the compound contains a compound having a repeating unit represented by the general formula (1) and a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). It was done.
  • the depth of the resin layer containing a compound having a siloxane bond from the surface of the resin layer containing a compound having a siloxane bond in the direction of the support was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
  • the ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 3001 to 3007, while 5 to 400 in Examples 3008 to 3009. It was confirmed by the same method that it was mol%.
  • the ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 400 mol% in Examples 3001 to 3007, while 5 to 300 in Examples 3008 to 3009.
  • the surface of the resin layer containing the compound having a siloxane bond can be determined by measuring the O / Si ratio by ESCA. That is, the O / Si ratio is maximum and the number of silicon atoms is 3% (Atomic%) when measured in the direction of the support from the surface opposite to the support of the gas separation membrane.
  • the surface included above is defined as the surface.
  • the obtained data was analyzed for the third component based on the nonlinear least square program POSITRONFIT, and the positron lifetime ⁇ 3 (ns) of the third component and the relative intensity I3 of the third component were calculated for the beam intensities of 1 keV and 3 keV, respectively.
  • POSITRONFIT nonlinear least square program
  • the results obtained are listed in the table below. If the resin layer containing a compound having a siloxane bond is not the outermost layer and another layer such as an additional resin layer is outside the resin layer containing a compound having a siloxane bond, the siloxane bond is etched using ESCA. The conditions for projecting the surface of the resin layer containing the compound having the above are calculated, and the sample etched under the same conditions is used for measurement of the positron lifetime
  • Example 3001 the input power of the plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W as shown in the following table, respectively. A gas separation membrane was obtained.
  • Example 3007 is the same as Example 3007 except that the resin layer precursor material containing a compound having a siloxane bond is changed from PDMS to Polydiphenyl siloxane and Poly [methyl (3,3,3-trifluoropropyl) siloxane], respectively.
  • gas separation membranes of Examples 3008 and 3009 were obtained.
  • Polyphenyl siloxane is available under the trade name 482153 manufactured by Sigma Aldrich
  • Poly [methyl (3,3-trifluoropropyl) siloxane] (abbreviated as PMTFPS) is available under the trade name 48 available from Sigma Aldrich 45. Use.
  • Example 3010 In Example 3004, after oxygen atom permeation treatment, a polymerizable radiation curable composition was further spin-coated on a resin layer containing a compound having a siloxane bond, and the UV intensity was 24 kW / m 2 and the treatment time was 10 UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under UV treatment conditions for 2 seconds, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a second layer having a thickness of 1 ⁇ m was formed.
  • a porous support formed with a resin layer precursor containing a compound having a siloxane bond in the second layer is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), and the carrier gas conditions are oxygen flow rate 50 cm 3 (STP) / min, argon
  • the plasma treatment which is the second oxygen atom infiltration treatment, was performed at a flow rate of 100 cm 3 (STP) / min, a degree of vacuum of 30 Pa, an input power of 100 W, and a treatment time of 20 seconds.
  • the obtained gas separation membrane was used as the gas separation membrane of Example 3010.
  • Example 3011 In Example 3010, after the second oxygen atom permeation treatment was performed on the resin layer precursor containing a compound having a siloxane bond in the second layer, the resin layer containing a compound having a siloxane bond in the second layer was applied. Further, a polymerizable radiation-curable composition was spin-coated, and UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under a UV treatment condition of a UV intensity of 24 kW / m 2 and a treatment time of 10 seconds. And then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a third layer having a thickness of 1 ⁇ m was formed.
  • UV treatment Fusion UV System, Light Hammer 10, D-bulb
  • the third layer to the desktop vacuum plasma apparatus (YOUTEC Corp.), the oxygen flow rate 50 cm 3 of carrier gas conditions (STP) / min, argon The flow rate was 100 cm 3 (STP) / min, the degree of vacuum was 30 Pa, the input power was 100 W, and the plasma treatment, which is the third oxygen atom infiltration treatment, was performed in a treatment time of 20 seconds.
  • the obtained gas separation membrane was used as the gas separation membrane of Example 3011.
  • Example 3001 a gas separation membrane of Comparative Example 3001 was obtained in the same manner as in Example 3001, except that the input power for plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W to 10 W.
  • Comparative Example 3002 A gas separation membrane of Comparative Example 3002 was obtained in the same manner as in Example 3001, except that the carrier gas condition was changed from 50 cm 3 (STP) / min to 0 cm 3 (STP) / min in Example 3001.
  • Comparative Example 3003 Based on the technique described in Journal of Membrane Science 99 (1995) 139-147, a polydimethylsiloxane film was treated with 5 W for 120 seconds under an Ar atmosphere to produce a composite film. The obtained composite membrane was used as a gas separation membrane of Comparative Example 3003 and evaluated in the same manner as in Example 3001. Using a stainless steel cell made of SUS316 (manufactured by DENISSEN) having high-pressure resistance, the cell temperature was adjusted to 40 ° C., and the gas separation performance was evaluated.
  • a mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 13:87 is adjusted so that the total pressure on the gas supply side is 6 MPa (CO 2 partial pressure: 0.78 MPa), and CO 2
  • CO 2 partial pressure: 0.78 MPa CO 2 partial pressure
  • Comparative Example 3004 Based on the method described in Journal of Membrane Science 440 (2013) 1-8, the polydimethylsiloxane film was subjected to atmospheric pressure plasma treatment to produce a composite film. The obtained composite membrane was used as a gas separation membrane of Comparative Example 3004 and evaluated in the same manner as in Example 3001. Using a stainless steel cell made of SUS316 (manufactured by DENISSEN) having high-pressure resistance, the cell temperature was adjusted to 40 ° C., and the gas separation performance was evaluated.
  • a mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 13:87 is adjusted so that the total pressure on the gas supply side is 6 MPa (CO 2 partial pressure: 0.78 MPa), and CO 2
  • CO 2 partial pressure: 0.78 MPa CO 2 partial pressure
  • polymer (P-101) is abbreviated as PI.
  • Example 3013 An additional resin layer is formed in the same manner as in Example 3012 except that a resin layer containing a compound having a siloxane bond, which is obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 3006, is used. A gas separation membrane of Example 3013 was obtained.
  • Example 3014 An additional resin layer is formed in the same manner as in Example 3012 except that a resin layer containing a compound having a siloxane bond, which is obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 3007, is used. A gas separation membrane of Example 3014 was obtained.
  • Example 3015 to 3017 A gas separation membrane was obtained in the same manner as in Example 3005 except that the thickness of the resin layer containing a compound having a siloxane bond was changed as described in the following table, except that plasma treatment was performed under the same conditions as in Example 3005. . The obtained gas separation membrane was used as the gas separation membrane of Examples 3015 to 3017.
  • the gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ).
  • the CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
  • barrer 1 ⁇ 10 ⁇ 10 cm 3 (STP) ⁇ cm / cm 2 ⁇ sec ⁇ cmHg) representing a transmission coefficient.
  • the unit of GPU is represented by the symbol Q
  • the unit of barrer is represented by the symbol P.
  • the evaluation is AA
  • the evaluation is A
  • the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more.
  • the evaluation is B, When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
  • the comparative example in which the positron lifetime ⁇ 3 of the third component when the positron is injected with the intensity of 1 keV from the surface of the resin layer containing the compound having a siloxane bond is outside the range defined in the present invention.
  • gas separation membranes of 3001 to 3005 it was found that the gas separation membrane of the present invention has higher gas permeability (CO 2 permeability) and gas separation selectivity under high pressure.
  • Examples 3101 to 3117 -modularization- Using the gas separation membranes produced in Examples 3001 to 3017, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869.
  • the obtained gas separation membrane module was used as the gas separation membrane module of Examples 3101 to 3117. It was confirmed that the manufactured gas separation membrane modules of Examples 3101 to 3117 were good according to the performance of the built-in gas separation membrane.
  • the produced gas separation membrane modules of Examples 3101 to 3117 are leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A gas separation membrane which has a resin layer containing a compound that has a siloxane bond, said resin layer containing a compound that has a siloxane bond satisfying formula 1 and formula 2, and which has high gas permeability and/or high gas separation selectivity under high pressure; a method for producing a gas separation membrane; a gas separation membrane module; and a gas separator. Formula 1: 0.9 ≥ A/B ≥ 0.55 Formula 2: B ≥ 1.7 In the formulae, A represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms contained in the resin layer containing a compound that has a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound that has a siloxane bond; and B represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms in the surface of the resin layer containing a compound that has a siloxane bond.

Description

ガス分離膜、ガス分離膜の製造方法、ガス分離膜モジュール及びガス分離装置Gas separation membrane, gas separation membrane manufacturing method, gas separation membrane module, and gas separation device
 本発明は、ガス分離膜、ガス分離膜の製造方法、ガス分離膜モジュール及びガス分離装置に関する。より詳しくは、本発明の第1の態様および第4の態様は、高圧下でのガス分離選択性が高いガス分離膜と、前述のガス分離膜の製造方法と、前述のガス分離膜を有するガス分離膜モジュールと、前述のガス分離膜モジュールを有するガス分離装置に関する。より詳しくは、本発明の第2の態様は、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜と、前述のガス分離膜を有するガス分離膜モジュールと、前述のガス分離膜モジュールを有するガス分離装置に関する。より詳しくは、本発明の第3の態様は、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れるガス分離膜と、前述のガス分離膜を有するガス分離膜モジュールと、前述のガス分離膜モジュールを有するガス分離装置に関する。 The present invention relates to a gas separation membrane, a method for producing a gas separation membrane, a gas separation membrane module, and a gas separation device. More specifically, the first and fourth aspects of the present invention include a gas separation membrane having high gas separation selectivity under high pressure, a method for producing the gas separation membrane, and the gas separation membrane. The present invention relates to a gas separation membrane module and a gas separation device having the gas separation membrane module described above. More specifically, the second aspect of the present invention is a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and good bending resistance, and a gas having the gas separation membrane described above. The present invention relates to a separation membrane module and a gas separation device having the gas separation membrane module described above. More specifically, the third aspect of the present invention is a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure and excellent pressure resistance, and a gas having the gas separation membrane described above. The present invention relates to a separation membrane module and a gas separation device having the gas separation membrane module described above.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる(ガス分離膜)。このガス分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。この膜分離技術は、比較的小さなエネルギーで環境問題の解決ができる手段として着目されており、主としてメタンと二酸化炭素を含む天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)から二酸化炭素を除去する手段として利用されている。
 実用的なガス分離膜とするためにガス分離に寄与する部位を薄層にしてガス透過性とガス分離選択性を確保するために以下のような方法が知られている。非対称膜(Asymmetric Membrane)として分離に寄与する部分をスキン(Skin)層と呼ばれる薄層にする方法、あるいは機械強度を有する支持体の上にガス分離に寄与する薄膜層(Selective Layer)を設ける薄層複合膜(Thin Film composite)を用いる方法、あるいはガス分離に寄与する高密度の層を含む中空糸(Hollow fiber)を用いる方法などが知られている。
A material made of a polymer compound has a gas permeability unique to each material. Based on the properties, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound (gas separation membrane). As an industrial application of this gas separation membrane, it is related to the problem of global warming, and it is considered to separate and recover it from large-scale carbon dioxide generation sources in thermal power plants, cement plants, steelworks blast furnaces, etc. Has been. This membrane separation technology is attracting attention as a means to solve environmental problems with relatively small energy, and mainly contains natural gas and biogas containing methane and carbon dioxide (biological wastes, organic fertilizers, biodegradable substances, It is used as a means for removing carbon dioxide from gas generated by fermentation and anaerobic digestion of sewage, garbage and energy crops.
The following methods are known in order to secure gas permeability and gas separation selectivity by making a portion contributing to gas separation into a thin layer in order to obtain a practical gas separation membrane. A method of making a portion contributing to separation as an asymmetric membrane a thin layer called a skin layer, or a thin layer providing a thin layer (Selective Layer) contributing to gas separation on a support having mechanical strength A method using a thin film composite (Thin Film composite) or a method using a hollow fiber including a high density layer contributing to gas separation is known.
 ガス分離膜の代表的な性能として、混合ガスから所望のガスを得る際のガス分離選択性と、所望のガスのガス透過性が挙げられる。その中でもガス透過性やガス分離選択性を高める目的で、様々な構成のガス分離膜が検討されてきている。 The typical performance of the gas separation membrane includes gas separation selectivity when obtaining a desired gas from a mixed gas and gas permeability of the desired gas. Among them, gas separation membranes having various configurations have been studied for the purpose of improving gas permeability and gas separation selectivity.
 例えば、特許文献1には、多孔質支持体上に、シロキサン結合を有する化合物を含む非多孔質中間層を設け、その上にセルローストリアセテートやポリイミドを含む層を設けた構成のガス分離膜により、二酸化炭素とメタンの混合ガスなどのガス分離選択性を高める方法が記載されている。 For example, in Patent Document 1, a non-porous intermediate layer containing a compound having a siloxane bond is provided on a porous support, and a gas separation membrane having a layer containing cellulose triacetate or polyimide thereon is provided. A method for improving gas separation selectivity such as a mixed gas of carbon dioxide and methane is described.
 特許文献2には、気体分離用複合膜の表面に非重合性ガスで低温プラズマ処理を施し、次いでそのプラズマ処理面上にシロキサン結合を有する化合物などの含ケイ素重合体の薄層膜を形成した、高選択性(ガス分離選択性)である気体分離用積層複合膜の製造方法が記載されている。この文献では、低温プラズマ処理を施される気体分離用複合膜の例としてポリジメチルシロキサン等が挙げられている。また、この文献では、低温プラズマ処理で使用する非重合性ガスとしてアルゴンなどを挙げている。また、この文献の各実施例では、アルゴンガスを非重合性ガスとして使用してポリジメチルシロキサン共重合体からなる気体分離用複合膜の表面に低温プラズマ処理を施した例のみが記載されている。 In Patent Document 2, low-temperature plasma treatment was performed on the surface of the gas separation composite membrane with a non-polymerizable gas, and then a thin layer film of a silicon-containing polymer such as a compound having a siloxane bond was formed on the plasma treatment surface. A method for producing a laminated composite membrane for gas separation that is highly selective (gas separation selectivity) is described. In this document, polydimethylsiloxane or the like is cited as an example of a gas separation composite membrane that is subjected to low-temperature plasma treatment. Further, in this document, argon or the like is cited as a non-polymerizable gas used in the low temperature plasma treatment. In each example of this document, only an example in which low-temperature plasma treatment is performed on the surface of a composite membrane for gas separation made of a polydimethylsiloxane copolymer using argon gas as a non-polymerizable gas is described. .
 特許文献3には、高分子多孔質支持体上に、特定の構造を有するシロキサン化合物よりなる薄膜が積層され、その上にプラズマ重合膜が積層された複合膜において、シロキサン化合物よりなる薄膜の表面層のみが非重合性ガスによりプラズマ処理された複合膜が記載されこのような構成の複合膜は優れたガス選択透過性(高いガス分離選択性と高いガス透過性)を有すると記載されている。 Patent Document 3 discloses a composite film in which a thin film made of a siloxane compound having a specific structure is laminated on a polymer porous support, and a plasma polymerized film is laminated on the thin film. A composite membrane in which only the layer is plasma treated with a non-polymerizable gas is described, and the composite membrane having such a structure is described as having excellent gas selective permeability (high gas separation selectivity and high gas permeability). .
 特許文献4には、支持体とポリジメチルシロキサン等からなる分離選択性を有する層とを有する薄層複合膜において、分離選択性を有する層の表面に0.1μm以下の膜厚の親水性の改質処理面を、UVオゾン照射処理やその後のシランカップリング剤処理などを行うことにより設ける方法が記載されている。この文献の実施例では、分離選択性を有する層表面に設けられた親水性改質処理面の膜厚は1nm~21nm程度であり、厚すぎるとガス透過性が落ちることが記載されている。
 なお、この文献には親水性改質処理の一例としてUVオゾン照射処理と並列的にプラズマ処理が記載されているが、この文献の実施例にはプラズマ処理を用いた例は開示されていなかった。また、この文献にはプラズマ処理の例として、プロセス室内にアルゴンガスを主体としたガスを導入し、大気圧プラズマ処理をする方法が挙げられている。
In Patent Document 4, in a thin-layer composite membrane having a support and a layer having separation selectivity made of polydimethylsiloxane or the like, a hydrophilic layer having a thickness of 0.1 μm or less is formed on the surface of the layer having separation selectivity. A method is described in which the modified surface is provided by performing UV ozone irradiation treatment or subsequent silane coupling agent treatment. In the example of this document, it is described that the film thickness of the hydrophilic modification surface provided on the surface of the layer having separation selectivity is about 1 nm to 21 nm, and if it is too thick, the gas permeability decreases.
In this document, plasma processing is described in parallel with UV ozone irradiation processing as an example of hydrophilic modification processing, but an example using plasma processing was not disclosed in the embodiment of this document. . In addition, in this document, as an example of plasma processing, a method of introducing atmospheric gas mainly into argon gas in a process chamber and performing atmospheric pressure plasma processing is cited.
 非特許文献1には、ポリイミド支持体とポリジメチルシロキサンからなる膜の表面を5W以下の低パワーで、分オーダーで(120秒間)処理することにより、処理後30分後大気圧下において、メタンに対する二酸化炭素の透過性の比が、もとのポリジメチルシロキサンに比べ上昇することが示されているが、高いガス分離選択性は得られていない。
 非特許文献2には、ポリジメチルシロキサン膜表面を高温大気圧プラズマで処理することにより、表面の酸素原子とケイ素原子の比が1.6まで上昇することが記載されているが、高いガス分離選択性は得られていない。
Non-Patent Document 1 discloses that the surface of a film composed of a polyimide support and polydimethylsiloxane is treated with a low power of 5 W or less in a minute order (120 seconds), and 30 minutes after treatment under atmospheric pressure at 30 minutes. It has been shown that the ratio of carbon dioxide permeability to carbon is increased compared to the original polydimethylsiloxane, but high gas separation selectivity is not obtained.
Non-Patent Document 2 describes that the ratio of oxygen atoms to silicon atoms on the surface increases to 1.6 by treating the surface of the polydimethylsiloxane membrane with high-temperature atmospheric pressure plasma. Selectivity is not obtained.
特開昭61-54222号公報JP-A-61-54222 特開昭60-139316号公報JP 60-139316 A 特公平3-8808号公報Japanese Patent Publication No. 3-8808 特開2013-75264号公報JP 2013-75264 A
 しかしながら実際に天然ガスの精製プロセスで使用する際には、ガス分離膜により混合ガスを高圧下で処理することが求められてきている。本発明者らがこれらの文献に記載のガス分離膜の性能を検討したところ、高圧下でのガス透過性およびガス分離選択性が低い問題があることがわかった。例えば、非特許文献1および2に記載のガス分離膜は、いずれも高圧下では高い分離性を示さなかった。 However, when it is actually used in a natural gas refining process, it has been required to treat the mixed gas under high pressure by a gas separation membrane. When the present inventors examined the performance of the gas separation membrane described in these documents, it was found that there was a problem of low gas permeability and gas separation selectivity under high pressure. For example, none of the gas separation membranes described in Non-Patent Documents 1 and 2 showed high separability under high pressure.
 本発明の第1の態様および第4の態様が解決しようとする課題は、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を提供することにある。 The problem to be solved by the first and fourth aspects of the present invention is to provide a gas separation membrane having high gas permeability and high gas separation selectivity under high pressure.
 さらに、本発明者らが特許文献1~4、非特許文献1および2に記載のガス分離膜をロールに巻き付けた場合のガス透過性能の耐曲げ性を検討したところ、耐曲げ性も悪いことがわかった。
 本発明の第2の態様が解決しようとする課題は、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜を提供することにある。
Furthermore, when the present inventors examined the bending resistance of the gas permeation performance when the gas separation membrane described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 is wound around a roll, the bending resistance is poor. I understood.
The problem to be solved by the second aspect of the present invention is to provide a gas separation membrane having a high bending resistance and at least one of gas permeability under high pressure and gas separation selectivity.
 一方、天然ガスのサイトによっては圧力が高い上、圧力がさらに高くなるなどの変動が起こるサイトもある。そこで、本発明者らが特許文献1~4、非特許文献1および2に記載のガス分離膜をロールに巻き付けた場合のガス透過性能の耐圧性を検討したところ、耐圧性も悪いことがわかった。
 本発明の第3の態様が解決しようとする課題は、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れるガス分離膜を提供することにある。
On the other hand, depending on the natural gas site, there are sites where the pressure is high and the pressure is further increased. Therefore, the present inventors examined the pressure resistance of the gas permeation performance when the gas separation membrane described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 are wound around a roll, and found that the pressure resistance is poor. It was.
The problem to be solved by the third aspect of the present invention is to provide a gas separation membrane that has high gas permeability under high pressure and gas separation selectivity and is excellent in pressure resistance.
 本発明者らが上記本発明の第1の態様が解決しようとする課題を解決するために鋭意検討を重ねた結果、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、シロキサン結合を有する化合物を含む樹脂層表面から、シロキサン結合を有する化合物を含む樹脂層の厚み方向へ少なくとも10nmまで酸素原子を浸透させることで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜が得られることを見出すに至った。 As a result of intensive studies by the present inventors to solve the problem to be solved by the first aspect of the present invention, a gas separation membrane having a resin layer containing a compound having a siloxane bond, By allowing oxygen atoms to penetrate from the surface of the resin layer containing a compound having a bond to the thickness direction of the resin layer containing a compound having a siloxane bond to at least 10 nm, at least one of gas permeability under high pressure and gas separation selectivity It has been found that a high gas separation membrane can be obtained.
 本発明者らが上記本発明の第2の態様が解決しようとする課題を解決するために鋭意検討を重ねた結果、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含むようにし、さらに層構成と各領域の組成を特定の範囲に制御することで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜が得られることを見出すに至った。
 なお、特許文献1~4、非特許文献1および2に記載の方法で製造したガス分離膜は、本発明で規定するGLeおよびGLeを有さないか、本発明で規定するGLeおよびGLeの層構成または各領域の組成の範囲から外れていた。
As a result of intensive studies by the present inventors in order to solve the problem to be solved by the second aspect of the present invention, a gas separation membrane having a resin layer containing a compound having a siloxane bond has a porous support. By including the region GLi existing in the body B and the region GLe existing on the porous support B, and further controlling the layer configuration and the composition of each region to a specific range, It has been found that a gas separation membrane having high permeability and gas separation selectivity and high bending resistance can be obtained.
Note that the gas separation membranes produced by the methods described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 do not have GLe and GLe defined in the present invention, or layers of GLe and GLe defined in the present invention. It was out of the composition or composition range of each region.
 本発明者らが上記本発明の第3の態様が解決しようとする課題を解決するために鋭意検討を重ねた結果、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値を特定の範囲に制御することで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れるガス分離膜が得られることを見出すに至った。
 なお、特許文献1~4、非特許文献1および2に記載の方法で製造したガス分離膜は、本発明で規定するSi2+およびSi3+のピークの全Siのピークに対する割合の最小値の範囲から外れていた。
As a result of intensive studies by the present inventors to solve the problem to be solved by the third aspect of the present invention, a gas separation membrane having a resin layer containing a compound having a siloxane bond, By controlling the minimum value of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a bond within a specific range, gas permeability and gas under high pressure It has been found that a gas separation membrane having high separation selectivity and excellent pressure resistance can be obtained.
Note that the gas separation membranes manufactured by the methods described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 have a minimum range of the ratio of the Si 2+ and Si 3+ peaks defined in the present invention to the total Si peak. I was off.
 上記本発明の第4の態様が解決しようとする課題に関して説明する。
 ガス分離膜のガス分離選択性は、膜に存在する微小な空孔の孔径と相関すると一般に考えられている。ここで、膜に存在する微小な空孔の孔径を求める方法として、陽電子消滅法による第三成分の陽電子寿命τ3の測定により計算で求める方法が知られている。
 本発明者らは、非特許文献1に記載の方法で得られるガス分離膜の膜に存在する微小な空孔の孔径を陽電子消滅法による第三成分の陽電子寿命τ3の測定により計算で求めた。その結果、例えば、非特許文献1に記載の方法で製造したガス分離膜では、陽電子消滅法による膜の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が4.21(ns)であった。
 一方、シリカをCVDで蒸着した膜では、陽電子消滅法による膜の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.15(ns)であった。
 本発明者らが上記本発明の第4の態様が解決しようとする課題を解決するために鋭意検討を重ねた結果、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3を特定の範囲に制御することで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜が得られることを見出すに至った。
 なお、特許文献1~4ならびに非特許文献2に記載の方法で製造したガス分離膜も、本発明で規定するシロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3を特定の範囲から外れていた。
The problem to be solved by the fourth aspect of the present invention will be described.
It is generally considered that the gas separation selectivity of a gas separation membrane correlates with the pore diameter of minute pores existing in the membrane. Here, as a method for obtaining the pore diameter of the minute vacancy existing in the film, a method of obtaining by calculation by measuring the third component positron lifetime τ3 by the positron annihilation method is known.
The inventors of the present invention calculated the pore size of the microscopic vacancy existing in the gas separation membrane obtained by the method described in Non-Patent Document 1 by measuring the positron lifetime τ3 of the third component by the positron annihilation method. . As a result, for example, in the gas separation membrane manufactured by the method described in Non-Patent Document 1, the positron lifetime τ3 of the third component when the positron is injected with the intensity of 1 keV from the surface of the membrane by the positron annihilation method is 4. 21 (ns).
On the other hand, the film obtained by depositing silica by CVD had a third component positron lifetime τ3 of 3.15 (ns) when positrons were injected from the surface of the film by the positron annihilation method with an intensity of 1 keV.
As a result of intensive studies by the present inventors to solve the problem to be solved by the fourth aspect of the present invention, positrons are emitted from the surface of the resin layer containing a compound having a siloxane bond with an intensity of 1 keV. By controlling the positron lifetime τ3 of the third component in a specific range when implanted, it has been found that a gas separation membrane having at least one of high gas permeability and gas separation selectivity under high pressure can be obtained. .
Note that the gas separation membranes manufactured by the methods described in Patent Documents 1 to 4 and Non-Patent Document 2 also injected positrons with a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond specified in the present invention. In this case, the positron lifetime τ3 of the third component was out of a specific range.
 上記の課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 下記条件1~4のいずれか1つを満たすガス分離膜;
条件1:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たすガス分離膜;
式1 0.9≧A/B≧0.55
式2 B≧1.7
式1および式2中、Aはシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bはシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す;
条件2:多孔質支持体Aと、
 多孔質支持体Aの上に位置するシロキサン結合を有する化合物を含む樹脂層とを有するガス分離膜であって、
 シロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有し、
 シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含み、
 GLeの厚みが50~1000nmであり、
 GLiの厚みが20nm以上であり、かつ、GLeの厚みの10~350%であり、
 GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%であるガス分離膜;
Figure JPOXMLDOC01-appb-C000004
一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す;
条件3:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%であるガス分離膜;
条件4:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなるガス分離膜。
[2] [1]に記載のガス分離膜は、条件1を満たすことが好ましい。
[3] [2]に記載のガス分離膜は、前述のシロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有することが好ましい;
Figure JPOXMLDOC01-appb-C000005
 一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
[4] [2]または[3]に記載のガス分離膜は、前述のシロキサン結合を有する化合物が、下記一般式(1)で表される繰り返し単位を有することが好ましい;
一般式(1)
Figure JPOXMLDOC01-appb-C000006
一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
[5] [4]に記載のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の表面が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。
[6] [2]~[5]のいずれか一つに記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面の、炭素原子の数のケイ素原子の数に対する比が1.6以下であることが好ましい。
[7] [2]~[6]のいずれか一つに記載のガス分離膜は、Bが1.95以上であることが好ましい;
 Bは前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す。
[8] [2]~[7]のいずれか一つに記載のガス分離膜は、A/Bが0.6以上であることが好ましい;
 Aはシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bはシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数の比であるO/Si比を表す。
[9] [2]~[8]のいずれか一つに記載のガス分離膜は、A/Bが0.65以上であることが好ましい;
 Aは前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数の比であるO/Si比を表す。
[10] [2]~[9]のいずれか一つに記載のガス分離膜は、ポリイミド化合物を含む層をさらに有することが好ましい。
[11] [2]~[10]のいずれか一つに記載のガス分離膜は、前述のポリイミド化合物を含む層の厚みが0.03~0.3μmであることが好ましい。
[12] [2]~[11]のいずれか一つに記載のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の厚みが0.1~5μmであることが好ましい。
[13] [2]~[12]のいずれか一つに記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有することが好ましい。
[14] [2]~[13]のいずれか一つに記載のガス分離膜は、さらに支持体を含むことが好ましい。
[15] [2]~[14]のいずれか一つに記載のガス分離膜は、ガス分離膜のゲル分率が45%以上であることが好ましい。
[16] [1]に記載のガス分離膜は、条件2を満たすことが好ましい。
[17] [16]に記載のガス分離膜は、GLeの厚みが200~900nmであることが好ましい。
[18] [16]または[17]に記載のガス分離膜は、GLiの厚みがGLeの厚みの20~90%であることが好ましい。
[19] [1]に記載のガス分離膜は、条件3を満たすことが好ましい。
[20] [19]に記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から10nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si10と、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ1が50~90%であることが好ましい。
[21] [19]または[20]に記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から20nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si20と、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ2が55~90%であることが好ましい。
[22] [19]~[21]のいずれか一つに記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の厚みが150~900nmであることが好ましい。
[23] [19]~[22]のいずれか一つに記載のガス分離膜は、さらに支持体を含むことが好ましい。
[24] [1]に記載のガス分離膜は、条件4を満たすことが好ましい。
[25] [24]に記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の相対強度I3が13~41%となることが好ましい。
[26] [24]または[25]に記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3をX、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を3keVで打ち込んだ場合の第三成分の陽電子寿命τ3をYとして、
0.88≦X/Y≦0.99
を満たすことが好ましい。
[27] [24]~[26]のいずれか一つに記載のガス分離膜は、ポリイミド化合物を含む層をさらに有することが好ましい。
[28] [27]に記載のガス分離膜は、ポリイミド化合物を含む層の厚みが0.03~0.3μmであることが好ましい。
[29] [24]~[28]のいずれか一つに記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の厚みが0.1~5μmであることが好ましい。
[30] [24]~[29]のいずれか一つに記載のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含むことが好ましい。
[31] [24]~[30]のいずれか一つに記載のガス分離膜は、さらに支持体を含むことが好ましい。
[32] [1]~[31]のいずれか一つに記載のガス分離膜を有するガス分離膜モジュール。
[33] [32]に記載のガス分離膜モジュールを有するガス分離装置。
[34] 下記条件P1または下記条件P4を満たすガス分離膜の製造方法;
条件P1:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理である、ガス分離膜の製造方法;
条件P4:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 酸素原子浸透処理工程が酸素流量45cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上でアノードカップリングを用いたプラズマ処理である、ガス分離膜の製造方法。
[35] [34]に記載のガス分離膜の製造方法は、条件P1を満たすことが好ましい。
[36] [35]に記載のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含むことが好ましい。
[37] [35]または[36]に記載のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層が、支持体上に形成されたことが好ましい。
[38] [35]~[37]のいずれか一つに記載のガス分離膜の製造方法で製造されたガス分離膜。
[39] [34]に記載のガス分離膜の製造方法は、条件P4を満たすことが好ましい。
[40] [39]に記載のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含むことが好ましい。
[41] [39]または[40]に記載のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層が、支持体上に形成されたことが好ましい。
The present invention, which is a specific means for solving the above problems, is as follows.
[1] A gas separation membrane that satisfies any one of the following conditions 1 to 4;
Condition 1: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane in which a resin layer containing a compound having a siloxane bond satisfies the following formulas 1 and 2;
Formula 1 0.9 ≧ A / B ≧ 0.55
Formula 2 B ≧ 1.7
In Formula 1 and Formula 2, A is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms. Represents an O / Si ratio, and B represents an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond;
Condition 2: porous support A,
A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A,
The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
A resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
The thickness of GLe is 50 to 1000 nm,
The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. Gas separation membrane;
Figure JPOXMLDOC01-appb-C000004
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3);
Condition 3: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane having a minimum value Si 0 of 1 to 40% of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond;
Condition 4: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane in which a positron lifetime τ3 of a third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of a resin layer containing a compound having a siloxane bond.
[2] The gas separation membrane according to [1] preferably satisfies condition 1.
[3] In the gas separation membrane according to [2], the compound having a siloxane bond includes at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3). Preferably having;
Figure JPOXMLDOC01-appb-C000005
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
[4] In the gas separation membrane according to [2] or [3], the compound having a siloxane bond described above preferably has a repeating unit represented by the following general formula (1);
General formula (1)
Figure JPOXMLDOC01-appb-C000006
In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
[5] In the gas separation membrane according to [4], the surface of the resin layer containing the compound having a siloxane bond is a repeating unit represented by the general formula (1) and at least the general formula It is preferable to include a compound having a siloxane bond having the repeating unit represented by (2) or the repeating unit represented by the general formula (3).
[6] In the gas separation membrane according to any one of [2] to [5], the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond is 1. It is preferable that it is 6 or less.
[7] In the gas separation membrane according to any one of [2] to [6], B is preferably 1.95 or more;
B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
[8] The gas separation membrane according to any one of [2] to [7] preferably has an A / B of 0.6 or more;
A represents an O / Si ratio which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms. , B represents an O / Si ratio which is a ratio of the number of silicon atoms to the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond.
[9] The gas separation membrane according to any one of [2] to [8] preferably has an A / B of 0.65 or more;
A is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond, B represents an O / Si ratio that is a ratio of the number of silicon atoms to the number of oxygen atoms on the surface of the resin layer containing the compound having a siloxane bond.
[10] The gas separation membrane according to any one of [2] to [9] preferably further includes a layer containing a polyimide compound.
[11] In the gas separation membrane according to any one of [2] to [10], the layer containing the polyimide compound preferably has a thickness of 0.03 to 0.3 μm.
[12] In the gas separation membrane according to any one of [2] to [11], the thickness of the resin layer containing the compound having a siloxane bond is preferably 0.1 to 5 μm.
[13] In the gas separation membrane according to any one of [2] to [12], the resin layer containing a compound having a siloxane bond has a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom. Is preferred.
[14] The gas separation membrane according to any one of [2] to [13] preferably further includes a support.
[15] In the gas separation membrane according to any one of [2] to [14], the gel fraction of the gas separation membrane is preferably 45% or more.
[16] The gas separation membrane according to [1] preferably satisfies condition 2.
[17] The gas separation membrane according to [16] preferably has a GLe thickness of 200 to 900 nm.
[18] In the gas separation membrane according to [16] or [17], the thickness of GLi is preferably 20 to 90% of the thickness of GLe.
[19] The gas separation membrane according to [1] preferably satisfies condition 3.
[20] The gas separation membrane according to [19] has a minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond. the ratio Si 10 with respect to the total Si peak position from the definitive a depth of 10 nm Si 2+ and Si 3+, the difference Δ1 between 50 and between the ratio minimum value Si 0 of relative peaks of the total Si peak of Si 2+ and Si 3+ 90 % Is preferred.
[21] The gas separation membrane according to [19] or [20] is a minimum value of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond. the difference from the position having the Si 0 the ratio Si 20 with respect to the total Si peak Si 2+ and Si 3+ which definitive a depth of 20 nm, a ratio minimum value Si 0 of relative peaks of the total Si peak of Si 2+ and Si 3+ Delta] 2 Is preferably 55 to 90%.
[22] In the gas separation membrane according to any one of [19] to [21], the thickness of the resin layer containing a compound having a siloxane bond is preferably 150 to 900 nm.
[23] The gas separation membrane according to any one of [19] to [22] preferably further includes a support.
[24] The gas separation membrane according to [1] preferably satisfies condition 4.
[25] The gas separation membrane according to [24] has a relative intensity I3 of the third component of 13 to 41% when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. It is preferable to become.
[26] In the gas separation membrane according to [24] or [25], the positron lifetime τ3 of the third component when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond is X , Y is the positron lifetime τ3 of the third component when a positron is injected at 3 keV from the surface of the resin layer containing a compound having a siloxane bond.
0.88 ≦ X / Y ≦ 0.99
It is preferable to satisfy.
[27] The gas separation membrane according to any one of [24] to [26] preferably further includes a layer containing a polyimide compound.
[28] In the gas separation membrane according to [27], the layer containing the polyimide compound preferably has a thickness of 0.03 to 0.3 μm.
[29] In the gas separation membrane according to any one of [24] to [28], the thickness of the resin layer containing a compound having a siloxane bond is preferably 0.1 to 5 μm.
[30] The gas separation membrane according to any one of [24] to [29], wherein the resin layer containing a compound having a siloxane bond has a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom It is preferable to contain.
[31] The gas separation membrane according to any one of [24] to [30] preferably further includes a support.
[32] A gas separation membrane module having the gas separation membrane according to any one of [1] to [31].
[33] A gas separation device having the gas separation membrane module according to [32].
[34] A method for producing a gas separation membrane satisfying the following condition P1 or the following condition P4;
Condition P1: including an oxygen atom permeation treatment step of permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more;
Condition P4: including an oxygen atom infiltration treatment step for infiltrating oxygen atoms into the resin layer precursor containing a compound having a siloxane bond,
A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more, and using anode coupling at an input power of 23 W or more.
[35] The method for producing a gas separation membrane according to [34] preferably satisfies the condition P1.
[36] In the method for producing a gas separation membrane according to [35], the resin layer containing a compound having a siloxane bond preferably contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
[37] In the method for producing a gas separation membrane according to [35] or [36], a resin layer containing a compound having a siloxane bond is preferably formed on a support.
[38] A gas separation membrane produced by the method for producing a gas separation membrane according to any one of [35] to [37].
[39] The method for producing a gas separation membrane according to [34] preferably satisfies the condition P4.
[40] In the method for producing a gas separation membrane according to [39], the resin layer containing a compound having a siloxane bond preferably contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
[41] In the method for producing a gas separation membrane according to [39] or [40], it is preferable that a resin layer containing a compound having a siloxane bond is formed on a support.
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が近接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。 In the present specification, when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. Even when not specifically stated, when a plurality of substituents and the like are close to each other, they may be connected to each other or condensed to form a ring.
 本明細書において化合物(樹脂を含む)の表示については、その化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。
 本明細書における置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
In this specification, about the display of a compound (a resin is included), it uses for the meaning containing its salt and its ion besides the compound itself. Moreover, it is the meaning including the derivative | guide_body which changed the predetermined part in the range with the desired effect.
The substituent in the present specification (the same applies to the linking group) means that the group may have an arbitrary substituent as long as the desired effect is obtained. This is also synonymous for compounds that do not specify substitution / non-substitution.
 本発明の第1の態様および第4の態様によれば、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を提供することができる。本発明によれば、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜の製造方法を提供することができる。また、本発明によれば高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を有するガス分離膜モジュールを提供することができる。 According to the first aspect and the fourth aspect of the present invention, it is possible to provide a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a gas separation membrane with high at least one of gas permeability under high pressure and gas separation selectivity can be provided. In addition, according to the present invention, it is possible to provide a gas separation membrane module having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure.
 本発明の第2の態様によれば、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜を提供することができる。また、本発明によれば高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜を有するガス分離膜モジュールおよびガス分離装置を提供することができる。 According to the second aspect of the present invention, it is possible to provide a gas separation membrane having a high bending resistance and at least one of gas permeability and gas separation selectivity under high pressure. In addition, according to the present invention, it is possible to provide a gas separation membrane module and a gas separation device having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and high bending resistance. .
 本発明の第3の態様によれば、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れるガス分離膜を提供することができる。また、本発明によれば高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れるガス分離膜を有するガス分離膜モジュールおよびガス分離装置を提供することができる。 According to the third aspect of the present invention, it is possible to provide a gas separation membrane that has high gas permeability under high pressure and gas separation selectivity and is excellent in pressure resistance. In addition, according to the present invention, it is possible to provide a gas separation membrane module and a gas separation device having a gas separation membrane having high gas permeability and gas separation selectivity under high pressure and having excellent pressure resistance. .
本発明のガス分離膜の一例を示す模式図である。It is a schematic diagram which shows an example of the gas separation membrane of this invention. 本発明のガス分離膜の他の一例を示す模式図である。It is a schematic diagram which shows another example of the gas separation membrane of this invention. 本発明のガス分離膜の他の一例を示す模式図である。It is a schematic diagram which shows another example of the gas separation membrane of this invention. 本発明のガス分離膜の一例において、シロキサン結合を有する化合物を含む樹脂層の表面から(支持体方向へ)深さdにおけるシロキサン結合を有する化合物を含む樹脂層の面と、シロキサン結合を有する化合物を含む樹脂層の表面の位置を説明するための模式図である。In one example of the gas separation membrane of the present invention, the surface of the resin layer containing a compound having a siloxane bond at a depth d (in the direction of the support) from the surface of the resin layer containing a compound having a siloxane bond, and the compound having a siloxane bond It is a schematic diagram for demonstrating the position of the surface of the resin layer containing. 本発明のガス分離膜の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the gas separation membrane of this invention. (A)酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜の模式図を表す。(B)本発明のガス分離膜の一例における、シロキサン結合を有する化合物を含む樹脂層の模式図を表す。(C)膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜の模式図を表す。(A) The schematic diagram of the polydimethylsiloxane film | membrane which has not been subjected to the oxygen atom permeation treatment step is shown. (B) The schematic diagram of the resin layer containing the compound which has a siloxane bond in an example of the gas separation membrane of this invention is represented. (C) A schematic view of a polydimethylsiloxane film in which oxygen atoms are uniformly introduced in the film thickness direction. 本発明のガス分離膜の他の一例を示す模式図である。It is a schematic diagram which shows another example of the gas separation membrane of this invention.
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明のガス分離膜は下記条件1~4のいずれか1つを満たすガス分離膜である;
条件1:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たすガス分離膜;
式1 0.9≧A/B≧0.55
式2 B≧1.7
式1および式2中、Aはシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bはシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す;
条件2:多孔質支持体Aと、
 多孔質支持体Aの上に位置するシロキサン結合を有する化合物を含む樹脂層とを有するガス分離膜であって、
 シロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有し、
 シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含み、
 GLeの厚みが50~1000nmであり、
 GLiの厚みが20nm以上であり、かつ、GLeの厚みの10~350%であり、
 GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%であるガス分離膜;
Figure JPOXMLDOC01-appb-C000007
一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す;
条件3:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%であるガス分離膜;
条件4:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなるガス分離膜。
The gas separation membrane of the present invention is a gas separation membrane that satisfies any one of the following conditions 1 to 4;
Condition 1: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane in which a resin layer containing a compound having a siloxane bond satisfies the following formulas 1 and 2;
Formula 1 0.9 ≧ A / B ≧ 0.55
Formula 2 B ≧ 1.7
In Formula 1 and Formula 2, A is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms. Represents an O / Si ratio, and B represents an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond;
Condition 2: porous support A,
A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A,
The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
A resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
The thickness of GLe is 50 to 1000 nm,
The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. Gas separation membrane;
Figure JPOXMLDOC01-appb-C000007
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3);
Condition 3: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane having a minimum value Si 0 of 1 to 40% of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond;
Condition 4: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
A gas separation membrane in which a positron lifetime τ3 of a third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of a resin layer containing a compound having a siloxane bond.
 本発明のガス分離膜を製造する方法は特に制限はないが、下記条件P1または下記条件P4を満たすガス分離膜の製造方法であることが好ましい;
条件P1:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理である、ガス分離膜の製造方法;
条件P4:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 酸素原子浸透処理工程が酸素流量45cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上でアノードカップリングを用いたプラズマ処理である、ガス分離膜の製造方法。
The method for producing the gas separation membrane of the present invention is not particularly limited, but is preferably a method for producing a gas separation membrane that satisfies the following condition P1 or the following condition P4;
Condition P1: including an oxygen atom permeation treatment step of permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more;
Condition P4: including an oxygen atom infiltration treatment step for infiltrating oxygen atoms into the resin layer precursor containing a compound having a siloxane bond,
A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more, and using anode coupling at an input power of 23 W or more.
 条件1を満たす態様を第1の態様、条件2を満たす態様を第2の態様、条件3を満たす態様を第3の態様、条件4を満たす態様を第4の態様とする。
 条件1を満たす第1の態様のガス分離膜は、条件P1を満たすガス分離膜の製造方法で製造されることが好ましい。条件4を満たす第4の態様のガス分離膜は、条件P4を満たすガス分離膜の製造方法で製造されることが好ましい。
 以下、第1の態様、第2の態様、第3の態様および第4の態様の順に説明する。
The mode that satisfies condition 1 is the first mode, the mode that satisfies condition 2 is the second mode, the mode that satisfies condition 3 is the third mode, and the mode that satisfies condition 4 is the fourth mode.
The gas separation membrane of the first aspect that satisfies the condition 1 is preferably manufactured by a method for manufacturing a gas separation membrane that satisfies the condition P1. The gas separation membrane according to the fourth aspect that satisfies the condition 4 is preferably manufactured by a method for manufacturing a gas separation membrane that satisfies the condition P4.
Hereinafter, the first aspect, the second aspect, the third aspect, and the fourth aspect will be described in this order.
{第1の態様}
 まず、条件1を満たす第1の態様について説明する。
{First aspect}
First, the first mode that satisfies condition 1 will be described.
[ガス分離膜]
 本発明の第1の態様のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、前述のシロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たす。
式1 0.9≧A/B≧0.55
式2 B≧1.7
式1および式2中、Aは前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さ(好ましくは支持体方向へ10nmの深さ)における前述のシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す。
 このような構成により、本発明のガス分離膜は高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い。
 上記式1中のA/Bの比率が高いほど、酸素原子がシロキサン結合を有する化合物を含む樹脂層(このシロキサン結合を有する化合物を含む樹脂層が、ガス分離選択性が高いいわゆる分離選択性を有する層として機能する)の厚み方向へ内部まで浸透していることになる。表面を改質し密着性改善だけを目的にしたコロナ処理やプラズマ処理ではシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さまで、ガス分離選択性を有するほど十分に酸素は入り込まない。式2中のBの値が高いほど、シロキサン結合を有する化合物を含む樹脂層の表面が改質されて酸素原子が多く取り込まれたことになる。本発明では、シロキサン結合を有する化合物を含む樹脂層が上記式1および式2を満たすようにすることで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を得ることができる。いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向に内部まで取り込まれることで分離選択性を発現していると考えられる。
 分離選択性を有する層とは、厚さ0.1~30μmの膜を形成し、得られた膜に対して、40℃の温度下、ガス供給側の全圧力を0.5MPaにして、二酸化炭素(CO)及びメタン(CH)の純ガスを供給した際の、二酸化炭素の透過係数(PCO)とメタンの透過係数(PCH)の比(PCO/PCH)が、1.5以上となる層を意味する。
 従来はガス分離膜の分離選択性を有する層としてはポリイミド化合物を有する層がよく用いられてきており、酸素原子浸透処理をされたシロキサン結合を有する化合物を含む樹脂層を有することによってポリイミド化合物を有する層を有さずに高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い本発明のガス分離膜の構成は従来知られていない。
 ここで、ガス分離膜のガス透過性とガス分離選択性は一般的にトレードオフの関係にある。すなわち、ガス分離膜は、ガス透過性が高まるとガス分離選択性は低下する傾向にあり、ガス透過性が低下するとガス分離選択性は高まる傾向にある。そのため、従来のガス分離膜はガス透過性とガス分離選択性をともに高くすることが困難であった。それに対して本発明のガス分離膜は、ガス透過性とガス分離選択性をともに高くすることができる。
 これは本発明のガス分離膜が図6(B)に示すような表面からグラデーションを持って酸素原子が導入された構造のシロキサン結合を有する化合物を含む樹脂層3を有することに起因している。酸素原子が導入された部位はシロキサン結合により孔を形成する。また酸素が導入されることにより、ポリマーの熱運動は減少している。このため、ガスを選択的に、多く透過させることができる孔が生成している。このため、表面を処理する前のシロキサン結合を有する化合物を含む樹脂層(図6(A)に示すような酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜11)と異なり、高いガス分離選択性を得ることが出来る。
 また、CVD(Chemical Vapor Deposition)法等を用い、膜厚方向に酸素原子導入のグラデーションを有さず、図6(C)に示すような膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を作製することは可能である。このような膜と、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3とを比較すると、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位は、膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜12と比較して薄い。膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位の厚みと同等に薄くすることは困難である。このため本発明により極めて高いガス透過性と、ガス分離選択性を達成できる。
 一方、本発明のガス分離膜を、ガス透過性を大幅に高くして、ガス分離選択性を低くするように設計することもできる。また、本発明のガス分離膜を、ガス透過性を低くして、ガス分離選択性を大幅に高くするように設計することもできる。これらの場合であっても、本発明のガス分離膜を従来のガス分離膜と同じガス透過性の性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス分離選択性は高くなり、また、本発明のガス分離膜を従来のガス分離膜と同じガス分離選択性性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス透過性は高くなる。
 本発明のガス分離膜は、後述の本発明のガス分離膜の製造方法で製造されたことが好ましい。本発明の製造方法で得られたガス分離膜は性能が高いため、プロダクトプロセスクレームのガス分離膜は性能が高いガス分離膜を規定している。ガス分離膜の性能はガス分離に寄与する層の面内における孔のサイズに応じて決まるとメカニズム上は考えられるが、孔のサイズを特定する作業は電子顕微鏡を使っても時間や費用がかかるために出願時には非実際的である。代わりに本明細書では、A/BとBの値とガス分離膜の性能の相関性が高いことを見出し、その範囲であれば性能が良いガス分離膜を提供できることを見出した。プロダクトプロセスクレームのガス分離膜の範囲と、A/BとBの値で表されるガス分離膜の範囲は完全には一致しないので、プロダクトプロセスクレームと同じ範囲を純粋物クレームとして特定はできていない。なお、プラズマ処理と同等の活性エネルギー線からのエネルギーを与える方法であれば、プラズマ処理で製造したガス分離膜と同じ物が製造できると予想される。
 以下、本発明のガス分離膜の好ましい態様について説明する。
[Gas separation membrane]
The gas separation membrane according to the first aspect of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond, and the resin layers containing the compound having a siloxane bond are represented by the following formulas 1 and 2. Meet.
Formula 1 0.9 ≧ A / B ≧ 0.55
Formula 2 B ≧ 1.7
In the formulas 1 and 2, A is a resin containing a compound having the aforementioned siloxane bond at a depth of 10 nm (preferably a depth of 10 nm toward the support) from the surface of the resin layer containing the aforementioned compound having a siloxane bond. Represents the O / Si ratio, which is the ratio of the number of oxygen atoms contained in the layer to the number of silicon atoms, and B represents the number of oxygen atoms on the surface of the resin layer containing the aforementioned compound having a siloxane bond to the number of silicon atoms. The O / Si ratio, which is the ratio.
With such a configuration, the gas separation membrane of the present invention has high gas permeability at high pressure and / or gas separation selectivity.
The higher the A / B ratio in the above formula 1, the more the resin layer containing a compound in which oxygen atoms have a siloxane bond (the resin layer containing a compound having a siloxane bond has a higher gas separation selectivity, so-called separation selectivity. It penetrates to the inside in the thickness direction). In the corona treatment or plasma treatment aiming only at improving the adhesion by modifying the surface, oxygen does not enter sufficiently to have gas separation selectivity from the surface of the resin layer containing a compound having a siloxane bond to a depth of 10 nm. The higher the value of B in Formula 2, the more the surface of the resin layer containing the compound having a siloxane bond is modified and more oxygen atoms are taken in. In the present invention, a resin layer containing a compound having a siloxane bond satisfies the above formulas 1 and 2 to obtain a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure. be able to. Without being bound by any theory, it is considered that separation selectivity is expressed by incorporating oxygen atoms not only into the surface of the resin layer containing a compound having a siloxane bond but also into the thickness direction.
The layer having separation selectivity is a film having a thickness of 0.1 to 30 μm, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side. When the pure gas of carbon (CO 2 ) and methane (CH 4 ) is supplied, the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) (PCO 2 / PCH 4 ) is 1 Means a layer of 5 or more.
Conventionally, a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment. The structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
Here, the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases. Therefore, it has been difficult for conventional gas separation membranes to increase both gas permeability and gas separation selectivity. In contrast, the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
This is because the gas separation membrane of the present invention has the resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced with gradation from the surface as shown in FIG. 6B. . Sites where oxygen atoms are introduced form pores by siloxane bonds. In addition, the introduction of oxygen reduces the thermal motion of the polymer. For this reason, the hole which can permeate | transmit many gas selectively has produced | generated. For this reason, unlike a resin layer containing a compound having a siloxane bond before the surface treatment (polydimethylsiloxane membrane 11 not subjected to the oxygen atom permeation treatment step as shown in FIG. 6A), high gas separation is achieved. Selectivity can be obtained.
In addition, polydimethylsilane in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. 6C without using gradation of oxygen atom introduction in the film thickness direction using a CVD (Chemical Vapor Deposition) method or the like. It is possible to produce a siloxane film. When such a membrane is compared with the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention, oxygen atoms are present in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention. The densely introduced portion is thinner than the polydimethylsiloxane film 12 into which oxygen atoms are uniformly introduced in the film thickness direction. The polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner. Therefore, the present invention can achieve extremely high gas permeability and gas separation selectivity.
On the other hand, the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity. In addition, the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
The gas separation membrane of the present invention is preferably produced by the method for producing a gas separation membrane of the present invention described later. Since the gas separation membrane obtained by the production method of the present invention has high performance, the gas separation membrane in the product process claim defines a gas separation membrane having high performance. The mechanism of gas separation membrane performance is considered to be determined by the size of the pores in the plane of the layer that contributes to gas separation, but it takes time and money to identify the pore size even with an electron microscope. This is impractical at the time of filing. Instead, the present specification has found that the correlation between the values of A / B and B and the performance of the gas separation membrane is high, and has found that a gas separation membrane having good performance can be provided within this range. Since the range of the gas separation membrane of the product process claim and the range of the gas separation membrane represented by the values of A / B and B are not completely the same, the same range as the product process claim can be specified as a pure product claim. Absent. In addition, if it is the method of giving the energy from the active energy ray equivalent to a plasma process, it is anticipated that the same thing as the gas separation membrane manufactured by the plasma process can be manufactured.
Hereinafter, preferred embodiments of the gas separation membrane of the present invention will be described.
<構成>
 本発明のガス分離膜は、薄層複合膜(ガス分離複合膜と言われることもある)、非対称膜または中空糸であることが好ましく、薄層複合膜であることがより好ましい。
 以下においてガス分離膜が薄層複合膜である場合を代表例として説明するときがあるが、本発明のガス分離膜は薄層複合膜によって限定されるものではない。
<Configuration>
The gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
Hereinafter, a case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
 本発明のガス分離膜の好ましい構成を、図面を用いて説明する。図1に示した本発明のガス分離膜10の一例は薄層複合膜であって、支持体4と、シロキサン結合を有する化合物を含む樹脂層3とを有するガス分離膜である。
 図2に示した本発明のガス分離膜10の他の一例は、支持体4とシロキサン結合を有する化合物を含む樹脂層3に加えて、シロキサン結合を有する化合物を含む樹脂層3の支持体4とは反対側にポリイミド化合物を含む層(後述の追加樹脂層)1をさらに有する。
 本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1層のみ有していても、2層以上有していてもよい。本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1~5層有することが好ましく、1~3層有することがより好ましく、製造コストの観点から1~2層有することが特に好ましく、1層のみ有することがより特に好ましい。図3に示した本発明のガス分離膜10の他の一例は、シロキサン結合を有する化合物を含む樹脂層3を2層有する。
A preferred configuration of the gas separation membrane of the present invention will be described with reference to the drawings. An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond. Further, a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
The gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers. The gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer. Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
 本明細書において「支持体上」とは、支持体と分離選択性を有する層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、図1に示したように分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In the present specification, “on the support” means that another layer may be interposed between the support and the layer having separation selectivity. As for the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
 また、本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たす。
式1 0.9≧A/B≧0.55
式2 B≧1.7
式1および式2中、Aは前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す。
 シロキサン結合を有する化合物を含む樹脂層が満たす上記式1および式2について、図4を用いて説明する。図4中、シロキサン結合を有する化合物を含む樹脂層3の表面は、符号6で表される。上記式1および式2中のBは、シロキサン結合を有する化合物を含む樹脂層の表面6内での、酸素原子の数のケイ素原子の数に対する比であるO/Si比を意味する。
 また、図4中、dが10nmである場合、シロキサン結合を有する化合物を含む樹脂層3の表面から(支持体方向へ)10nmの深さにおける、「シロキサン結合を有する化合物を含む樹脂層の表面」6と平行な面が、符号7で表される「シロキサン結合を有する化合物を含む樹脂層の表面から(支持体方向へ)10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の面」である。上記式1中のAは、「シロキサン結合を有する化合物を含む樹脂層の表面から(支持体方向へ)10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の面」7内での、酸素原子の数のケイ素原子の数に対する比であるO/Si比を意味する。
In the gas separation membrane of the present invention, the resin layer containing a compound having a siloxane bond satisfies the following formula 1 and the following formula 2.
Formula 1 0.9 ≧ A / B ≧ 0.55
Formula 2 B ≧ 1.7
In Formulas 1 and 2, A represents the number of silicon atoms in the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. O / Si ratio which is a ratio to the number, and B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
The above formulas 1 and 2 which are satisfied by the resin layer containing a compound having a siloxane bond will be described with reference to FIG. In FIG. 4, the surface of the resin layer 3 containing a compound having a siloxane bond is represented by reference numeral 6. B in the formulas 1 and 2 means an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms in the surface 6 of the resin layer containing the compound having a siloxane bond.
Further, in FIG. 4, when d is 10 nm, “the surface of the resin layer containing a compound having a siloxane bond” at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (toward the support). "A surface parallel to 6 is represented by reference numeral 7" The surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (toward the support) " It is. A in the above formula 1 represents oxygen in the “surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm (in the direction of the support) from the surface of the resin layer containing a compound having a siloxane bond” 7. It means the O / Si ratio, which is the ratio of the number of atoms to the number of silicon atoms.
<支持体>
 本発明のガス分離膜は、支持体を含むことが好ましく、シロキサン結合を有する化合物を含む樹脂層が支持体上に形成されることがより好ましい。支持体は、薄く、多孔質な素材であることが、十分なガス透過性を確保する上で好ましい。
<Support>
The gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support. The support is preferably a thin and porous material in order to ensure sufficient gas permeability.
 本発明のガス分離膜は、多孔質性の支持体の表面ないし内面にシロキサン結合を有する化合物を含む樹脂層3を形成・配置するようにしてもよく、表面に形成することで簡便に薄層複合膜とすることができる。多孔質性の支持体の表面にシロキサン結合を有する化合物を含む樹脂層3を形成することで、高ガス分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有するガス分離膜とすることができる。 In the gas separation membrane of the present invention, the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane. By forming the resin layer 3 containing a compound having a siloxane bond on the surface of a porous support, a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
 本発明のガス分離膜が薄層複合膜である場合、薄層複合膜は、多孔質の支持体の表面に、上記のシロキサン結合を有する化合物を含む樹脂層3をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。具体的には、支持体は、多孔質層(Porous Layer)をシロキサン結合を有する化合物を含む樹脂層3側に有することが好ましく、シロキサン結合を有する化合物を含む樹脂層3側に配置された多孔質層と不織布(Non-Woven)の積層体であることがより好ましい。 When the gas separation membrane of the present invention is a thin-layer composite membrane, the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping). Specifically, the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
 支持体に好ましく適用される多孔質層は、機械的強度及び高ガス透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましく、さらに、その気体透過性は二酸化炭素透過速度で3×10-5cm(STP;STPはStandard Temperature and Pressureの略語である)/cm・cm・sec・cmHg(30GPU;GPUは Gas Permeation Unit の略語である)以上であることが好ましい。多孔質層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。 The porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The porous structure of this porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%. The molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 × 10 −5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 · cm · sec · cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit). Examples of the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 薄層複合膜においては、シロキサン結合を有する化合物を含む樹脂層3側に配置される多孔質層の下部に機械的強度を付与するために織布、不織布、ネット等が設けられることが好ましく、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the thin-layer composite film, it is preferable that a woven fabric, a nonwoven fabric, a net, or the like is provided to give mechanical strength to the lower portion of the porous layer disposed on the resin layer 3 side containing the compound having a siloxane bond, Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<シロキサン結合を有する化合物を含む樹脂層>
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有する。
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たす。
式1 0.9≧A/B≧0.55
式2 B≧1.7
式1および式2中、Aは前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す。
 前述のシロキサン結合を有する化合物を含む樹脂層は、A/Bが0.60以上であることが好ましく、A/Bが0.63以上であることがより好ましく、A/Bが0.65以上であることが特に好ましい。
 前述のシロキサン結合を有する化合物を含む樹脂層は、Bが1.95以上であることが好ましい。
<Resin layer containing a compound having a siloxane bond>
The gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
In the gas separation membrane of the present invention, the resin layer containing the compound having a siloxane bond satisfies the following formula 1 and the following formula 2.
Formula 1 0.9 ≧ A / B ≧ 0.55
Formula 2 B ≧ 1.7
In Formulas 1 and 2, A represents the number of silicon atoms in the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. O / Si ratio which is a ratio to the number, and B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
In the resin layer containing the compound having a siloxane bond, A / B is preferably 0.60 or more, more preferably A / B is 0.63 or more, and A / B is 0.65 or more. It is particularly preferred that
In the resin layer containing the compound having a siloxane bond, B is preferably 1.95 or more.
 本明細書中、シロキサン結合を有する化合物を含む樹脂層の各面における酸素原子の数のケイ素原子の数に対する比、すなわちシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)は相対量として測定することができる。シロキサン結合を有する化合物を含む樹脂層の表面から30nm及び50nmの深さ(好ましくは支持体方向へ30nm及び支持体方向へ50nmの深さ)におけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(C)も、前述のO/Si比(A)やO/Si比(B)と同様に相対量として測定することができる。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比も、前述のO/Si比(A)やO/Si比(B)と同様に相対量として測定することができる。 In the present specification, the ratio of the number of oxygen atoms to the number of silicon atoms in each surface of a resin layer containing a compound having a siloxane bond, that is, a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond. O / Si ratio (A), which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a ratio to the number of silicon atoms, and the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond The O / Si ratio (B), which is the ratio to the number, can be measured as a relative amount. Oxygen contained in the resin layer containing a compound having a siloxane bond at a depth of 30 nm and 50 nm from the surface of the resin layer containing a compound having a siloxane bond (preferably a depth of 30 nm in the direction of the support and 50 nm in the direction of the support) The O / Si ratio (C), which is the ratio of the number of atoms to the number of silicon atoms, can also be measured as a relative amount in the same manner as the aforementioned O / Si ratio (A) and O / Si ratio (B). The carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, is also the O / Si ratio (A) or the O / Si ratio (B) described above. Similarly, it can be measured as a relative amount.
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)は、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出する。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比も同様に算出する。
 シロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)を算出する。
 続いてシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求めるためにC60イオンによるエッチングを行う。
 具体的には、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60 :10keV、10nAとし、2mm×2mmの領域を10nmエッチングする。この膜にてESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を算出する。シロキサン結合を有する化合物を含む樹脂層の表面からのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出する。この値は材質により、適宜最適な数値を用いるものとする。
 得られたシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)から、A/Bの値を算出する。
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と同様の方法で、シロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(C)を求める。また、O/Si比(B)とO/Si比(C)から、C/Bの値を算出する。
O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms; The O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond, is calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis). Similarly, the carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, is also calculated.
A porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc. Included in Quantera SXM manufactured by the company, X-ray source: Al—Kα ray (1490 eV, 25 W, diameter of 100 μm), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond An O / Si ratio (B), which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
Subsequently, an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
Specifically, Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm × 2 mm. An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond. The depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
O / Si ratio (A) which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond to the number of silicon atoms Then, the value of A / B is calculated from the O / Si ratio (B) which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
Similar to the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. O / Si ratio (C), which is the ratio of the number of oxygen atoms in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms Ask for. Further, the value of C / B is calculated from the O / Si ratio (B) and the O / Si ratio (C).
 本明細書中、前述のシロキサン結合を有する化合物を含む樹脂層の表面は、O/Si比を前述のガス分離膜の表面(好ましくは支持体とは反対側の表面)から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面である。
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層を有さない場合、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で、O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面を特定する。
 その結果、上述の方法において、多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」であることが確認される。
In this specification, the surface of the resin layer containing the compound having a siloxane bond described above is O 2 when the O / Si ratio is measured from the surface of the gas separation membrane (preferably the surface opposite to the support). / Si ratio is the maximum, and the number of silicon atoms is 3% (atomic%) or more.
When there is no other layer on the surface of the resin layer containing a compound having a siloxane bond, oxygen atoms of the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond When the O / Si ratio is measured from the surface of the gas separation membrane in the same manner as the method for obtaining the O / Si ratio (A), which is the ratio of the number to the number of silicon atoms, the O / Si ratio is maximum. And a plane containing 3% (atomic%) or more of silicon atoms is specified.
As a result, in the above-described method, a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present). The surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that it is “surface”.
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層(例えばポリイミドを含む層)を有する場合、シロキサン結合を有する化合物を含む樹脂層の表面(すなわちO/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面)を、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で求める。
 その結果、上述の方法において、多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」である。具体的には、「多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面」から、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」を意味する。
When the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide), the surface of the resin layer containing a compound having a siloxane bond (that is, the O / Si ratio is set to the above-mentioned gas separation membrane). The depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond, the surface having the maximum O / Si ratio when measured from the surface and containing 3% (atomic%) or more of silicon atoms) The resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
As a result, in the above-described method, a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present). The surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. Surface ". Specifically, “comprising a compound having a siloxane bond in a state in which a resin layer containing a compound having a siloxane bond is formed on the porous support (without any other layer (for example, a layer containing polyimide)). From “the surface of the resin layer”, “the surface where the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane and the number of silicon atoms is 3% (atomic%) or more” "Means.
 前述のシロキサン結合を有する化合物を含む樹脂層の各面における単位面積当たりの酸素原子量を相対量として測定する場合、前述のシロキサン結合を有する化合物を含む樹脂層は、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si(A)比が1.0を超え3.0以下であることが好ましく、1.1~2.4であることがより好ましく、1.3~2.35であることが特に好ましい。 When the amount of oxygen atoms per unit area on each surface of the resin layer containing a compound having a siloxane bond is measured as a relative amount, the resin layer containing a compound having a siloxane bond is a resin containing a compound having a siloxane bond. The O / Si (A) ratio, which is the ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the layer to the number of silicon atoms, exceeds 1.0 and is 3.0. The following is preferable, 1.1 to 2.4 is more preferable, and 1.3 to 2.35 is particularly preferable.
 シロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(C)が1.0~2.4であることが好ましく、1.05~2.3であることが特に好ましい。
 C/Bの値は0.50~0.95であることが好ましく、0.50~0.90を満たすことがより好ましく、0.50~0.85を満たすことが特に好ましい。
The O / Si ratio (C), which is the ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms, is It is preferably 1.0 to 2.4, and particularly preferably 1.05 to 2.3.
The value of C / B is preferably 0.50 to 0.95, more preferably 0.50 to 0.90, and particularly preferably 0.50 to 0.85.
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面の、炭素原子の数のケイ素原子の数に対する比(炭素/ケイ素比)が1.6以下であることが好ましく、0.1~1.3であることがより好ましく、0.1~1.1であることが特に好ましい。 In the gas separation membrane of the present invention, the ratio of the number of carbon atoms to the number of silicon atoms (carbon / silicon ratio) on the surface of the resin layer containing a compound having a siloxane bond is preferably 1.6 or less. 0.1 to 1.3 is more preferable, and 0.1 to 1.1 is particularly preferable.
 本発明のガス分離膜は、ガス分離膜のゲル分率が45%以上であることが、保管耐性を高める観点から好ましい。ガス分離膜のゲル分率を制御することにより、ガス分離膜の湿熱耐久性を向上させることができる。その結果、保管時の環境に対してガス分離膜の性能が安定するため、出荷時に仕様で定めたガス分離性能の範囲から逸脱することがなくなる。また、出荷後の歩留まりが向上する。
 ガス分離膜は、ガス分離膜のゲル分率が55%よりも大きいことが保管耐性に加えて湿熱(輸送)耐性も高める観点からより好ましく、70%以上であることが特に好ましい。輸送時の湿熱環境に対してガス分離膜の性能が安定するため、出荷時に仕様で定めたガス分離性能の範囲から逸脱することがなくなる。また、出荷後の歩留まりが向上する。
 本明細書中において、ガス分離膜のゲル分率は、以下の方法で測定した値を採用する。多孔質支持体上に10μm以下のシロキサン結合を有する化合物を含む樹脂層を塗布、硬化させたサンプルを作製する。そのサンプルをXRF測定により、Si成分の信号強度Xaを測定する。一方、シロキサン結合を有する化合物を含む樹脂層を塗布、硬化させた後でクロロホルム溶媒に24時間浸漬し、溶出成分を抽出したサンプルを作製する。その後、溶出成分を抽出したサンプルのXRF測定を行い、Si成分の信号強度Xbを測定する。Xb/Xa*100%をゲル分率と定義した。抽出に使用する溶媒はクロロホルム以外であってもよく、例えばヘキサンなどを挙げることができる。
 ガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の下記式で表される値が、5000nm以下であることが好ましく、900nm以下であることがより好ましく、100~900nmであることが特に好ましい。
式:
 シロキサン結合を有する化合物を含む樹脂層の厚み×(1-ゲル分率/100)
In the gas separation membrane of the present invention, the gel fraction of the gas separation membrane is preferably 45% or more from the viewpoint of enhancing storage resistance. The wet heat durability of the gas separation membrane can be improved by controlling the gel fraction of the gas separation membrane. As a result, the performance of the gas separation membrane is stabilized with respect to the environment at the time of storage, so that it does not deviate from the range of the gas separation performance defined in the specifications at the time of shipment. Moreover, the yield after shipment improves.
In the gas separation membrane, the gel fraction of the gas separation membrane is more preferably greater than 55% from the viewpoint of enhancing the wet heat (transport) resistance in addition to the storage resistance, and particularly preferably 70% or more. Since the performance of the gas separation membrane is stable with respect to the humid heat environment during transportation, it does not deviate from the range of the gas separation performance defined in the specifications at the time of shipment. Moreover, the yield after shipment improves.
In this specification, the value measured by the following method is adopted as the gel fraction of the gas separation membrane. A sample is prepared by applying and curing a resin layer containing a compound having a siloxane bond of 10 μm or less on a porous support. The signal intensity Xa of the Si component is measured for the sample by XRF measurement. On the other hand, a resin layer containing a compound having a siloxane bond is applied and cured, and then immersed in a chloroform solvent for 24 hours to prepare a sample from which eluted components are extracted. Thereafter, the XRF measurement of the sample from which the eluted component is extracted is performed, and the signal intensity Xb of the Si component is measured. Xb / Xa * 100% was defined as the gel fraction. The solvent used for extraction may be other than chloroform, and examples thereof include hexane.
In the gas separation membrane, the value represented by the following formula of the resin layer containing the compound having a siloxane bond is preferably 5000 nm or less, more preferably 900 nm or less, and particularly preferably 100 to 900 nm. .
formula:
Thickness of resin layer containing compound having siloxane bond × (1−gel fraction / 100)
 ガス分離膜は、上記を満たすシロキサン結合を有する化合物を含む樹脂層が面内に50%以上あることが好ましく、70%以上あることがさらに好ましく、90%以上あることが特に好ましい。
 ガス分離膜の面内には、上記を満たすシロキサン結合を有する化合物を含む樹脂層以外の他の領域が存在してもよい。他の領域としては、例えば接着剤や粘着材が設けられた領域や、シロキサン結合を有する化合物を含む樹脂層に対して特定の処理(好ましくは酸素原子浸透処理)が十分ではない領域などを挙げることができる。
In the gas separation membrane, a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
In the plane of the gas separation membrane, there may be other regions other than the resin layer containing a compound having a siloxane bond that satisfies the above. Examples of other regions include a region where an adhesive or a pressure-sensitive adhesive is provided, a region where a specific treatment (preferably oxygen atom permeation treatment) is not sufficient for a resin layer containing a compound having a siloxane bond, and the like. be able to.
 前述のシロキサン結合を有する化合物を含む樹脂層は、シロキサン結合を有する化合物を含む。シロキサン結合を有する化合物は、「少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物」であってもよい。また、シロキサン結合を有する化合物は、「シロキサン結合を有し、かつ、繰り返し単位を有する化合物」であってもよく、その中ではポリシロキサン単位を有する化合物であることが好ましい。 The resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond. The compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”. The compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000008
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
 一般式(2)中のR11はヒドロキシル基、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることがより好ましい。
 一般式(2)中のR11が表すヒドロキシル基やカルボキシル基は、任意の塩を形成していてもよい。
 一般式(2)および一般式(3)中、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。なお、*は後述の一般式(1)における酸素原子との結合部位であってもよく、#は後述の一般式(1)におけるケイ素原子との結合部位であってもよい。
R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
The hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
In general formula (2) and general formula (3), * represents a binding site with # in general formula (2) or general formula (3), and # in general formula (2) or general formula (3) Represents the binding site of *. In addition, * may be a bonding site with an oxygen atom in the general formula (1) described later, and # may be a bonding site with a silicon atom in the general formula (1) described later.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が下記一般式(1)で表される繰り返し単位を有することが好ましい。
一般式(1)
Figure JPOXMLDOC01-appb-C000009
一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
 このようなシロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述の式1および式2を満たすシロキサン結合を有する化合物を含む樹脂層を形成した場合、高圧下での高いガス透過性およびガス分離選択性を発現することができる。
 また、シロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述の式1および式2を満たすシロキサン結合を有する化合物を含む樹脂層を形成した場合、いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれてSiOxの組成となることで高圧下での高いガス透過性およびガス分離選択性を発現していると考えられる。特に、ガス透過性が高いことで知られているポリジメチルシロキサンを用いた場合も上述の式1を満たすシロキサン結合を有する化合物を含む樹脂層とすることで高圧下での高いガス透過性および分離選択性を発現することができる。酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれて、シロキサン結合を有する化合物を含む樹脂層の表面およびシロキサン結合を有する化合物を含む樹脂層の厚み方向へ内部において、シロキサン結合を有する化合物が少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有することが好ましい。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has a repeating unit represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000009
In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
When such a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and a resin layer containing a compound having a siloxane bond satisfying the above formulas 1 and 2 is formed under high pressure High gas permeability and gas separation selectivity can be exhibited.
Further, when a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond and a resin layer containing a compound having a siloxane bond satisfying the above-described formulas 1 and 2 is formed, it is not limited to any theory. Although it does not do, not only the surface of the resin layer containing a compound having a siloxane bond in the oxygen atom, but also the inside in the thickness direction is incorporated into the SiOx composition, so high gas permeability and gas separation under high pressure It is thought that selectivity is expressed. In particular, even when polydimethylsiloxane, which is known to have high gas permeability, is used as a resin layer containing a compound having a siloxane bond that satisfies the above formula 1, high gas permeability and separation under high pressure. Selectivity can be expressed. Not only the surface of the resin layer containing the compound having a siloxane bond but also the surface of the resin layer containing the compound having a siloxane bond and the thickness of the resin layer containing the compound having a siloxane bond. It is preferable that the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
 一般式(1)におけるRは、一般式(1)中、Rはそれぞれ独立に炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることがより好ましく、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることが特に好ましい。
 一般式(1)におけるRが表す炭素数1以上のアルキル基としては、炭素数1~10のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましく、メチル基が特に好ましい。Rが表す炭素数1以上のアルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアリール基としては、炭素数6~20のアリール基が好ましく、フェニル基が特に好ましい。
 一般式(1)におけるRが表すフッ化アルキル基としては、炭素数1~10のフッ化アルキル基が好ましく、炭素数1~3のフッ化アルキル基がより好ましく、トリフロロメチル基が特に好ましい。Rが表すフッ化アルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、メトキシ基、エトキシ基、プロピルオキシ基がより好ましく、メトキシ基が特に好ましい。Rが表す炭素数1以上のアルコキシ基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるnは2以上の整数を表し、40~800であることが好ましく、50~700であることがより好ましく、60~500であることが特に好ましい。
R in the general formula (1) is preferably an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group in the general formula (1). Of these, an alkyl group, an amino group, an epoxy group or a carboxyl group is more preferred, and an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group is particularly preferred.
The alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group. The alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
As the aryl group represented by R in the general formula (1), an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
The fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. . The fluorinated alkyl group represented by R may be linear, branched or cyclic.
The alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group. The alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
In the general formula (1), n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
 一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物は、一般式(1)で表される繰り返し単位以外の分子末端に任意の置換基を有していてもよい。一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物の分子末端に有していてもよい置換基の例および好ましい範囲は、一般式(1)におけるRの例および好ましい範囲と同様である。 The compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1). Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が、前述の一般式(1)で表される繰り返し単位、ならびに、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が100~600モル%であることが好ましく、200~600モル%であることがより好ましく、300~600モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
In the gas separation membrane of the present invention, the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond. The ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ˜600 mol%.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が3.0~500モル%であることが好ましく、3.5~450モル%であることがより好ましく、4.0~400モル%であることが特に好ましい。
 さらに本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が2.0~400モル%であることが好ましく、2.5~350モル%であることがより好ましく、3.0~300モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
Furthermore, in the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 30 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the above-described compound having a siloxane bond included in the resin layer containing the compound having the siloxane bond at a depth of 30 nm from the surface of the resin layer containing the compound having the siloxane bond described above. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、重合可能な官能基を有していることが好ましい。このような官能基としては、エポキシ基、オキセタン基、カルボキシル基、アミノ基、ヒドロキシル基およびチオール基を挙げることができる。シロキサン結合を有する化合物を含む樹脂層はエポキシ基、オキセタン基、カルボキシル基およびこれらのうち2以上の基を有するシロキサン結合を有する化合物を含むことがより好ましい。このようなシロキサン結合を有する化合物を含む樹脂層は、前述の支持体の上に放射線硬化性組成物への放射線照射による硬化をすることにより形成されることが好ましい。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group. Examples of such functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups. The resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups. Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、ジアルキルシロキサン基を有する部分的に架橋された放射線硬化性組成物から形成された、重合性ジアルキルシロキサンであってもよい。重合性ジアルキルシロキサンは、ジアルキルシロキサン基を有するモノマー、ジアルキルシロキサン基を有する重合性オリゴマー、ジアルキルシロキサン基を有するポリマーである。ジアルキルシロキサン基としては、-{O-Si(CHn2-で表される基(n2は例えば1~100)を挙げることができる。末端にビニル基を有するポリ(ジアルキルシロキサン)化合物も好ましく用いることができる。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group. The polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group. Examples of the dialkylsiloxane group include a group represented by — {O—Si (CH 3 ) 2 } n2 — (n2 is, for example, 1 to 100). A poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi). (Trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) (hereinafter, referred to as “poly (1-trimethylsilyl-1-propyne)”) At least one selected from PTMSP), polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては市販の材料を用いることができ、例えば、シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物としては、UV9300(Momentive社製のポリジメチルシロキサン(PDMS))、X-22-162C(信越化学工業(株)製)などを好ましく用いることができる。
 シロキサン結合を有する化合物を含む樹脂層のその他の材料としては、UV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート)などを好ましく用いることができる。
A commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond. For example, as a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
As another material of the resin layer containing a compound having a siloxane bond, UV9380C (bis (4-dodecylphenyl) iodonium = hexafluoroantimonate manufactured by Momentive) or the like can be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料は、シロキサン結合を有する化合物を含む樹脂層を形成するときに有機溶媒を含む組成物として調製することができ、硬化性組成物であることが好ましい。前述のシロキサン結合を有する化合物を含む樹脂層を形成するときに用いることができる有機溶媒としては、特に制限は無く、例えばn-ヘプタンなどを挙げることができる。 The material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition. The organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
(特性)
 シロキサン結合を有する化合物を含む樹脂層の膜厚としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層の膜厚は0.1μm以上であることが製膜の容易性の観点から好ましく、0.1~5μmであることがより好ましく、0.1~4μmであることが特に好ましく、0.3~3μmであることがより特に好ましい。シロキサン結合を有する化合物を含む樹脂層の膜厚はSEMで求めることができる。
 シロキサン結合を有する化合物を含む樹脂層の膜厚は、硬化性組成物の塗布量を調整することによって制御することができる。
(Characteristic)
Although there is no restriction | limiting in particular as a film thickness of the resin layer containing the compound which has a siloxane bond, From a viewpoint of the ease of film forming that the film thickness of the resin layer containing the compound which has the above-mentioned siloxane bond is 0.1 micrometer or more. The thickness is preferably 0.1 to 5 μm, more preferably 0.1 to 4 μm, and particularly preferably 0.3 to 3 μm. The film thickness of the resin layer containing a compound having a siloxane bond can be determined by SEM.
The film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
<追加樹脂層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の他に追加の樹脂層を含んでも良い(以下、追加樹脂層)。
<Additional resin layer>
The gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
 追加樹脂層に含まれる樹脂は、以下に挙げられるが、これらに限定されるわけではない。具体的には、前述のシロキサン結合を有する化合物、ポリイミド類、ポリアミド類、セルロース類、ポリエチレングリコール類、ポリベンゾオキサゾール類であることが好ましく、前述のシロキサン結合を有する化合物、ポリイミド、ポリベンゾオキサゾールおよび酢酸セルロースから選ばれる少なくとも1種であることがより好ましい。本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層を有し、ポリイミド化合物を含む層をさらに追加樹脂層として有することが特に好ましい。 The resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
 ポリイミド化合物としては、反応性基を有するポリイミドであることが好ましい。 The polyimide compound is preferably a polyimide having a reactive group.
 以下において、追加樹脂層の樹脂が反応性基を有するポリイミドである場合について代表例として説明することがあるが、本発明は反応性基を有するポリマーが反応性基を有するポリイミドである場合これに限定されるものではない。 In the following, the case where the resin of the additional resin layer is a polyimide having a reactive group may be described as a representative example, but the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
 本発明に用いることができる反応性基を有するポリイミドについて以下に詳しく説明する。
 本発明において、反応性基を有するポリイミド化合物は、反応性基を有するポリマーが、ポリイミド単位と、側鎖に反応性基(好ましくは求核性の反応性基であり、より好ましくはカルボキシル基、アミノ基またはヒドロキシル基)を有する繰り返し単位とを含むことが好ましい。
 より具体的に説明すれば、反応性基を有するポリマーが、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことが好ましい。
 さらに、反応性基を有するポリマーは、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(II-a)又は(II-b)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことがより好ましい。
 本発明に用いることができる反応性基を有するポリイミドは、上記各繰り返し単位以外の繰り返し単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いることができる反応性基を有するポリイミドは、下記各式で表される各繰り返し単位のみからなることが特に好ましい。
The polyimide having a reactive group that can be used in the present invention will be described in detail below.
In the present invention, the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group.
More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
Furthermore, the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
The polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas. When 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(I)において、Rは、下記式(I-a)~(I-h)のいずれかで表される構造の基を示す。下記式(I-a)~(I-h)において、*は式(I)のカルボニル基との結合部位を示す。式(I)におけるRを母核と呼ぶことがあるが、この母核Rは式(I-a)、(I-b)または(I-d)で表される基であることが好ましく、(I-a)または(I-d)で表される基であることがより好ましく、(I-a)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any of the following formulas (Ia) to (Ih). In the following formulas (Ia) to (Ih), * represents a bonding site with the carbonyl group of the formula (I). R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
・X、X、X
 X、X、Xは、単結合又は2価の連結基を示す。これらの2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。
・ X 1 , X 2 , X 3
X 1 , X 2 and X 3 represent a single bond or a divalent linking group. As these divalent linking groups, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable. When R x represents a substituent, specific examples thereof include the substituent group Z described below. Among them, an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. . In the present specification, when “may be linked to each other to form a ring”, it may be bonded by a single bond, a double bond or the like to form a cyclic structure, It may form a condensed ring structure.
・L
 Lは-CH=CH-又は-CH-を示し、好ましくは-CH=CH-である。
・ L
L represents —CH 2 ═CH 2 — or —CH 2 —, preferably —CH 2 ═CH 2 —.
・R、R
 R、Rは水素原子又は置換基を示す。その置換基としては、下記に示される置換基群Zより選ばれるいずれか1つを用いることができる。RおよびRは互いに結合して環を形成していてもよい。
・ R 1 , R 2
R 1 and R 2 represent a hydrogen atom or a substituent. As the substituent, any one selected from the substituent group Z shown below can be used. R 1 and R 2 may be bonded to each other to form a ring.
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
・R
 Rはアルキル基又はハロゲン原子を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
・ R 3
R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4. R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
・R、R
 R、Rはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R、Rが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R、Rはアルキル基である場合、メチル基又はエチル基であることが好ましく、トリフルオロメチルも好ましい。
・ R 4 , R 5
R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable. M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
When R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
・R、R、R
 R、R、Rは置換基を示す。ここでRとRが互いに結合して環を形成してもよい。これらの置換基の数を示すl2、m2、n2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。
・ R 6 , R 7 , R 8
R 6 , R 7 and R 8 represent a substituent. Here, R 7 and R 8 may be bonded to each other to form a ring. L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
・J
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基、又はアリーレン基を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。
・ J 1
J 1 represents a single bond or a divalent linking group. As the linking group, * —COO N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ~ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group. * Represents the binding site on the phenylene group side, and ** represents the opposite binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
・A
 Aは架橋反応をし得る基であれば特に制限はないが、求核性の反応性基であることが好ましく、カルボキシル基、アミノ基、ヒドロキシル基、及び-S(=O)OHから選ばれる基を示すことがより好ましい。前述のアミノ基の好ましい範囲は、後記置換基群Zで説明するアミノ基の好ましい範囲と同義である。Aは特に好ましくはカルボキシル基、アミノ基またはヒドロキシル基であり、より特に好ましくはカルボキシル基又はヒドロキシル基であり、特に好ましくはカルボキシル基である。
・ A 1
A 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S (═O) 2 OH. It is more preferable to show the group selected. The preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below. A 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
 置換基群Z
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、パラ-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably An alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl, and an aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably an aryl group having 6 to 12 carbon atoms, such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group, hetero A cyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.), an alkoxy group (preferably having a carbon number) To 30 and more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably Is an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group ( Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms. Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシル基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphate amide, phenyl phosphate amide, etc.), hydroxyl group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom) ,
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a sulfo group, a carboxyl group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, even an aromatic heterocyclic ring The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Specific examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably). Is a silica having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms. Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 本発明に用いうるポリイミド化合物において、前述の式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性とガス分離選択性を考慮して適宜に調整される。 In the polyimide compound that can be used in the present invention, the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
 本発明に用いうる反応性基を有するポリイミド中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 In the polyimide having a reactive group that can be used in the present invention, the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
 本発明に用いることができる反応性基を有するポリイミドの分子量は、好ましくは重量平均分子量として10,000~1000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
 本発明に用いうる反応性基を有するポリイミドは、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、株式会社エヌ・ティー・エス発行、今井淑夫、横田力男編著、最新ポリイミド~基礎と応用~、3~49頁など)で記載の手法を適宜選択することができる。 The polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine. As the method, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.) is appropriately selected. be able to.
 本発明に用いうる反応性基を有するポリイミドとして好ましい具体例を以下に挙げるが、本発明はこれらに限るものではない。なお、下記式中「100」、「x」、「y」は共重合比(モル比)を示す。「x」、「y」及び重量平均分子量の例を下記表1に示す。なお、本発明に用いうるポリイミド化合物では、yが0ではないことが好ましい。 Specific examples of preferred polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto. In the following formulae, “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 1 below. In the polyimide compound that can be used in the present invention, y is preferably not 0.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 さらに、上記の例示ポリイミド化合物P-100において共重合比xが20で、yが80としたポリマー(P-101)も好ましく用いることができる。 Furthermore, a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
 また、追加樹脂層の樹脂がポリイミドである場合、より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid 5218およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等も好ましい。 In addition, when the resin of the additional resin layer is polyimide, more specifically, the product name P84 and the product from Matrimid 5218 and HP Polymers GmbH sold under the Matrimid (registered trademark) trademark by Huntsman Advanced Materials, respectively. P84 or P84HT sold under the name P84HT is also preferable.
 一方、ポリイミド以外の追加樹脂層の樹脂としては、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類を選択することができる。追加樹脂層に用いることができるセルロース類としては、全アシル基の置換度が2.0~2.7であることが好ましい。酢酸セルロースL-40(アシル基置換度2.5 株式会社ダイセル製)として市販されているセルロースアセテートも好ましく用いることができる。 On the other hand, as the resin of the additional resin layer other than polyimide, celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected. As celluloses that can be used in the additional resin layer, the substitution degree of all acyl groups is preferably 2.0 to 2.7. Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
 その他の追加樹脂層の樹脂としては、ポリエチレングリコール♯200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021号公報に記載のポリマーなどを選択することができる。 As other resin of the additional resin layer, polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
 支持体とシロキサン結合を有する化合物を含む樹脂層の間に、他の追加樹脂層が入ってもよい。他の追加樹脂層としては、例えばPVAなどの親水・疎水性の調整などを挙げることができる。 Other additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond. Examples of other additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
(特性)
 追加樹脂層の膜厚としては機械的強度、ガス分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
(Characteristic)
The film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
 ガス透過性を高める観点から本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層は薄層であることが好ましい。シロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の厚さは通常には10μm以下であり、3μm以下であることが好ましく、1μm以下であることが特に好ましく、0.3μm以下であることがより特に好ましく、0.2μm以下であることがさらにより特に好ましい。
 なお、シロキサン結合を有する化合物を含む樹脂層以外の上記追加樹脂層の厚さは通常には0.01μm以上であり、実用上、製膜の容易性の観点から0.03μm以上が好ましく、0.1μm以上がより好ましい。
From the viewpoint of enhancing gas permeability, the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer. The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 μm or less, preferably 3 μm or less, particularly preferably 1 μm or less, and 0.3 μm or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 μm or less.
The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 μm or more, and is practically preferably 0.03 μm or more from the viewpoint of film formation, More preferably, it is 1 μm or more.
<保護層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層上または追加樹脂層上に形成された保護層(Protective Layer)を具備するものでもよい。保護層は前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層の上に設置される層のことである。ハンドリング時や使用時に前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層と他の材料との意図しない接触を防ぐことができる。
<Protective layer>
The gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer. The protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
(材料)
 前述の保護層の材料としては特に制限はないが、前述の保護層に用いられる材料の好ましい範囲は、シロキサン結合を有する化合物を含む樹脂層に用いられる好ましい材料の範囲と同様である。特に前述の保護層が、ポリジメチルシロキサン、ポリ(1-トリメチルシリル-1-プロピン)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。
(material)
Although there is no restriction | limiting in particular as the material of the above-mentioned protective layer, The preferable range of the material used for the above-mentioned protective layer is the same as the range of the preferable material used for the resin layer containing the compound which has a siloxane bond. In particular, the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
(特性)
 前述の保護層の膜厚は、20nm~3μmであることが好ましく、50nm~2μmであることがより好ましく、100nm~1μmであることが特に好ましい。
(Characteristic)
The film thickness of the protective layer is preferably 20 nm to 3 μm, more preferably 50 nm to 2 μm, and particularly preferably 100 nm to 1 μm.
<特性、用途>
 本発明の分離膜は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。
 本発明のガス分離膜は、酸性ガスと非酸性ガスのガス混合物から、少なくとも1種の酸性ガスを分離するためのガス分離膜であることが好ましい。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)が挙げられ、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)から選択される少なくとも1種であることが好ましく、より好ましくは二酸化炭素、硫化水素又は硫黄酸化物(SOx)であり、特に好ましくは二酸化炭素である。
 前述の非酸性ガスとしては水素、メタン、窒素、及び一酸化炭素から選択される少なくとも1種であることが好ましく、より好ましくはメタン、水素であり、特に好ましくはメタンである。
 本発明のガス分離膜は、特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
<Characteristics and applications>
The separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
The gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas. Examples of the acid gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
The aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
The gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、30℃、5MPaにおける二酸化炭素の透過速度が10GPU以上であることが好ましく、10~300GPUであることがより好ましく、15~300GPUであることが特に好ましい。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、30℃、5MPaにおける二酸化炭素の透過流束のメタンの透過流束に対する比であるガス分離選択性αが30以上であることが好ましく、35以上であることがより好ましく、40以上であることが特に好ましく、50を超えることがより特に好ましい。 The gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane. The property α is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
 上記選択的なガス透過には膜への溶解・拡散機構が関与すると考えられる。このような観点を活かし、PEO組成を含む分離膜が検討されている(Journal of Membrane Science,1999,160,87-99参照)。これは二酸化炭素がポリエチレンオキシ組成との相互作用が強いことに起因する。このポリエチレンオキシ膜はガラス転移温度の低い柔軟なゴム状のポリマー膜であるため、ガス種による拡散係数の差は小さく、ガス分離選択性は溶解度の差の効果によるものが主である。これに対し、本発明の好ましい態様では、前述のシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物のガラス転移温度が高く、上記溶解・拡散作用を発揮させながら、膜の熱的な耐久性という観点でも大幅に改善することができる。 It is considered that the selective gas permeation involves a dissolution / diffusion mechanism into the membrane. Taking advantage of such a viewpoint, a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility. On the other hand, in a preferred embodiment of the present invention, the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
[ガス分離膜の製造方法]
 本発明のガス分離膜を製造する方法は、特に制限は無い。
 本発明のガス分離膜を製造する方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して特定の処理を施すことが好ましい。シロキサン結合を有する化合物を含む樹脂層前駆体に対して施す特定の処理としては、シロキサン結合を有する化合物を含む樹脂層前駆体に酸素原子を浸透させる酸素原子浸透処理であることが好ましく、プラズマ処理であることがより好ましい。
 本発明のガス分離膜を製造する方法は、以下の本発明のガス分離膜の製造方法であることが好ましい。
 本発明のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、前述の酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理である。
[Method for producing gas separation membrane]
The method for producing the gas separation membrane of the present invention is not particularly limited.
In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond. The specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
The method for producing a gas separation membrane of the present invention is preferably the following method for producing a gas separation membrane of the present invention.
The method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step in which oxygen atoms permeate a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 10 cm 3. (STP) / min or higher and a plasma treatment with an input power of 23 W or more.
 本発明のガス分離膜を製造する方法および本発明のガス分離膜の製造方法の好ましい構成を、図面を用いて説明する。
 本発明のガス分離膜を製造する方法は、図5に示すように、支持体4と、シロキサン結合を有する化合物を含む樹脂層前駆体2の積層体に対し、シロキサン結合を有する化合物を含む樹脂層前駆体2の一方の表面側から特定の処理(酸素原子浸透処理5)を施す工程を含むことが好ましい。
 本発明のガス分離膜を製造する方法は、その後、シロキサン結合を有する化合物を含む樹脂層前駆体に特定の処理(酸素原子浸透処理5)を施した表面上に追加樹脂層を形成する工程を含んでいてもよい(不図示)。
A preferred configuration of the method for producing a gas separation membrane of the present invention and the method for producing a gas separation membrane of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
The method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 本発明のガス分離膜を製造する方法は、シロキサン結合を有する化合物を含む樹脂層前駆体を前述の支持体上に形成する工程を含むことが好ましい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体を支持体上に形成する方法としては特に制限はないが、シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物を塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法やディップコート法、バーコート法を適宜用いることができる。
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物は、硬化性組成物であることが好ましい。シロキサン結合を有する化合物を含む樹脂層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギー(放射線強度)は10~2000mW/cmであることが好ましい。
 積算光量(積算放射エネルギー量)は0.05J/cm(UV-A)を超えることが、ガス分離膜のゲル分率を高める観点から好ましく、0.1J/cm(UV-A)を超えることがより好ましく、0.1~60J/cm(UV-A)であることが特に好ましく、0.1~5J/cm(UV-A)であることがより特に好ましい。
<Formation of resin layer precursor containing compound having siloxane bond>
The method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
The method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply. The coating method is not particularly limited, and a known method can be used. For example, a spin coating method, a dip coating method, or a bar coating method can be appropriately used.
The resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions. Although there is no restriction | limiting in particular as a method of radiation irradiation to a curable composition when forming the resin layer containing the compound which has a siloxane bond, Electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used. Depending on the material used, it can be appropriately selected.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
Integrated light intensity (integrated radiant energy amount) be greater than 0.05J / cm 2 (UV-A ), preferably in view of enhancing the gel fraction of the gas separation membrane, 0.1 J / cm 2 and (UV-A) More preferably, it is 0.1 to 60 J / cm 2 (UV-A), particularly preferably 0.1 to 5 J / cm 2 (UV-A).
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane. (Polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
<シロキサン結合を有する化合物を含む樹脂層前駆体の処理>
 本発明のガス分離膜を製造する方法はシロキサン結合を有する化合物を含む樹脂層前駆体に対して(好ましくは一方の表面側から)酸素原子を浸透させる特定の処理(酸素原子浸透処理)を施す工程を含むことが好ましく、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、前述のシロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)が上記式1を満たすまで上述の特定の処理を行うことがより好ましい。
<Treatment of resin layer precursor containing a compound having a siloxane bond>
In the method for producing a gas separation membrane of the present invention, a specific treatment (oxygen atom permeation treatment) for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond. Preferably, the process includes a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms. A certain O / Si ratio (A) and an O / Si ratio (B) which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond described above satisfy the above formula 1. It is more preferable to perform the above-described specific processing.
 上述の特定の処理を行う方法としては特に制限はないが、例えば、シロキサン結合を有する化合物を含む樹脂層前駆体の一方の表面側からプラズマ処理を行う方法を挙げることができる。
 本発明のガス分離膜の製造方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 前述の酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理である。
 例えば、前述のプラズマ処理を以下の条件で5~30秒間行う方法を挙げることができる。
プラズマ処理条件:酸素流量10cm(STP)/min以上、アルゴン流量100cm(STP)/min、投入電力(放電出力)23W以上。
Although there is no restriction | limiting in particular as a method of performing the above-mentioned specific process, For example, the method of performing plasma processing from the one surface side of the resin layer precursor containing the compound which has a siloxane bond can be mentioned.
The method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
The oxygen atom permeation treatment process described above is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
For example, a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned.
Plasma treatment conditions: oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
 プラズマ処理は上記の条件で5秒間以上であることがガス分離選択性を高め、かつ、耐傷性を高くしてガス分離選択性を低下し難くする観点からより好ましく、10秒間以上であることが特に好ましく、20秒間以上であることがより特に好ましい。
 一方、前述のプラズマ処理が、上記の条件で1000秒間以下であることが好ましい。上述の特定の処理がプラズマ処理である場合、短時間処理で十分な効果が発現するため、ロール トゥ ロールでの製造への応用も可能である。前述のプラズマ処理が、上記の条件で40秒間以下であることがより好ましく、30秒間以下であることが特に好ましい。
 また、プラズマ処理による積算エネルギー量は25~500000J/cmが好ましく、2500~100000J/cmがより好ましい。
The plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more.
On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions. When the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll. The aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
Further, the cumulative energy amount by the plasma treatment is preferably 25 ~ 500000J / cm 2, and more preferably 2500 ~ 100000J / cm 2.
 本発明に適用されるプラズマ処理は、安定したプラズマを発生させるため減圧プラズマを利用し、その大型の真空チャンバ内で被処理体を処理する態様が挙げられる。昨今では大気圧雰囲気下での処理が可能である大気圧プラズマ処理装置が開発されている。そこではプロセス室内にガスを導入し、大気圧雰囲気下で高密度プラズマを安定して発生させることができる。大気圧プラズマ処理装置のシステム構成としては、ガス混合・制御部、反応器および搬送コンベヤ(もしくはXYテーブル)から構成されるものが挙げられる。円形ノズルよりスポット的にプラズマジェットを吹き出して処理するものも提案されている。
 プラズマ処理条件としては、アルゴン流量が5~500cm(STP)/分であることが好ましく、50~200cm(STP)/分であることがより好ましく、80~120cm(STP)/分であることが特に好ましい。本発明のガス分離膜の製造方法では、酸素流量が10cm(STP)/min以上であり、10~100cm(STP)/分であることが好ましく、15~100cm(STP)/分であることがより好ましく、20~50cm(STP)/分であることが特に好ましい。ガス分離膜に供給されるガスの全圧やCOの分圧があまり高くなく、例えば全圧5MPa、COの分圧0.65MPa程度の場合は、酸素流量は45cm(STP)/分未満としてもよい。
 プラズマ処理条件としては、真空度が0.6~100Paであることが好ましく、1~60Paであることがより好ましく、2~40Paであることが特に好ましい。
 本発明のガス分離膜の製造方法では、プラズマ処理条件としては、投入電力(放電出力)が23W以上であり、23~1000Wであることが好ましく、40~1000Wであることがより好ましく、110~500Wであることが特に好ましい。
 プラズマ処理の変わりにコロナ処理などを用いることもできる。
The plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber. Recently, an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere has been developed. In this case, gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere. Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table). There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
As plasma treatment conditions, the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred. In the method for producing a gas separation membrane of the present invention, the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min. When the total pressure of the gas supplied to the gas separation membrane and the partial pressure of CO 2 are not so high, for example, when the total pressure is 5 MPa and the partial pressure of CO 2 is about 0.65 MPa, the oxygen flow rate is 45 cm 3 (STP) / min. It may be less.
As plasma treatment conditions, the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
In the method for producing a gas separation membrane of the present invention, as plasma treatment conditions, the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
Corona treatment or the like can be used instead of plasma treatment.
<追加樹脂層の調製方法>
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の調製方法としては特に制限はなく、公知の材料を商業的に入手しても、公知の方法で形成しても、特定の樹脂を用いて後述の方法で形成してもよい。
<Method for preparing additional resin layer>
The method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する方法としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の材料および有機溶媒を含む組成物を下層(例えば、シロキサン結合を有する化合物を含む樹脂層)に塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 本発明のガス分離膜の前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。
The method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond). A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
The conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., and −10 to 80 ° C. More preferred is 5 to 50 ° C.
 本発明においては、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。 In the present invention, a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
<保護層の形成>
 本発明のガス分離膜の製造方法は、前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する工程を含んでいてもよい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する方法としては特に制限はないが、前述の保護層の材料および有機溶媒を含む組成物を塗布することが好ましい。有機溶媒としては、前述のシロキサン結合を有する化合物を含む樹脂層の形成に用いられる有機溶媒を挙げることができる。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 保護層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~2000mW/cmであることが好ましい。
<Formation of protective layer>
The manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
The method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply. As an organic solvent, the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a protective layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, according to the material to be used suitably. You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 2000 mW / cm 2 .
<ガス混合物の分離方法>
 本発明のガス分離膜を用いることで、ガス混合物の分離をすることができる。
 本発明のガス分離膜を用いるガス混合物の分離方法において、原料のガス混合物の成分は原料産地や用途又は使用環境などによって影響されるものであり、特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン又は二酸化炭素及び窒素又は二酸化炭素及び水素であることが好ましい。
すなわち、ガス混合物における二酸化炭素及びメタン又は二酸化炭素及び水素の占める割合が、二酸化炭素の割合として5~50%であることが好ましく、更に好ましくは10~40%である。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下である場合、本発明のガス分離膜を用いるガス混合物の分離方法は特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。
 ガス混合物の分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法であることが好ましい。ガス分離の際の圧力は3MPa~10MPaであることが好ましく、4MPa~7MPaであることがより好ましく、5MPa~7MPaであることが特に好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
<Separation method of gas mixture>
By using the gas separation membrane of the present invention, the gas mixture can be separated.
In the method for separating a gas mixture using the gas separation membrane of the present invention, the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined. The main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen.
That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide. When the gas mixture is in the presence of an acidic gas such as carbon dioxide or hydrogen sulfide, the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
The method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C.
[ガス分離膜モジュール、ガス分離装置]
 本発明のガス分離膜モジュールは、本発明のガス分離膜を有する。
 本発明のガス分離膜は多孔質支持体と組み合わせた薄層複合膜とすることが好ましく、更にはこれを用いたガス分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、薄層複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置とすることができる。本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明のガス分離膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としてのガス分離回収装置に適用してもよい。
[Gas separation membrane module, gas separation device]
The gas separation membrane module of the present invention has the gas separation membrane of the present invention.
The gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection | recovery or separation refinement | purification using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module. The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. The gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
{第2の態様}
 次に、条件2を満たす第2の態様について説明する。
{Second aspect}
Next, a second mode that satisfies condition 2 will be described.
[ガス分離膜]
 本発明のガス分離膜は、多孔質支持体Aと、
 多孔質支持体Aの上に位置するシロキサン結合を有する化合物を含む樹脂層とを有するガス分離膜であって、
 シロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有し、
 シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含み、
 GLeの厚みが50~1000nmであり、
 GLiの厚みが20nm以上であり、かつ、GLeの厚みの10~350%であり、
 GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%であるガス分離膜;
Figure JPOXMLDOC01-appb-C000016
一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
 このような構成により、本発明のガス分離膜は高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好である。
 GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%であると、酸素原子がシロキサン結合を有する化合物を含む樹脂層(このシロキサン結合を有する化合物を含む樹脂層が、ガス分離選択性が高いいわゆる分離選択性を有する層として機能する)の厚み方向へ内部まで浸透していることになる。表面を改質し密着性改善だけを目的にしたコロナ処理やプラズマ処理ではシロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さまで、ガス分離選択性を有するほど十分に酸素は入り込まない。GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差の値が高いほど、シロキサン結合を有する化合物を含む樹脂層の表面が改質されて酸素原子が多く取り込まれたことになる。本発明では、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を得ることができる。いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向に内部まで取り込まれることで分離選択性を発現していると考えられる。
 分離選択性を有する層とは、厚さ0.1~30μmの膜を形成し、得られた膜に対して、40℃の温度下、ガス供給側の全圧力を0.5MPaにして、二酸化炭素(CO)及びメタン(CH)の純ガスを供給した際の、二酸化炭素の透過係数(PCO)とメタンの透過係数(PCH)の比(PCO/PCH)が、1.5以上となる層を意味する。
 従来はガス分離膜の分離選択性を有する層としてはポリイミド化合物を有する層がよく用いられてきており、酸素原子浸透処理をされたシロキサン結合を有する化合物を含む樹脂層を有することによってポリイミド化合物を有する層を有さずに高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い本発明のガス分離膜の構成は従来知られていない。
 ここで、ガス分離膜のガス透過性とガス分離選択性は一般的にトレードオフの関係にある。すなわち、ガス分離膜は、ガス透過性が高まるとガス分離選択性は低下する傾向にあり、ガス透過性が低下するとガス分離選択性は高まる傾向にある。そのため、従来のガス分離膜はガス透過性とガス分離選択性をともに高くすることが困難であった。それに対して本発明のガス分離膜は、ガス透過性とガス分離選択性をともに高くすることができる。
 これは本発明のガス分離膜が図6(B)に示すような表面からグラデーションを持って酸素原子が導入された構造のシロキサン結合を有する化合物を含む樹脂層3を有することに起因している。酸素原子が導入された部位はシロキサン結合により孔を形成する。また酸素が導入されることにより、ポリマーの熱運動は減少している。このため、ガスを選択的に、多く透過させることができる孔が生成している。このため、表面を処理する前のシロキサン結合を有する化合物を含む樹脂層(図6(A)に示すような酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜11)と異なり、高いガス分離選択性を得ることが出来る。
 また、CVD(Chemical Vapor Deposition)法等を用い、膜厚方向に酸素原子導入のグラデーションを有さず、図6(C)に示すような膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を作製することは可能である。このような膜と、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3とを比較すると、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位は、膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜12と比較して薄い。膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位の厚みと同等に薄くすることは困難である。このため本発明により極めて高いガス透過性と、ガス分離選択性を達成できる。
 一方、本発明のガス分離膜を、ガス透過性を大幅に高くして、ガス分離選択性を低くするように設計することもできる。また、本発明のガス分離膜を、ガス透過性を低くして、ガス分離選択性を大幅に高くするように設計することもできる。これらの場合であっても、本発明のガス分離膜を従来のガス分離膜と同じガス透過性の性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス分離選択性は高くなり、また、本発明のガス分離膜を従来のガス分離膜と同じガス分離選択性性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス透過性は高くなる。
 本発明のガス分離膜は、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含み、GLeの厚みが50~1000nmであり、GLiの厚みが20nm以上であり、かつ、GLeの厚みの10~350%であることにより、多孔質支持体の一部とシロキサン結合を有する化合物を含む樹脂層が一体化しており、耐曲げ性も良好となる。
 以下、本発明のガス分離膜の好ましい態様について説明する。
[Gas separation membrane]
The gas separation membrane of the present invention comprises a porous support A,
A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A,
The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
A resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B;
The thickness of GLe is 50 to 1000 nm,
The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. Gas separation membrane;
Figure JPOXMLDOC01-appb-C000016
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
With such a configuration, the gas separation membrane of the present invention has high bend resistance and at least one of gas permeability under high pressure and gas separation selectivity.
The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. And a resin layer containing a compound in which oxygen atoms have a siloxane bond (the resin layer containing a compound having a siloxane bond functions as a layer having a high gas separation selectivity and a so-called separation selectivity) to the inside in the thickness direction. It will penetrate. In the corona treatment or plasma treatment aiming only at improving the adhesion by modifying the surface, oxygen does not enter sufficiently to have a gas separation selectivity from the surface of the resin layer containing a compound having a siloxane bond to a depth of 20 nm. The higher the value of the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm, the higher the siloxane. The surface of the resin layer containing the compound having a bond is modified so that many oxygen atoms are taken in. In the present invention, it is possible to obtain a gas separation membrane having at least one of gas permeability and gas separation selectivity under high pressure. Without being bound by any theory, it is considered that separation selectivity is expressed by incorporating oxygen atoms not only into the surface of the resin layer containing a compound having a siloxane bond but also into the thickness direction.
The layer having separation selectivity is a film having a thickness of 0.1 to 30 μm, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side. When the pure gas of carbon (CO 2 ) and methane (CH 4 ) is supplied, the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) (PCO 2 / PCH 4 ) is 1 Means a layer of 5 or more.
Conventionally, a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment. The structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
Here, the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases. Therefore, it has been difficult for conventional gas separation membranes to increase both gas permeability and gas separation selectivity. In contrast, the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
This is because the gas separation membrane of the present invention has the resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced with gradation from the surface as shown in FIG. 6B. . Sites where oxygen atoms are introduced form pores by siloxane bonds. In addition, the introduction of oxygen reduces the thermal motion of the polymer. For this reason, the hole which can permeate | transmit many gas selectively has produced | generated. For this reason, unlike a resin layer containing a compound having a siloxane bond before the surface treatment (polydimethylsiloxane membrane 11 not subjected to the oxygen atom permeation treatment step as shown in FIG. 6A), high gas separation is achieved. Selectivity can be obtained.
In addition, polydimethylsilane in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. 6C without using gradation of oxygen atom introduction in the film thickness direction using a CVD (Chemical Vapor Deposition) method or the like. It is possible to produce a siloxane film. When such a membrane is compared with the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention, oxygen atoms are present in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention. The densely introduced portion is thinner than the polydimethylsiloxane film 12 into which oxygen atoms are uniformly introduced in the film thickness direction. The polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner. Therefore, the present invention can achieve extremely high gas permeability and gas separation selectivity.
On the other hand, the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity. In addition, the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
The gas separation membrane of the present invention includes a region GLi present in the porous support B and a region GLe present on the porous support B, the thickness of GLe is 50 to 1000 nm, and the thickness of GLi is When it is 20 nm or more and is 10 to 350% of the thickness of GLe, the resin layer containing a part of the porous support and the compound having a siloxane bond is integrated, and the bending resistance is also improved. .
Hereinafter, preferred embodiments of the gas separation membrane of the present invention will be described.
<構成>
 本発明のガス分離膜は、薄層複合膜(ガス分離複合膜と言われることもある)、非対称膜または中空糸であることが好ましく、薄層複合膜であることがより好ましい。
 以下においてガス分離膜が薄層複合膜である場合を代表例として説明するときがあるが、本発明のガス分離膜は薄層複合膜によって限定されるものではない。
<Configuration>
The gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
Hereinafter, a case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
 本発明のガス分離膜の好ましい構成を、図面を用いて説明する。図1に示した本発明のガス分離膜10の一例は薄層複合膜であって、多孔質支持体A(符号4)と、シロキサン結合を有する化合物を含む樹脂層3とを有するガス分離膜である。図7に示したとおり、本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含む。
 図2に示した本発明のガス分離膜10の他の一例は、多孔質支持体A(符号4)とシロキサン結合を有する化合物を含む樹脂層3に加えて、シロキサン結合を有する化合物を含む樹脂層3の多孔質支持体A(符号4)とは反対側にポリイミド化合物を含む層(後述の追加樹脂層)1をさらに有する。
 本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1層のみ有していても、2層以上有していてもよい。本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1~5層有することが好ましく、1~3層有することがより好ましく、製造コストの観点から1~2層有することが特に好ましく、1層のみ有することがより特に好ましい。図3に示した本発明のガス分離膜10の他の一例は、シロキサン結合を有する化合物を含む樹脂層3を2層有する。
A preferred configuration of the gas separation membrane of the present invention will be described with reference to the drawings. An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin-layer composite membrane, which has a porous support A (reference numeral 4) and a resin layer 3 containing a compound having a siloxane bond. It is. As shown in FIG. 7, in the gas separation membrane of the present invention, the resin layer containing a compound having a siloxane bond has a region GLi present in the porous support B and a region GLe present on the porous support B. Including.
Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is a resin containing a compound having a siloxane bond in addition to the porous support A (reference numeral 4) and the resin layer 3 containing a compound having a siloxane bond. The layer 3 further includes a layer (an additional resin layer described later) 1 containing a polyimide compound on the opposite side of the porous support A (reference numeral 4).
The gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers. The gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer. Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
 本明細書において「支持体上」とは、支持体と分離選択性を有する層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、図1に示したように分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In the present specification, “on the support” means that another layer may be interposed between the support and the layer having separation selectivity. As for the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
 また、図4中、dが10nmである場合、シロキサン結合を有する化合物を含む樹脂層3の表面から(多孔質支持体A方向へ)10nmの深さにおける、「シロキサン結合を有する化合物を含む樹脂層の表面」6と平行な面が、符号7で表される「シロキサン結合を有する化合物を含む樹脂層の表面から(多孔質支持体A方向へ)10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の面」である。 Further, in FIG. 4, when d is 10 nm, “resin containing a compound having a siloxane bond” at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (in the direction of the porous support A). The surface parallel to the “surface of the layer” 6 is a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (in the direction of the porous support A) represented by reference numeral 7. The surface of the resin layer to be included ".
<多孔質支持体A>
 本発明のガス分離膜は、多孔質支持体Aと、多孔質支持体Aの上に位置するシロキサン結合を有する化合物を含む樹脂層とを有する。多孔質支持体Aは、薄く、多孔質な素材であることが、十分なガス透過性を確保する上で好ましい。
<Porous support A>
The gas separation membrane of the present invention has a porous support A and a resin layer containing a compound having a siloxane bond located on the porous support A. The porous support A is preferably a thin and porous material in order to ensure sufficient gas permeability.
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含む。すなわち、多孔質性の支持体の中(内部)および上(表面上)にシロキサン結合を有する化合物を含む樹脂層3を形成・配置した薄層複合膜である。多孔質性の支持体の表面にシロキサン結合を有する化合物を含む樹脂層3を形成することで、多孔質性の支持体の一部まで染み込み、シロキサン結合を有する化合物が充填される。その結果、シロキサン結合を有する化合物を含む樹脂層が充填されていない多孔質支持体Aと、シロキサン結合を有する化合物を含む樹脂層の一部が多孔質支持体B中に存在する前述のGLiと、シロキサン結合を有する化合物を含む樹脂層の残りが多孔質支持体B上に存在する前述のGLeとが形成され、高ガス分離選択性と高ガス透過性、更には耐曲げ性を兼ね備えるという利点を有するガス分離膜とすることができる。 In the gas separation membrane of the present invention, the resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B. That is, it is a thin-layer composite film in which the resin layer 3 containing a compound having a siloxane bond is formed and arranged in (inside) and on (on the surface) the porous support. By forming the resin layer 3 containing a compound having a siloxane bond on the surface of the porous support, a part of the porous support is soaked and filled with the compound having a siloxane bond. As a result, the porous support A that is not filled with a resin layer containing a compound having a siloxane bond, and the aforementioned GLi in which a part of the resin layer containing a compound having a siloxane bond is present in the porous support B and The above-mentioned GLe in which the rest of the resin layer containing a compound having a siloxane bond is present on the porous support B is formed, and has the advantage of having both high gas separation selectivity, high gas permeability, and bending resistance. A gas separation membrane having
 本発明のガス分離膜が薄層複合膜である場合、薄層複合膜は、多孔質の支持体の表面に、上記のシロキサン結合を有する化合物を含む樹脂層3をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。具体的には、多孔質支持体Aは、多孔質層(Porous Layer)をシロキサン結合を有する化合物を含む樹脂層3側に有することが好ましく、シロキサン結合を有する化合物を含む樹脂層3側に配置された多孔質層と不織布(Non-Woven)の積層体であることがより好ましい。 When the gas separation membrane of the present invention is a thin-layer composite membrane, the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping). Specifically, the porous support A preferably has a porous layer on the resin layer 3 side containing a compound having a siloxane bond, and is arranged on the resin layer 3 side containing a compound having a siloxane bond. More preferably, it is a laminated body of a porous layer and a nonwoven fabric (Non-Woven).
 多孔質支持体Aに好ましく適用される多孔質層は、機械的強度及び高ガス透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましく、さらに、その気体透過性は二酸化炭素透過速度で3×10-5cm(STP;STPはStandard Temperature and Pressureの略語である)/cm・cm・sec・cmHg(30GPU;GPUは Gas Permeation Unit の略語である)以上であることが好ましい。多孔質層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。 The porous layer preferably applied to the porous support A is not particularly limited as long as it has the purpose of meeting mechanical strength and high gas permeability. However, it is preferably a porous film of an organic polymer, and the thickness thereof is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The porous structure of this porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%. The molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 × 10 −5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 · cm · sec · cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit). Examples of the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 薄層複合膜においては、シロキサン結合を有する化合物を含む樹脂層3側に配置される多孔質層の下部に機械的強度を付与するために織布、不織布、ネット等が設けられることが好ましく、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the thin-layer composite film, it is preferable that a woven fabric, a nonwoven fabric, a net, or the like is provided to give mechanical strength to the lower portion of the porous layer disposed on the resin layer 3 side containing the compound having a siloxane bond, Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<シロキサン結合を有する化合物を含む樹脂層>
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有する。
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと多孔質支持体Bの上に存在する領域GLeとを含み、
 GLeの厚みが50~1000nmであり、
 GLiの厚みが20nm以上であり、かつ、GLeの厚みの10~350%であり、
 GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%である。
<Resin layer containing a compound having a siloxane bond>
The gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
In the gas separation membrane of the present invention, the resin layer containing a compound having a siloxane bond includes a region GLi present in the porous support B and a region GLe present on the porous support B,
The thickness of GLe is 50 to 1000 nm,
The thickness of GLi is 20 nm or more and 10 to 350% of the thickness of GLe;
The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 90%. .
(特性)
 本発明のガス分離膜は、GLeの厚みは50~1000nmであり、200~900nmであることが好ましく、300~800nmであることがより好ましい。GLeの厚みが下限値以上であると、曲げに対する応力緩和作用が向上し、このシロキサン結合を有する化合物を含む樹脂層の内部の上方(多孔質支持体Aとは反対側の領域)に形成されたシリカ成分の高い(一般式(3)で表される繰り返し単位の含有率が高い)領域に対する耐曲げ性が良好となる。GLeの厚みが上限値以下であると、ガス透過性を阻害することなく、ガス分離性能が良好となる。
(Characteristic)
In the gas separation membrane of the present invention, the thickness of GLe is 50 to 1000 nm, preferably 200 to 900 nm, and more preferably 300 to 800 nm. When the thickness of GLe is equal to or greater than the lower limit value, the stress relaxation action against bending is improved, and it is formed above the inside of the resin layer containing the compound having a siloxane bond (region opposite to the porous support A). Moreover, the bending resistance with respect to the area | region with a high silica component (the content rate of the repeating unit represented by General formula (3) is high) becomes favorable. When the thickness of GLe is equal to or less than the upper limit value, the gas separation performance is improved without inhibiting the gas permeability.
 本発明のガス分離膜は、GLiの厚みは20nm以上であり、本発明の趣旨に反しない限りGLiの厚みの絶対値は任意の範囲に設定することができる。
 本発明のガス分離膜は、GLiの厚み(GLiの厚みの割合[対GLe%])は、GLeの厚みの10~350%であり、20~90%であることが好ましく、20~60%であることがより好ましく、21.2~60%であることが特に好ましい。GLiの厚みの割合[対GLe%]が下限値以上であると、多孔質支持体Aとの密着性が向上することで、このシロキサン結合を有する化合物を含む樹脂層の内部の上方(多孔質支持体Aとは反対側の領域)に形成されたシリカ成分の高い(一般式(3)で表される繰り返し単位の含有率が高い)領域に対する耐曲げ性が良好となる。GLiの厚みの割合[対GLe%]が上限値以下であると、すなわちGLiの染み込み率がある程度小さくなると、ガス透過性を阻害することなく、ガス分離性能が良好となる。
In the gas separation membrane of the present invention, the thickness of GLi is 20 nm or more, and the absolute value of the thickness of GLi can be set in an arbitrary range unless it is contrary to the spirit of the present invention.
In the gas separation membrane of the present invention, the thickness of GLi (GLi thickness ratio [vs. GLe%]) is 10 to 350%, preferably 20 to 90%, preferably 20 to 60% of the thickness of GLe. More preferably, it is 21.2 to 60%. When the ratio of the thickness of GLi [vs. GLe%] is equal to or higher than the lower limit, the adhesion with the porous support A is improved, so that the inside of the resin layer containing the compound having a siloxane bond (porous The bending resistance with respect to the region having a high silica component (the content of the repeating unit represented by the general formula (3) is high) formed in the region opposite to the support A is improved. When the ratio of the thickness of GLi [vs. GLe%] is less than or equal to the upper limit, that is, when the penetration rate of GLi becomes small to some extent, the gas separation performance is improved without hindering gas permeability.
 本発明のガス分離膜は、GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%であり、40~90%であることが耐曲げ性の観点から好ましい。GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が下限値以上であると、ガス透過性に関して所望の選択性が得られる。GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が上限値以下であると、曲げに対するGLe表面とGLi表面と応力差を、間に存在するシロキサン結合を有する化合物を含む樹脂層が十分に緩和でき、耐曲げ性が良好となる。
 ガス分離膜は、GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率が30~95%であることが好ましく、40~95%であることがより好ましく、45~90%であることが特に好ましい。
 ガス分離膜は、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率が1~10%であることが好ましく、3~8%であることがより好ましく、4~6%であることが特に好ましい。
The gas separation membrane of the present invention comprises the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm. The difference is 30 to 90%, and 40 to 90% is preferable from the viewpoint of bending resistance. When the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is not less than the lower limit. The desired selectivity with respect to gas permeability is obtained. When the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is not more than the upper limit value. The resin layer containing a compound having a siloxane bond existing between the GLe surface and the GLi surface against bending can be sufficiently relaxed, and the bending resistance is improved.
In the gas separation membrane, the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm is preferably 30 to 95%, more preferably 40 to 95%, and more preferably 45 to 90%. It is particularly preferred that
In the gas separation membrane, the content of the repeating unit represented by the general formula (3) in the GLi surface layer of 20 nm is preferably 1 to 10%, more preferably 3 to 8%, and more preferably 4 to 6%. It is particularly preferred that
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の膜厚(厚みと同義)としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層の膜厚は0.1μm以上であることが製膜の容易性の観点から好ましく、0.1~5μmであることがより好ましく、0.1~4μmであることが特に好ましく、0.3~3μmであることがより特に好ましい。
 多孔質支持体A上にシロキサン結合を有する化合物を含む樹脂層を有するガス分離膜において、その他複数層ある場合も含めて、SEMにより各層の厚みを評価することは困難である。そこで、本発明におけるGLe、GLiについては、TOF-SIMSの深さ方向の解析から確認する。深さ方向のプロファイルにおいて、シリコーン由来のピーク強度の最大強度に対して、そのピーク位置から連続して存在するピーク強度が90%以上の範囲をGLeとして定義し、20%以上90%未満の範囲をGLiと定義し、20%未満の範囲を多孔質支持体Aとする。
 シロキサン結合を有する化合物を含む樹脂層の膜厚は、硬化性組成物の塗布量を調整することによって制御することができる。
In the gas separation membrane of the present invention, the thickness of the resin layer containing a compound having a siloxane bond (synonymous with the thickness) is not particularly limited, but the thickness of the resin layer containing a compound having a siloxane bond is 0. The thickness is preferably 1 μm or more from the viewpoint of film formation ease, more preferably 0.1 to 5 μm, particularly preferably 0.1 to 4 μm, and more preferably 0.3 to 3 μm. Particularly preferred.
In the gas separation membrane having a resin layer containing a compound having a siloxane bond on the porous support A, it is difficult to evaluate the thickness of each layer by SEM including the case where there are other plural layers. Therefore, GLe and GLi in the present invention are confirmed from the analysis in the depth direction of TOF-SIMS. In the profile in the depth direction, the maximum intensity of the peak intensity derived from silicone is defined as GLe where the peak intensity continuously present from the peak position is 90% or more, and the range is 20% or more and less than 90% Is defined as GLi, and the range of less than 20% is designated as porous support A.
The film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
(シロキサン結合を有する化合物を含む樹脂層の表面)
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)は、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出する。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比も同様に算出する。
 シロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)を算出する。
 続いてシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求めるためにC60イオンによるエッチングを行う。
 具体的には、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60 :10keV、10nAとし、2mm×2mmの領域を10nmエッチングする。この膜にてESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を算出する。シロキサン結合を有する化合物を含む樹脂層の表面からのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出する。この値は材質により、適宜最適な数値を用いるものとする。
(Surface of resin layer containing compound having siloxane bond)
O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms; The O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond, is calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis). Similarly, the carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, is also calculated.
A porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc. Included in Quantera SXM manufactured by the company, X-ray source: Al—Kα ray (1490 eV, 25 W, diameter of 100 μm), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond An O / Si ratio (B), which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
Subsequently, an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
Specifically, Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm × 2 mm. An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond. The depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
 本明細書中、前述のシロキサン結合を有する化合物を含む樹脂層の表面は、O/Si比を前述のガス分離膜の表面(好ましくは多孔質支持体Aとは反対側の表面)から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面である。
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層を有さない場合、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で、O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面を特定する。
 その結果、上述の方法において、多孔質支持体Aの上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」であることが確認される。
In the present specification, the surface of the resin layer containing the compound having a siloxane bond described above was measured for the O / Si ratio from the surface of the gas separation membrane (preferably the surface opposite to the porous support A). In some cases, the O / Si ratio is maximum, and the number of silicon atoms is 3% (atomic%) or more.
When there is no other layer on the surface of the resin layer containing a compound having a siloxane bond, oxygen atoms of the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond When the O / Si ratio is measured from the surface of the gas separation membrane in the same manner as the method for obtaining the O / Si ratio (A), which is the ratio of the number to the number of silicon atoms, the O / Si ratio is maximum. And a plane containing 3% (atomic%) or more of silicon atoms is specified.
As a result, in the above-described method, it has a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support A (a state without any other layer (for example, a layer containing polyimide)). The surface of the resin layer containing the compound indicates that “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that the surface
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層(例えばポリイミドを含む層)を有する場合、シロキサン結合を有する化合物を含む樹脂層の表面(すなわちO/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面)を、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で求める。
 その結果、上述の方法において、多孔質支持体Aの上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」である。具体的には、「多孔質支持体Aの上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面」から、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」を意味する。
When the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide), the surface of the resin layer containing a compound having a siloxane bond (that is, the O / Si ratio is set to the above-mentioned gas separation membrane). The depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond, the surface having the maximum O / Si ratio when measured from the surface and containing 3% (atomic%) or more of silicon atoms) The resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
As a result, in the above-described method, it has a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support A (a state without any other layer (for example, a layer containing polyimide)). The surface of the resin layer containing the compound indicates that “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. The surface to be Specifically, “a compound having a siloxane bond in a state in which a resin layer containing a compound having a siloxane bond is formed on the porous support A (without any other layer (for example, a layer containing polyimide)). From the “surface of the resin layer containing”, “the O / Si ratio is the maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. Means "face".
 ガス分離膜は、上記を満たすシロキサン結合を有する化合物を含む樹脂層が面内に50%以上あることが好ましく、70%以上あることがさらに好ましく、90%以上あることが特に好ましい。
 ガス分離膜の面内には、上記を満たすシロキサン結合を有する化合物を含む樹脂層以外の他の領域が存在してもよい。他の領域としては、例えば接着剤や粘着材が設けられた領域や、シロキサン結合を有する化合物を含む樹脂層に対して特定の処理(好ましくは酸素原子浸透処理)が十分ではない領域などを挙げることができる。
In the gas separation membrane, a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
In the plane of the gas separation membrane, there may be other regions other than the resin layer containing a compound having a siloxane bond that satisfies the above. Examples of other regions include a region where an adhesive or a pressure-sensitive adhesive is provided, a region where a specific treatment (preferably oxygen atom permeation treatment) is not sufficient for a resin layer containing a compound having a siloxane bond, and the like. be able to.
 前述のシロキサン結合を有する化合物を含む樹脂層は、シロキサン結合を有する化合物を含む。シロキサン結合を有する化合物は、「少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物」であってもよい。また、シロキサン結合を有する化合物は、「シロキサン結合を有し、かつ、繰り返し単位を有する化合物」であってもよく、その中ではポリシロキサン単位を有する化合物であることが好ましい。 The resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond. The compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”. The compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
(材料)
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000017
 一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
(material)
In the gas separation membrane of the present invention, the compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
 一般式(2)中のR11はヒドロキシル基、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることがより好ましい。
 一般式(2)中のR11が表すヒドロキシル基やカルボキシル基は、任意の塩を形成していてもよい。
 一般式(2)および一般式(3)中、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。なお、*は後述の一般式(1)における酸素原子との結合部位であってもよく、#は後述の一般式(1)におけるケイ素原子との結合部位であってもよい。
R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
The hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
In general formula (2) and general formula (3), * represents a binding site with # in general formula (2) or general formula (3), and # in general formula (2) or general formula (3) Represents the binding site of *. In addition, * may be a bonding site with an oxygen atom in the general formula (1) described later, and # may be a bonding site with a silicon atom in the general formula (1) described later.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が下記一般式(1)で表される繰り返し単位を有することが好ましい。
一般式(1)
Figure JPOXMLDOC01-appb-C000018
一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
 このようなシロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、高圧下での高いガス透過性およびガス分離選択性を発現することができる。
 また、シロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれてSiOxの組成となることで高圧下での高いガス透過性およびガス分離選択性を発現していると考えられる。特に、ガス透過性が高いことで知られているポリジメチルシロキサンを用いた場合も上述のシロキサン結合を有する化合物を含む樹脂層とすることで高圧下での高いガス透過性および分離選択性を発現することができる。酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれて、シロキサン結合を有する化合物を含む樹脂層の表面およびシロキサン結合を有する化合物を含む樹脂層の厚み方向へ内部において、シロキサン結合を有する化合物が少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有する。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has a repeating unit represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000018
In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
When such a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond is formed, high gas permeability and gas under high pressure Separation selectivity can be expressed.
Further, when a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond described above is formed, it is not bound by any theory. Not only the surface of the resin layer containing a compound containing a siloxane bond in the atoms but also the inside of the resin in the thickness direction to form a composition of SiOx, thereby exhibiting high gas permeability and gas separation selectivity under high pressure. it is conceivable that. In particular, even when polydimethylsiloxane, which is known for its high gas permeability, is used, it exhibits high gas permeability and separation selectivity under high pressure by using a resin layer containing the above-mentioned compound having a siloxane bond. can do. Not only the surface of the resin layer containing the compound having a siloxane bond but also the surface of the resin layer containing the compound having a siloxane bond and the thickness of the resin layer containing the compound having a siloxane bond. Inside the direction, the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3).
 一般式(1)におけるRは、それぞれ独立に炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることがより好ましく、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることが特に好ましい。
 一般式(1)におけるRが表す炭素数1以上のアルキル基としては、炭素数1~10のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましく、メチル基が特に好ましい。Rが表す炭素数1以上のアルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアリール基としては、炭素数6~20のアリール基が好ましく、フェニル基が特に好ましい。
 一般式(1)におけるRが表すフッ化アルキル基としては、炭素数1~10のフッ化アルキル基が好ましく、炭素数1~3のフッ化アルキル基がより好ましく、トリフロロメチル基が特に好ましい。Rが表すフッ化アルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、メトキシ基、エトキシ基、プロピルオキシ基がより好ましく、メトキシ基が特に好ましい。Rが表す炭素数1以上のアルコキシ基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるnは2以上の整数を表し、40~800であることが好ましく、50~700であることがより好ましく、60~500であることが特に好ましい。
R in the general formula (1) is preferably independently an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and an alkyl group having 1 or more carbon atoms, an amino group or an epoxy group. Alternatively, a carboxyl group is more preferable, and an alkyl group having 1 or more carbon atoms, an epoxy group, or a carboxyl group is particularly preferable.
The alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group. The alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
As the aryl group represented by R in the general formula (1), an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
The fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. . The fluorinated alkyl group represented by R may be linear, branched or cyclic.
The alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group. The alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
In the general formula (1), n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
 一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物は、一般式(1)で表される繰り返し単位以外の分子末端に任意の置換基を有していてもよい。一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物の分子末端に有していてもよい置換基の例および好ましい範囲は、一般式(1)におけるRの例および好ましい範囲と同様である。 The compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1). Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が、前述の一般式(1)で表される繰り返し単位、ならびに、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が100~600モル%であることが好ましく、200~600モル%であることがより好ましく、300~600モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
In the gas separation membrane of the present invention, the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond. The ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ˜600 mol%.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さまでにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さまでにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が3.0~500モル%であることが好ましく、3.5~450モル%であることがより好ましく、4.0~400モル%であることが特に好ましい。 In the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the above-described compound having the siloxane bond included in the resin layer containing the compound having the siloxane bond at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond described above. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、重合可能な官能基を有していることが好ましい。このような官能基としては、エポキシ基、オキセタン基、カルボキシル基、アミノ基、ヒドロキシル基およびチオール基を挙げることができる。シロキサン結合を有する化合物を含む樹脂層はエポキシ基、オキセタン基、カルボキシル基およびこれらのうち2以上の基を有するシロキサン結合を有する化合物を含むことがより好ましい。このようなシロキサン結合を有する化合物を含む樹脂層は、前述の支持体の上に放射線硬化性組成物への放射線照射による硬化をすることにより形成されることが好ましい。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group. Examples of such functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups. The resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups. Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、ジアルキルシロキサン基を有する部分的に架橋された放射線硬化性組成物から形成された、重合性ジアルキルシロキサンであってもよい。重合性ジアルキルシロキサンは、ジアルキルシロキサン基を有するモノマー、ジアルキルシロキサン基を有する重合性オリゴマー、ジアルキルシロキサン基を有するポリマーである。ジアルキルシロキサン基としては、-{O-Si(CHn2-で表される基(n2は例えば1~100)を挙げることができる。末端にビニル基を有するポリ(ジアルキルシロキサン)化合物も好ましく用いることができる。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group. The polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group. Examples of the dialkylsiloxane group include a group represented by — {O—Si (CH 3 ) 2 } n2 — (n2 is, for example, 1 to 100). A poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi). (Trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) (hereinafter, referred to as “poly (1-trimethylsilyl-1-propyne)”) At least one selected from PTMSP), polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては市販の材料を用いることができ、例えば、シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物としては、UV9300(Momentive社製のポリジメチルシロキサン(PDMS))、X-22-162C(信越化学工業(株)製)などを好ましく用いることができる。
 シロキサン結合を有する化合物を含む樹脂層のその他の材料としては、UV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート)などを好ましく用いることができる。
A commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond. For example, as a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
As another material of the resin layer containing a compound having a siloxane bond, UV9380C (bis (4-dodecylphenyl) iodonium = hexafluoroantimonate manufactured by Momentive) or the like can be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料は、シロキサン結合を有する化合物を含む樹脂層を形成するときに有機溶媒を含む組成物として調製することができ、硬化性組成物であることが好ましい。前述のシロキサン結合を有する化合物を含む樹脂層を形成するときに用いることができる有機溶媒としては、特に制限は無く、例えばn-ヘプタンなどを挙げることができる。 The material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition. The organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
<追加樹脂層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の他に追加の樹脂層を含んでも良い(以下、追加樹脂層)。
<Additional resin layer>
The gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
 追加樹脂層に含まれる樹脂は、以下に挙げられるが、これらに限定されるわけではない。具体的には、前述のシロキサン結合を有する化合物、ポリイミド類、ポリアミド類、セルロース類、ポリエチレングリコール類、ポリベンゾオキサゾール類であることが好ましく、前述のシロキサン結合を有する化合物、ポリイミド、ポリベンゾオキサゾールおよび酢酸セルロースから選ばれる少なくとも1種であることがより好ましい。本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層を有し、ポリイミド化合物を含む層をさらに追加樹脂層として有することが特に好ましい。 The resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
 ポリイミド化合物としては、反応性基を有するポリイミドであることが好ましい。 The polyimide compound is preferably a polyimide having a reactive group.
 以下において、追加樹脂層の樹脂が反応性基を有するポリイミドである場合について代表例として説明することがあるが、本発明は反応性基を有するポリマーが反応性基を有するポリイミドである場合これに限定されるものではない。 In the following, the case where the resin of the additional resin layer is a polyimide having a reactive group may be described as a representative example, but the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
 本発明に用いることができる反応性基を有するポリイミドについて以下に詳しく説明する。
 本発明において、反応性基を有するポリイミド化合物は、反応性基を有するポリマーが、ポリイミド単位と、側鎖に反応性基(好ましくは求核性の反応性基であり、より好ましくはカルボキシル基、アミノ基またはヒドロキシル基)を有する繰り返し単位とを含むことが好ましい。
 より具体的に説明すれば、反応性基を有するポリマーが、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことが好ましい。
 さらに、反応性基を有するポリマーは、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(II-a)又は(II-b)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことがより好ましい。
 本発明に用いることができる反応性基を有するポリイミドは、上記各繰り返し単位以外の繰り返し単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いることができる反応性基を有するポリイミドは、下記各式で表される各繰り返し単位のみからなることが特に好ましい。
The polyimide having a reactive group that can be used in the present invention will be described in detail below.
In the present invention, the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group.
More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
Furthermore, the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
The polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas. When 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(I)において、Rは、下記式(I-a)~(I-h)のいずれかで表される構造の基を示す。下記式(I-a)~(I-h)において、*は式(I)のカルボニル基との結合部位を示す。式(I)におけるRを母核と呼ぶことがあるが、この母核Rは式(I-a)、(I-b)または(I-d)で表される基であることが好ましく、(I-a)または(I-d)で表される基であることがより好ましく、(I-a)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any of the following formulas (Ia) to (Ih). In the following formulas (Ia) to (Ih), * represents a bonding site with the carbonyl group of the formula (I). R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
・X、X、X
 X、X、Xは、単結合又は2価の連結基を示す。これらの2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。
・ X 1 , X 2 , X 3
X 1 , X 2 and X 3 represent a single bond or a divalent linking group. As these divalent linking groups, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable. When R x represents a substituent, specific examples thereof include the substituent group Z described below. Among them, an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. . In the present specification, when “may be linked to each other to form a ring”, it may be bonded by a single bond, a double bond or the like to form a cyclic structure, It may form a condensed ring structure.
・L
 Lは-CH=CH-又は-CH-を示し、好ましくは-CH=CH-である。
・ L
L represents —CH 2 ═CH 2 — or —CH 2 —, preferably —CH 2 ═CH 2 —.
・R、R
 R、Rは水素原子又は置換基を示す。その置換基としては、下記に示される置換基群Zより選ばれるいずれか1つを用いることができる。RおよびRは互いに結合して環を形成していてもよい。
・ R 1 , R 2
R 1 and R 2 represent a hydrogen atom or a substituent. As the substituent, any one selected from the substituent group Z shown below can be used. R 1 and R 2 may be bonded to each other to form a ring.
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
・R
 Rはアルキル基又はハロゲン原子を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
・ R 3
R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4. R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
・R、R
 R、Rはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R、Rが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R、Rはアルキル基である場合、メチル基又はエチル基であることが好ましく、トリフルオロメチルも好ましい。
・ R 4 , R 5
R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable. M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
When R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
・R、R、R
 R、R、Rは置換基を示す。ここでRとRが互いに結合して環を形成してもよい。これらの置換基の数を示すl2、m2、n2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。
・ R 6 , R 7 , R 8
R 6 , R 7 and R 8 represent a substituent. Here, R 7 and R 8 may be bonded to each other to form a ring. L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
・J
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基、又はアリーレン基を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。
・ J 1
J 1 represents a single bond or a divalent linking group. As the linking group, * —COO N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ~ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group. * Represents the binding site on the phenylene group side, and ** represents the opposite binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
・A
 Aは架橋反応をし得る基であれば特に制限はないが、求核性の反応性基であることが好ましく、カルボキシル基、アミノ基、ヒドロキシル基、及び-S(=O)OHから選ばれる基を示すことがより好ましい。前述のアミノ基の好ましい範囲は、後記置換基群Zで説明するアミノ基の好ましい範囲と同義である。Aは特に好ましくはカルボキシル基、アミノ基またはヒドロキシル基であり、より特に好ましくはカルボキシル基又はヒドロキシル基であり、特に好ましくはカルボキシル基である。
・ A 1
A 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S (═O) 2 OH. It is more preferable to show the group selected. The preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below. A 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
 置換基群Z
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、パラ-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably An alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl, and an aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably an aryl group having 6 to 12 carbon atoms, such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group, hetero A cyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.), an alkoxy group (preferably having a carbon number) To 30 and more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably Is an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group ( Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms. Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシル基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphate amide, phenyl phosphate amide, etc.), hydroxyl group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom) ,
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a sulfo group, a carboxyl group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, even an aromatic heterocyclic ring The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Specific examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably). Is a silica having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms. Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 本発明に用いうるポリイミド化合物において、前述の式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性とガス分離選択性を考慮して適宜に調整される。 In the polyimide compound that can be used in the present invention, the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
 本発明に用いうる反応性基を有するポリイミド中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 In the polyimide having a reactive group that can be used in the present invention, the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
 本発明に用いることができる反応性基を有するポリイミドの分子量は、好ましくは重量平均分子量として10,000~1000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
 本発明に用いうる反応性基を有するポリイミドは、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、株式会社エヌ・ティー・エス発行、今井淑夫、横田力男編著、最新ポリイミド~基礎と応用~、3~49頁など)で記載の手法を適宜選択することができる。 The polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine. As the method, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.) is appropriately selected. be able to.
 本発明に用いうる反応性基を有するポリイミドとして好ましい具体例を以下に挙げるが、本発明はこれらに限るものではない。なお、下記式中「100」、「x」、「y」は共重合比(モル比)を示す。「x」、「y」及び重量平均分子量の例を下記表2に示す。なお、本発明に用いうるポリイミド化合物では、yが0ではないことが好ましい。 Specific examples of preferred polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto. In the following formulae, “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 2 below. In the polyimide compound that can be used in the present invention, y is preferably not 0.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 さらに、上記の例示ポリイミド化合物P-100において共重合比xが20で、yが80としたポリマー(P-101)も好ましく用いることができる。 Furthermore, a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
 また、追加樹脂層の樹脂がポリイミドである場合、より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid 5218およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等も好ましい。 Further, when the resin of the additional resin layer is polyimide, more specifically, the product name P84 and the product from Matrimid 5218 and HP Polymers GmbH sold under the Matrimid (registered trademark) trademark of Huntsman Advanced Materials, respectively. P84 or P84HT sold under the name P84HT is also preferable.
 一方、ポリイミド以外の追加樹脂層の樹脂としては、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類を選択することができる。追加樹脂層に用いることができるセルロース類としては、全アシル基の置換度が2.0~2.7であることが好ましい。酢酸セルロースL-40(アシル基置換度2.5 株式会社ダイセル製)として市販されているセルロースアセテートも好ましく用いることができる。 On the other hand, as the resin of the additional resin layer other than polyimide, celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected. As celluloses that can be used in the additional resin layer, the substitution degree of all acyl groups is preferably 2.0 to 2.7. Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
 その他の追加樹脂層の樹脂としては、ポリエチレングリコール♯200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021号公報に記載のポリマーなどを選択することができる。 As other resin of the additional resin layer, polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
 多孔質支持体Aとシロキサン結合を有する化合物を含む樹脂層の間に、他の追加樹脂層が入らないことが、密着性を高めて耐曲げ性を改善する観点から好ましい。他の追加樹脂層としては、例えばPVAなどの親水・疎水性の調整などを挙げることができる。 It is preferable from the viewpoint of improving adhesiveness and improving bending resistance that no other additional resin layer enters between the porous support A and the resin layer containing a compound having a siloxane bond. Examples of other additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
(特性)
 追加樹脂層の膜厚としては機械的強度、ガス分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
(Characteristic)
The film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
 ガス透過性を高める観点から本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層は薄層であることが好ましい。シロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の厚さは通常には10μm以下であり、3μm以下であることが好ましく、1μm以下であることが特に好ましく、0.3μm以下であることがより特に好ましく、0.2μm以下であることがさらにより特に好ましい。
 なお、シロキサン結合を有する化合物を含む樹脂層以外の上記追加樹脂層の厚さは通常には0.01μm以上であり、実用上、製膜の容易性の観点から0.03μm以上が好ましく、0.1μm以上がより好ましい。
From the viewpoint of enhancing gas permeability, the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer. The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 μm or less, preferably 3 μm or less, particularly preferably 1 μm or less, and 0.3 μm or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 μm or less.
The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 μm or more, and is practically preferably 0.03 μm or more from the viewpoint of film formation, More preferably, it is 1 μm or more.
<保護層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層上または追加樹脂層上に形成された保護層(Protective Layer)を具備するものでもよい。保護層は前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層の上に設置される層のことである。ハンドリング時や使用時に前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層と他の材料との意図しない接触を防ぐことができる。
<Protective layer>
The gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer. The protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
(材料)
 前述の保護層の材料としては特に制限はないが、前述の保護層に用いられる材料の好ましい範囲は、シロキサン結合を有する化合物を含む樹脂層に用いられる好ましい材料の範囲と同様である。特に前述の保護層が、ポリジメチルシロキサン、ポリ(1-トリメチルシリル-1-プロピン)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。
(material)
Although there is no restriction | limiting in particular as the material of the above-mentioned protective layer, The preferable range of the material used for the above-mentioned protective layer is the same as the range of the preferable material used for the resin layer containing the compound which has a siloxane bond. In particular, the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
(特性)
 前述の保護層の膜厚は、20nm~3μmであることが好ましく、50nm~2μmであることがより好ましく、100nm~1μmであることが特に好ましい。
(Characteristic)
The film thickness of the protective layer is preferably 20 nm to 3 μm, more preferably 50 nm to 2 μm, and particularly preferably 100 nm to 1 μm.
<特性、用途>
 本発明の分離膜は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。
 本発明のガス分離膜は、酸性ガスと非酸性ガスのガス混合物から、少なくとも1種の酸性ガスを分離するためのガス分離膜であることが好ましい。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)が挙げられ、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)から選択される少なくとも1種であることが好ましく、より好ましくは二酸化炭素、硫化水素又は硫黄酸化物(SOx)であり、特に好ましくは二酸化炭素である。
 前述の非酸性ガスとしては水素、メタン、窒素、及び一酸化炭素から選択される少なくとも1種であることが好ましく、より好ましくはメタン、水素であり、特に好ましくはメタンである。
 本発明のガス分離膜は、特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
<Characteristics and applications>
The separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
The gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas. Examples of the acid gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
The aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
The gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、30℃、5MPaにおける二酸化炭素の透過速度が10GPU以上であることが好ましく、10~300GPUであることがより好ましく、15~300GPUであることが特に好ましい。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、30℃、5MPaにおける二酸化炭素の透過流束のメタンの透過流束に対する比であるガス分離選択性αが30以上であることが好ましく、35以上であることがより好ましく、40以上であることが特に好ましく、50を超えることがより特に好ましい。 The gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane. The property α is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
 上記選択的なガス透過には膜への溶解・拡散機構が関与すると考えられる。このような観点を活かし、PEO組成を含む分離膜が検討されている(Journal of Membrane Science,1999,160,87-99参照)。これは二酸化炭素がポリエチレンオキシ組成との相互作用が強いことに起因する。このポリエチレンオキシ膜はガラス転移温度の低い柔軟なゴム状のポリマー膜であるため、ガス種による拡散係数の差は小さく、ガス分離選択性は溶解度の差の効果によるものが主である。これに対し、本発明の好ましい態様では、前述のシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物のガラス転移温度が高く、上記溶解・拡散作用を発揮させながら、膜の熱的な耐久性という観点でも大幅に改善することができる。 It is considered that the selective gas permeation involves a dissolution / diffusion mechanism into the membrane. Taking advantage of such a viewpoint, a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility. On the other hand, in a preferred embodiment of the present invention, the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
[ガス分離膜の製造方法]
 本発明のガス分離膜を製造する方法は、特に制限は無い。
 本発明のガス分離膜を製造する方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して特定の処理を施すことが好ましい。シロキサン結合を有する化合物を含む樹脂層前駆体に対して施す特定の処理としては、シロキサン結合を有する化合物を含む樹脂層前駆体に酸素原子を浸透させる酸素原子浸透処理であることが好ましく、プラズマ処理であることがより好ましい。
 本発明のガス分離膜を製造するにあたり、GLe、GLiの厚みを制御する方法として、塗布の方式に合わせて、以下のパラメーターを調整することで制御することができる。組成物(塗布液)の粘度、固形分濃度、塗布後硬化させるまでの時間など。例えばスピンコート法により塗布する場合は、塗布液量、スピンコート回転数を調整することによってもGLe、GLiの厚みを制御することができる。
[Method for producing gas separation membrane]
The method for producing the gas separation membrane of the present invention is not particularly limited.
In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond. The specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
In manufacturing the gas separation membrane of the present invention, the thickness of GLe and GLi can be controlled by adjusting the following parameters according to the coating method. Viscosity of composition (coating liquid), solid content concentration, time to cure after coating, etc. For example, when applying by spin coating, the thicknesses of GLe and GLi can also be controlled by adjusting the amount of coating solution and the spin coating rotational speed.
 本発明のガス分離膜を製造する方法の好ましい構成を、図面を用いて説明する。
 本発明のガス分離膜を製造する方法は、図5に示すように、多孔質支持体A(符号4)と、シロキサン結合を有する化合物を含む樹脂層前駆体2の積層体に対し、シロキサン結合を有する化合物を含む樹脂層前駆体2の一方の表面側から特定の処理(酸素原子浸透処理5)を施す工程を含むことが好ましい。
 本発明のガス分離膜を製造する方法は、その後、シロキサン結合を有する化合物を含む樹脂層前駆体に特定の処理(酸素原子浸透処理5)を施した表面上に追加樹脂層を形成する工程を含んでいてもよい(不図示)。
A preferred configuration of the method for producing a gas separation membrane of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the method for producing a gas separation membrane of the present invention comprises a porous support A (reference numeral 4) and a laminate of a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from the one surface side of the resin layer precursor 2 containing a compound having a hydrogen atom.
The method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 本発明のガス分離膜を製造する方法は、シロキサン結合を有する化合物を含む樹脂層前駆体を前述の支持体上に形成する工程を含むことが好ましい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体を支持体上に形成する方法としては特に制限はないが、シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物を塗布することが好ましい。
 組成物の固形分濃度(粘度)が1~50質量%であることが好ましく、2~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。組成物の固形分濃度が高いほど、GLiを薄くしやすい。
 組成物の滴下量としては、0.001~1ml/cmであることが好ましく、0.002~0.5ml/cmであることがより好ましく、0.005~0.3ml/cmであることが特に好ましい。組成物の滴下量が少ないほど、GLiを薄くしやすい。
 組成物の塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法やディップコート法、バーコート法を適宜用いることができる。スピンコート回転数は100~10000rpm(round per minite)であることが好ましく、500~9000rpmであることがより好ましく、700~8000rpmであることが特に好ましい。スピンコート回転数が大きいほど、GLiを薄くしやすい。
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物は、硬化性組成物であることが好ましい。組成物の塗布後、硬化させるまでの時間が0.01~60分間であることが好ましく、0.02~50分間であることがより好ましく、0.03~30分間であることが特に好ましい。組成物の塗布後、硬化させるまでの時間が短いほど、GLiを薄くしやすい。
 シロキサン結合を有する化合物を含む樹脂層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギー(放射線強度)は10~2000mW/cmであることが好ましい。
<Formation of resin layer precursor containing compound having siloxane bond>
The method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
The method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
The solid content concentration (viscosity) of the composition is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and particularly preferably 3 to 30% by mass. The higher the solid concentration of the composition, the easier it is to make GLi thinner.
The dropping amount of the composition is preferably 0.001 to 1 ml / cm 2 , more preferably 0.002 to 0.5 ml / cm 2 , and 0.005 to 0.3 ml / cm 2 . It is particularly preferred. The smaller the amount of composition dropped, the easier it is to make GLi thinner.
There is no restriction | limiting in particular as a coating method of a composition, Although a well-known method can be used, For example, a spin coat method, a dip coat method, and a bar coat method can be used suitably. The spin coating rotation speed is preferably 100 to 10,000 rpm (round per minute), more preferably 500 to 9000 rpm, and particularly preferably 700 to 8000 rpm. The larger the spin coating speed, the easier it is to make GLi thinner.
The resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions. The time from application of the composition to curing is preferably from 0.01 to 60 minutes, more preferably from 0.02 to 50 minutes, and particularly preferably from 0.03 to 30 minutes. The shorter the time until curing after application of the composition, the easier it is to make GLi thinner.
Although there is no restriction | limiting in particular as a method of radiation irradiation to a curable composition when forming the resin layer containing the compound which has a siloxane bond, Electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used. Depending on the material used, it can be appropriately selected.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane. (Polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
<シロキサン結合を有する化合物を含む樹脂層前駆体の処理>
 本発明のガス分離膜を製造する方法はシロキサン結合を有する化合物を含む樹脂層前駆体に対して(好ましくは一方の表面側から)酸素原子を浸透させる特定の処理(酸素原子浸透処理)を施す工程を含むことが好ましく、GLe表層20nm中の一般式(3)で表される繰り返し単位の含有率と、GLi表層20nm中の一般式(3)で表される繰り返し単位の含有率との差が30~90%となるまで上述の特定の処理を行うことがより好ましい。
<Treatment of resin layer precursor containing a compound having a siloxane bond>
In the method for producing a gas separation membrane of the present invention, a specific treatment (oxygen atom permeation treatment) for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond. It is preferable to include a step, and the difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm It is more preferable to perform the above-described specific treatment until the amount reaches 30 to 90%.
 上述の特定の処理を行う方法としては特に制限はないが、例えば、シロキサン結合を有する化合物を含む樹脂層前駆体の一方の表面側からプラズマ処理を行う方法を挙げることができる。
 ガス分離膜の製造方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 前述の酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理であることが好ましい。
 例えば、前述のプラズマ処理を以下の条件で5~30秒間行う方法を挙げることができる。
プラズマ処理条件:酸素流量10cm(STP)/min以上、アルゴン流量100cm(STP)/min、投入電力(放電出力)23W以上。
Although there is no restriction | limiting in particular as a method of performing the above-mentioned specific process, For example, the method of performing plasma processing from the one surface side of the resin layer precursor containing the compound which has a siloxane bond can be mentioned.
The method for producing a gas separation membrane includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
It is preferable that the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
For example, a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned.
Plasma treatment conditions: oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
 プラズマ処理は上記の条件で5秒間以上であることがガス分離選択性を高め、かつ、耐傷性を高くしてガス分離選択性を低下し難くする観点からより好ましく、10秒間以上であることが特に好ましく、20秒間以上であることがより特に好ましい。
 一方、前述のプラズマ処理が、上記の条件で1000秒間以下であることが好ましい。上述の特定の処理がプラズマ処理である場合、短時間処理で十分な効果が発現するため、ロール トゥ ロールでの製造への応用も可能である。前述のプラズマ処理が、上記の条件で40秒間以下であることがより好ましく、30秒間以下であることが特に好ましい。
 また、プラズマ処理による積算エネルギー量は25~500000J/cmが好ましく、2500~100000J/cmがより好ましい。
The plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more.
On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions. When the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll. The aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
Further, the cumulative energy amount by the plasma treatment is preferably 25 ~ 500000J / cm 2, and more preferably 2500 ~ 100000J / cm 2.
 本発明に適用されるプラズマ処理は、安定したプラズマを発生させるため減圧プラズマを利用し、その大型の真空チャンバ内で被処理体を処理する態様が挙げられる。昨今では大気圧雰囲気下での処理が可能である大気圧プラズマ処理装置が開発されている。そこではプロセス室内にガスを導入し、大気圧雰囲気下で高密度プラズマを安定して発生させることができる。大気圧プラズマ処理装置のシステム構成としては、ガス混合・制御部、反応器および搬送コンベヤ(もしくはXYテーブル)から構成されるものが挙げられる。円形ノズルよりスポット的にプラズマジェットを吹き出して処理するものも提案されている。
 プラズマ処理条件としては、アルゴン流量が5~500cm(STP)/分であることが好ましく、50~200cm(STP)/分であることがより好ましく、80~120cm(STP)/分であることが特に好ましい。本発明のガス分離膜の製造方法では、酸素流量が10cm(STP)/min以上であり、10~100cm(STP)/分であることが好ましく、15~100cm(STP)/分であることがより好ましく、20~50cm(STP)/分であることが特に好ましい。
 プラズマ処理条件としては、真空度が0.6~100Paであることが好ましく、1~60Paであることがより好ましく、2~40Paであることが特に好ましい。
 本発明のガス分離膜の製造方法では、プラズマ処理条件としては、投入電力(放電出力)が23W以上であり、23~1000Wであることが好ましく、40~1000Wであることがより好ましく、110~500Wであることが特に好ましい。
 プラズマ処理の変わりにコロナ処理などを用いることもできる。
The plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber. Recently, an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere has been developed. In this case, gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere. Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table). There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
As plasma treatment conditions, the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred. In the method for producing a gas separation membrane of the present invention, the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min.
As plasma treatment conditions, the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
In the method for producing a gas separation membrane of the present invention, as plasma treatment conditions, the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
Corona treatment or the like can be used instead of plasma treatment.
<追加樹脂層の調製方法>
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の調製方法としては特に制限はなく、公知の材料を商業的に入手しても、公知の方法で形成しても、特定の樹脂を用いて後述の方法で形成してもよい。
<Method for preparing additional resin layer>
The method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する方法としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の材料および有機溶媒を含む組成物を下層(例えば、シロキサン結合を有する化合物を含む樹脂層)に塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 本発明のガス分離膜の前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。
The method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond). A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
The conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., and −10 to 80 ° C. More preferred is 5 to 50 ° C.
 本発明においては、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。 In the present invention, a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
<保護層の形成>
 本発明のガス分離膜の製造方法は、前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する工程を含んでいてもよい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する方法としては特に制限はないが、前述の保護層の材料および有機溶媒を含む組成物を塗布することが好ましい。有機溶媒としては、前述のシロキサン結合を有する化合物を含む樹脂層の形成に用いられる有機溶媒を挙げることができる。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 保護層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~2000mW/cmであることが好ましい。
<Formation of protective layer>
The manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
The method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply. As an organic solvent, the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a protective layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, according to the material to be used suitably. You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 2000 mW / cm 2 .
<ガス混合物の分離方法>
 本発明のガス分離膜を用いることで、ガス混合物の分離をすることができる。
 本発明のガス分離膜を用いるガス混合物の分離方法において、原料のガス混合物の成分は原料産地や用途又は使用環境などによって影響されるものであり、特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン又は二酸化炭素及び窒素又は二酸化炭素及び水素であることが好ましい。
すなわち、ガス混合物における二酸化炭素及びメタン又は二酸化炭素及び水素の占める割合が、二酸化炭素の割合として5~50%であることが好ましく、更に好ましくは10~40%である。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下である場合、本発明のガス分離膜を用いるガス混合物の分離方法は特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。
 ガス混合物の分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法であることが好ましい。ガス分離の際の圧力は3MPa~10MPaであることが好ましく、4MPa~7MPaであることがより好ましく、5MPa~7MPaであることが特に好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
<Separation method of gas mixture>
By using the gas separation membrane of the present invention, the gas mixture can be separated.
In the method for separating a gas mixture using the gas separation membrane of the present invention, the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined. The main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen.
That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide. When the gas mixture is in the presence of an acidic gas such as carbon dioxide or hydrogen sulfide, the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
The method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C.
[ガス分離膜モジュール、ガス分離装置]
 本発明のガス分離膜モジュールは、本発明のガス分離膜を有する。
 本発明のガス分離膜は多孔質支持体と組み合わせた薄層複合膜とすることが好ましく、更にはこれを用いたガス分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、薄層複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置とすることができる。本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明のガス分離膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としてのガス分離回収装置に適用してもよい。
[Gas separation membrane module, gas separation device]
The gas separation membrane module of the present invention has the gas separation membrane of the present invention.
The gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection | recovery or separation refinement | purification using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module. The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. The gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
{第3の態様}
 次に、条件3を満たす第3の態様について説明する。
{Third aspect}
Next, a third mode that satisfies condition 3 will be described.
[ガス分離膜]
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
 シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%である。
 このような構成により、本発明のガス分離膜は高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れる。
 シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが上限値以下である場合ガス透過性能、および、耐圧性が良好となる。一方、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが下限値以上である場合、耐圧性はあまり変わらないがガス透過性能が良好となる。
[Gas separation membrane]
The gas separation membrane of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond,
The minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40%.
With such a configuration, the gas separation membrane of the present invention has high gas permeability at high pressure and gas separation selectivity, and is excellent in pressure resistance.
When the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is equal to or lower than the upper limit value, the gas permeation performance and the pressure resistance are It becomes good. On the other hand, when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is equal to or higher than the lower limit value, the pressure resistance does not change much. However, gas permeation performance is improved.
 分離選択性を有する層とは、厚さ0.1~30μmの膜を形成し、得られた膜に対して、40℃の温度下、ガス供給側の全圧力を0.5MPaにして、二酸化炭素(CO)及びメタン(CH)の純ガスを供給した際の、二酸化炭素の透過係数(PCO)とメタンの透過係数(PCH)の比(PCO/PCH)が、1.5以上となる層を意味する。
 従来はガス分離膜の分離選択性を有する層としてはポリイミド化合物を有する層がよく用いられてきており、酸素原子浸透処理をされたシロキサン結合を有する化合物を含む樹脂層を有することによってポリイミド化合物を有する層を有さずに高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い本発明のガス分離膜の構成は従来知られていない。
 ここで、ガス分離膜のガス透過性とガス分離選択性は一般的にトレードオフの関係にある。すなわち、ガス分離膜は、ガス透過性が高まるとガス分離選択性は低下する傾向にあり、ガス透過性が低下するとガス分離選択性は高まる傾向にある。そのため、従来のガス分離膜はガス透過性とガス分離選択性をともに高くすることが困難であった。それに対して本発明のガス分離膜は、ガス透過性とガス分離選択性をともに高くすることができ、かつ、耐圧性に優れる。
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%である。図6(B)は本発明のガス分離膜の一例における、シロキサン結合を有する化合物を含む樹脂層の模式図を表す。例えば、ガス分離膜が図6(B)に示すような表面からグラデーションを持って酸素原子が導入された構造のシロキサン結合を有する化合物を含む樹脂層3を有する場合、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%としやすい。酸素原子が導入された部位はシロキサン結合により孔を形成する。また酸素が導入されることにより、ポリマーの熱運動は減少している。このため、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%である本発明のガス分離膜は、ガスを選択的に、多く透過させることができる孔が生成している。一方、図6(A)に示すような酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜11は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siは40%を超える。このため、表面を処理する前のシロキサン結合を有する化合物を含む樹脂層(図6(A)に示すような酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜11)と異なり、本発明のガス分離膜の構成によって高いガス分離選択性を得ることが出来る。
 さらに本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが40%以下であることで、さらに耐圧性に優れる。シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが40%以下であると耐圧性が優れるメカニズムは、以下なる理論に拘泥するものではないが以下のとおりであると本発明者らは推測している。
Si4+のみからなる結晶性のガラス膜との比較から考えたとき、Si2+およびSi3+の割合が増加することで膜の緻密性が低下してくる。そのため、本発明のガス分離膜においても、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが40%以下となることで、充分な耐圧性となる膜の緻密さが得られるためと考えられる。
 また、CVD(Chemical Vapor Deposition)法等を用い、膜厚方向に酸素原子導入のグラデーションを有さず、図6(C)に示すような膜厚方向に均一に酸素原子が導入されたシリカ膜を作製することは可能である。このような膜と、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3とを比較すると、図6(C)に示すような膜厚方向に均一に酸素原子が導入されたシリカ膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siは1%を下回る。可能性が高く、制御するのが困難となる。
 また、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位は、膜厚方向に均一に酸素原子が導入されたシリカ膜12と比較して薄いことが好ましい。膜厚方向に均一に酸素原子が導入されたシリカ膜を、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位の厚みと同等に薄くすることは困難である。
このため本発明のガス分離膜の方が、膜厚方向に均一に酸素原子が導入されたシリカ膜よりも極めて高いガス透過性と、耐圧性を両立することができる。
 なお、本発明のガス分離膜を、ガス透過性を大幅に高くして、ガス分離選択性を低くするように設計することもできる。また、本発明のガス分離膜を、ガス透過性を低くして、ガス分離選択性を大幅に高くするように設計することもできる。これらの場合であっても、本発明のガス分離膜を従来のガス分離膜と同じガス透過性の性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス分離選択性は高くなり、また、本発明のガス分離膜を従来のガス分離膜と同じガス分離選択性性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス透過性は高くなる。
 以下、本発明のガス分離膜の好ましい態様について説明する。
The layer having separation selectivity is a film having a thickness of 0.1 to 30 μm, and the obtained film is oxidized at a temperature of 40 ° C. with a total pressure of 0.5 MPa on the gas supply side. When the pure gas of carbon (CO 2 ) and methane (CH 4 ) is supplied, the ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) (PCO 2 / PCH 4 ) is 1 Means a layer of 5 or more.
Conventionally, a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment. The structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
Here, the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases. Therefore, it has been difficult for conventional gas separation membranes to increase both gas permeability and gas separation selectivity. On the other hand, the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity and is excellent in pressure resistance.
In the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40%. FIG. 6B is a schematic view of a resin layer containing a compound having a siloxane bond in an example of the gas separation membrane of the present invention. For example, when the gas separation membrane has the resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced with gradation from the surface as shown in FIG. 6B, the compound containing the siloxane bond is included. The minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer is easily set to 1 to 40%. Sites where oxygen atoms are introduced form pores by siloxane bonds. In addition, the introduction of oxygen reduces the thermal motion of the polymer. Therefore, the gas separation membrane of the present invention in which the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 1 to 40% Has produced pores that can selectively permeate many gases. On the other hand, the polydimethylsiloxane film 11 that has not been subjected to the oxygen atom permeation treatment step as shown in FIG. 6A is a peak of Si 2+ and Si 3+ in ESCA depth analysis of a resin layer containing a compound having a siloxane bond. The minimum value Si 0 of the ratio to the total Si peak is over 40%. For this reason, unlike the resin layer (polydimethylsiloxane film 11 not subjected to the oxygen atom permeation treatment step as shown in FIG. 6A) containing a compound having a siloxane bond before the surface treatment, High gas separation selectivity can be obtained by the configuration of the gas separation membrane.
Furthermore, in the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 40% or less. In addition, the pressure resistance is excellent. The mechanism that the pressure resistance is excellent when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is 40% or less is as follows. Although not bound by theory, the present inventors speculate that it is as follows.
When considered from a comparison with a crystalline glass film made of only Si 4+ , the density of the film decreases as the ratio of Si 2+ and Si 3+ increases. Therefore, also in the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak is 40% or less, so that the membrane has sufficient pressure resistance. It is thought that it is obtained.
Further, a silica film in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. 6C without using gradation of oxygen atom introduction in the film thickness direction using a CVD (Chemical Vapor Deposition) method or the like. Is possible. When such a membrane is compared with the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention, silica in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. In the film, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is less than 1%. It is likely and difficult to control.
Further, in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention, the site where oxygen atoms are introduced densely is compared with the silica membrane 12 where oxygen atoms are introduced uniformly in the film thickness direction. And thin. The silica membrane into which oxygen atoms are uniformly introduced in the film thickness direction is as thin as the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to do.
Therefore, the gas separation membrane of the present invention can achieve both extremely high gas permeability and pressure resistance than the silica membrane into which oxygen atoms are uniformly introduced in the film thickness direction.
It should be noted that the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity. In addition, the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
Hereinafter, preferred embodiments of the gas separation membrane of the present invention will be described.
<構成>
 本発明のガス分離膜は、薄層複合膜(ガス分離複合膜と言われることもある)、非対称膜または中空糸であることが好ましく、薄層複合膜であることがより好ましい。
 以下においてガス分離膜が薄層複合膜である場合を代表例として説明するときがあるが、本発明のガス分離膜は薄層複合膜によって限定されるものではない。
<Configuration>
The gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
Hereinafter, a case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
 本発明のガス分離膜の好ましい構成を、図面を用いて説明する。図1に示した本発明のガス分離膜10の一例は薄層複合膜であって、支持体4と、シロキサン結合を有する化合物を含む樹脂層3とを有するガス分離膜である。
 図2に示した本発明のガス分離膜10の他の一例は、支持体4とシロキサン結合を有する化合物を含む樹脂層3に加えて、シロキサン結合を有する化合物を含む樹脂層3の支持体4とは反対側にポリイミド化合物を含む層(後述の追加樹脂層)1をさらに有する。
 本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1層のみ有していても、2層以上有していてもよい。本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1~5層有することが好ましく、1~3層有することがより好ましく、製造コストの観点から1~2層有することが特に好ましく、1層のみ有することがより特に好ましい。図3に示した本発明のガス分離膜10の他の一例は、シロキサン結合を有する化合物を含む樹脂層3を2層有する。
A preferred configuration of the gas separation membrane of the present invention will be described with reference to the drawings. An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond. Further, a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
The gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers. The gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer. Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
 本明細書において「支持体上」とは、支持体と分離選択性を有する層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、図1に示したように分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In the present specification, “on the support” means that another layer may be interposed between the support and the layer having separation selectivity. As for the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
 図4中、シロキサン結合を有する化合物を含む樹脂層3の表面は、符号6で表される。
 また、図4中、dが10nmである場合、シロキサン結合を有する化合物を含む樹脂層3の表面から(支持体方向へ)10nmの深さにおける、「シロキサン結合を有する化合物を含む樹脂層の表面」6と平行な面が、符号7で表される「シロキサン結合を有する化合物を含む樹脂層の表面から(支持体方向へ)10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の面」である。
In FIG. 4, the surface of the resin layer 3 containing a compound having a siloxane bond is represented by reference numeral 6.
Further, in FIG. 4, when d is 10 nm, “the surface of the resin layer containing a compound having a siloxane bond” at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (toward the support). "A surface parallel to 6 is represented by reference numeral 7" The surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (toward the support) " It is.
<支持体>
 本発明のガス分離膜は、支持体を含むことが好ましく、シロキサン結合を有する化合物を含む樹脂層が支持体上に形成されることがより好ましい。支持体は、薄く、多孔質な素材であることが、十分なガス透過性を確保する上で好ましい。
<Support>
The gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support. The support is preferably a thin and porous material in order to ensure sufficient gas permeability.
 本発明のガス分離膜は、多孔質性の支持体の表面ないし内面にシロキサン結合を有する化合物を含む樹脂層3を形成・配置するようにしてもよく、表面に形成することで簡便に薄層複合膜とすることができる。多孔質性の支持体の表面にシロキサン結合を有する化合物を含む樹脂層3を形成することで、高ガス分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有するガス分離膜とすることができる。 In the gas separation membrane of the present invention, the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane. By forming the resin layer 3 containing a compound having a siloxane bond on the surface of a porous support, a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
 本発明のガス分離膜が薄層複合膜である場合、薄層複合膜は、多孔質の支持体の表面に、上記のシロキサン結合を有する化合物を含む樹脂層3をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。具体的には、支持体は、多孔質層(Porous Layer)をシロキサン結合を有する化合物を含む樹脂層3側に有することが好ましく、シロキサン結合を有する化合物を含む樹脂層3側に配置された多孔質層と不織布(Non-Woven)の積層体であることがより好ましい。 When the gas separation membrane of the present invention is a thin-layer composite membrane, the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping). Specifically, the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
 支持体に好ましく適用される多孔質層は、機械的強度及び高ガス透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましく、さらに、その気体透過性は二酸化炭素透過速度で3×10-5cm(STP;STPはStandard Temperature and Pressureの略語である)/cm・cm・sec・cmHg(30GPU;GPUは Gas Permeation Unit の略語である)以上であることが好ましい。多孔質層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。 The porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The porous structure of this porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%. The molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 × 10 −5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 · cm · sec · cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit). Examples of the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 薄層複合膜においては、シロキサン結合を有する化合物を含む樹脂層3側に配置される多孔質層の下部に機械的強度を付与するために織布、不織布、ネット等が設けられることが好ましく、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the thin-layer composite film, it is preferable that a woven fabric, a nonwoven fabric, a net, or the like is provided to give mechanical strength to the lower portion of the porous layer disposed on the resin layer 3 side containing the compound having a siloxane bond, Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<シロキサン結合を有する化合物を含む樹脂層>
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有する。
 また、本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが1~40%である。なお、全Siのピークとは、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+、Si3+およびSi4+のピークの合計(all Siとも言う)のことである。
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが3~35%であることが好ましく、4~30%であることがより好ましい。
 シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが上限値以下である場合ガス透過性能、および、耐圧性が良好となる。一方、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが下限値以上である場合、耐圧性はあまり変わらないがガス透過性能が良好となる。
 Si2+ピークとSi3+ピークの全Siのピークに対する割合を制御する方法として、例えばプラズマ処理による表面改質を行う場合は、プラズマ投入電力(W数)、プラズマ処理時間(照射時間)、導入Oガス流量を調整することで制御することができる。
<Resin layer containing a compound having a siloxane bond>
The gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
In the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is 1 to 40%. is there. Note that the total Si peak is the total of Si 2+ , Si 3+ and Si 4+ peaks (also referred to as all Si) in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond.
In the gas separation membrane of the present invention, the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond is 3 to 35%. Is preferable, and 4 to 30% is more preferable.
When the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is equal to or lower than the upper limit value, the gas permeation performance and the pressure resistance are It becomes good. On the other hand, when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is equal to or higher than the lower limit value, the pressure resistance does not change much. However, gas permeation performance is improved.
As a method for controlling the ratio of the Si 2+ peak and the Si 3+ peak to the total Si peak, for example, when surface modification is performed by plasma treatment, plasma input power (W number), plasma treatment time (irradiation time), introduced O it can be controlled by adjusting the 2 gas flow rate.
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から10nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si10と、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ1が50~90%であることが好ましく、55~85%であることがより好ましく、60~80%であることが特に好ましい。
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から20nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si20と、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ2が55~90%であることが好ましく、60~85%であることがより好ましく、65~80%であることが特に好ましい。
 Δ1またはΔ2について、上記の好ましい範囲にあることで良好なガス透過性能を有したまま、耐圧性を保持することができる。上記の好ましい範囲の下限値以上である場合、耐圧性はあまり変わらないがガス透過性能が良好となる。一方、上記の好ましい範囲の上限値以下である場合、耐圧性が良好となる。
 Δ1またはΔ2が大きいほど、酸素原子がシロキサン結合を有する化合物を含む樹脂層(このシロキサン結合を有する化合物を含む樹脂層が、ガス分離選択性が高いいわゆる分離選択性を有する層として機能する)の厚み方向へ内部まで浸透していることになる。ここで、シロキサン結合を有する化合物を含む樹脂層がガス分離膜の最外層である場合、図4における「シロキサン結合を有する化合物を含む樹脂層の表面」6(シロキサン結合を有する化合物を含む樹脂層の支持体4とは反対側の表面)がSi2+およびSi3+のピークの全Siのピークに対する割合の最小値(Si)を有する位置となることが好ましい。また、シロキサン結合を有する化合物を含む樹脂層がガス分離膜の最外層ではなく、例えば図2における追加樹脂層1などの他の層が最外層である場合も、シロキサン結合を有する化合物を含む樹脂層と他の層(図2における追加樹脂層1など)の界面、すなわち「シロキサン結合を有する化合物を含む樹脂層の表面」(シロキサン結合を有する化合物を含む樹脂層の支持体4とは反対側の表面)がSi2+およびSi3+のピークの全Siのピークに対する割合の最小値(Si)を有する位置となることが好ましい。これらの場合、表面を改質し密着性改善だけを目的にしたコロナ処理やプラズマ処理ではシロキサン結合を有する化合物を含む樹脂層の表面、すなわちSi2+およびSi3+のピークの全Siのピークに対する割合の最小値(Si)を有する位置、から10nmの深さや20nmの深さまで、ガス分離選択性を有するほど十分に酸素は入り込まない。シロキサン結合を有する化合物を含む樹脂層がΔ1またはΔ2の好ましい範囲を満たすようにすることで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方をより高くすることができる。いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向に内部まで取り込まれることで分離選択性をより発現できると考えられる。
The gas separation membrane of the present invention has a depth of 10 nm from the position having the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond. preferably the ratio Si 10 with respect to the total Si peak Si 2+ and Si 3+, the difference between the minimum value Si 0 percentage relative to the peak of the total Si peak of Si 2+ and Si 3+ .DELTA.1 is 50-90% at a 55 to 85% is more preferable, and 60 to 80% is particularly preferable.
The gas separation membrane of the present invention has a depth of 20 nm from the position having the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond. preferably the ratio Si 20 with respect to the total Si peak Si 2+ and Si 3+, the difference between the minimum value Si 0 percentage relative to the peak of the total Si peak of Si 2+ and Si 3+ Delta] 2 is 55 to 90% in 60 to 85% is more preferable, and 65 to 80% is particularly preferable.
With respect to Δ1 or Δ2, the pressure resistance can be maintained while having good gas permeation performance by being in the above preferred range. When it is at least the lower limit value of the above preferred range, the gas permeation performance is good although the pressure resistance is not much changed. On the other hand, when it is below the upper limit of the above preferred range, the pressure resistance is good.
As Δ1 or Δ2 is larger, the resin layer containing a compound having an oxygen atom having a siloxane bond (the resin layer containing the compound having a siloxane bond functions as a layer having high separation selectivity so-called separation selectivity). It penetrates to the inside in the thickness direction. Here, when the resin layer containing a compound having a siloxane bond is the outermost layer of the gas separation membrane, “surface of the resin layer containing a compound having a siloxane bond” 6 in FIG. 4 (resin layer containing a compound having a siloxane bond) It is preferable that the surface on the opposite side of the support 4 is a position having a minimum value (Si 0 ) of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak. In addition, a resin containing a compound having a siloxane bond is also used when the resin layer containing a compound having a siloxane bond is not the outermost layer of the gas separation membrane, and other layers such as the additional resin layer 1 in FIG. The interface between the layer and another layer (such as the additional resin layer 1 in FIG. 2), that is, the “surface of the resin layer containing a compound having a siloxane bond” (the side opposite to the support 4 of the resin layer containing a compound having a siloxane bond) Of the Si 2+ and Si 3+ peaks is preferably a position having a minimum value (Si 0 ) of the ratio of all Si peaks. In these cases, the surface of the resin layer containing a compound having a siloxane bond in the corona treatment or plasma treatment aiming only to improve the adhesion by modifying the surface, that is, the ratio of the Si 2+ and Si 3+ peaks to the total Si peak From the position having the minimum value (Si 0 ) to the depth of 10 nm or the depth of 20 nm, oxygen does not enter sufficiently to have gas separation selectivity. By making the resin layer containing the compound having a siloxane bond satisfy the preferable range of Δ1 or Δ2, at least one of gas permeability and gas separation selectivity under high pressure can be further increased. Without being bound by any theory, it is considered that separation selectivity can be expressed more by incorporating oxygen atoms not only into the surface of the resin layer containing the compound having a siloxane bond but also into the thickness direction.
 ガス分離膜は、上記を満たすシロキサン結合を有する化合物を含む樹脂層が面内に50%以上あることが好ましく、70%以上あることがさらに好ましく、90%以上あることが特に好ましい。
 ガス分離膜の面内には、上記を満たすシロキサン結合を有する化合物を含む樹脂層以外の他の領域が存在してもよい。他の領域としては、例えば接着剤や粘着材が設けられた領域や、シロキサン結合を有する化合物を含む樹脂層に対して特定の処理(好ましくは酸素原子浸透処理)が十分ではない領域などを挙げることができる。
In the gas separation membrane, a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
In the plane of the gas separation membrane, there may be other regions other than the resin layer containing a compound having a siloxane bond that satisfies the above. Examples of other regions include a region where an adhesive or a pressure-sensitive adhesive is provided, a region where a specific treatment (preferably oxygen atom permeation treatment) is not sufficient for a resin layer containing a compound having a siloxane bond, and the like. be able to.
 前述のシロキサン結合を有する化合物を含む樹脂層は、シロキサン結合を有する化合物を含む。シロキサン結合を有する化合物は、「少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物」であってもよい。また、シロキサン結合を有する化合物は、「シロキサン結合を有し、かつ、繰り返し単位を有する化合物」であってもよく、その中ではポリシロキサン単位を有する化合物であることが好ましい。 The resin layer containing the compound having a siloxane bond includes a compound having a siloxane bond. The compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”. The compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
(材料)
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000025
 一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
(material)
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000025
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
 一般式(2)中のR11はヒドロキシル基、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることがより好ましい。
 一般式(2)中のR11が表すヒドロキシル基やカルボキシル基は、任意の塩を形成していてもよい。
 一般式(2)および一般式(3)中、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。なお、*は後述の一般式(1)における酸素原子との結合部位であってもよく、#は後述の一般式(1)におけるケイ素原子との結合部位であってもよい。
R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
The hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
In general formula (2) and general formula (3), * represents a binding site with # in general formula (2) or general formula (3), and # in general formula (2) or general formula (3) Represents the binding site of *. In addition, * may be a bonding site with an oxygen atom in the general formula (1) described later, and # may be a bonding site with a silicon atom in the general formula (1) described later.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が下記一般式(1)で表される繰り返し単位を有することが好ましい。
一般式(1)
Figure JPOXMLDOC01-appb-C000026
一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
 このようなシロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、高圧下での高いガス透過性およびガス分離選択性を発現することができる。
 また、シロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれてSiOxの組成となることで高圧下での高いガス透過性およびガス分離選択性を発現していると考えられる。特に、ガス透過性が高いことで知られているポリジメチルシロキサンを用いた場合も上述のシロキサン結合を有する化合物を含む樹脂層とすることで高圧下での高いガス透過性および分離選択性を発現することができる。酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれて、シロキサン結合を有する化合物を含む樹脂層の表面およびシロキサン結合を有する化合物を含む樹脂層の厚み方向へ内部において、シロキサン結合を有する化合物が少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有することが好ましい。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has a repeating unit represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000026
In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
When such a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond is formed, high gas permeability and gas under high pressure Separation selectivity can be expressed.
Further, when a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond described above is formed, it is not bound by any theory. Not only the surface of the resin layer containing a compound containing a siloxane bond in the atoms but also the inside of the resin in the thickness direction to form a composition of SiOx, thereby exhibiting high gas permeability and gas separation selectivity under high pressure. it is conceivable that. In particular, even when polydimethylsiloxane, which is known for its high gas permeability, is used, it exhibits high gas permeability and separation selectivity under high pressure by using a resin layer containing the above-mentioned compound having a siloxane bond. can do. Not only the surface of the resin layer containing the compound having a siloxane bond but also the surface of the resin layer containing the compound having a siloxane bond and the thickness of the resin layer containing the compound having a siloxane bond. It is preferable that the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
 一般式(1)におけるRは、それぞれ独立に炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることがより好ましく、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることが特に好ましい。
 一般式(1)におけるRが表す炭素数1以上のアルキル基としては、炭素数1~10のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましく、メチル基が特に好ましい。Rが表す炭素数1以上のアルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアリール基としては、炭素数6~20のアリール基が好ましく、フェニル基が特に好ましい。
 一般式(1)におけるRが表すフッ化アルキル基としては、炭素数1~10のフッ化アルキル基が好ましく、炭素数1~3のフッ化アルキル基がより好ましく、トリフロロメチル基が特に好ましい。Rが表すフッ化アルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、メトキシ基、エトキシ基、プロピルオキシ基がより好ましく、メトキシ基が特に好ましい。Rが表す炭素数1以上のアルコキシ基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるnは2以上の整数を表し、40~800であることが好ましく、50~700であることがより好ましく、60~500であることが特に好ましい。
R in the general formula (1) is preferably independently an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and an alkyl group having 1 or more carbon atoms, an amino group or an epoxy group. Alternatively, a carboxyl group is more preferable, and an alkyl group having 1 or more carbon atoms, an epoxy group, or a carboxyl group is particularly preferable.
The alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group. The alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
As the aryl group represented by R in the general formula (1), an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
The fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. . The fluorinated alkyl group represented by R may be linear, branched or cyclic.
The alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group. The alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
In the general formula (1), n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
 一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物は、一般式(1)で表される繰り返し単位以外の分子末端に任意の置換基を有していてもよい。一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物の分子末端に有していてもよい置換基の例および好ましい範囲は、一般式(1)におけるRの例および好ましい範囲と同様である。 The compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1). Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が、前述の一般式(1)で表される繰り返し単位、ならびに、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が100~600モル%であることが好ましく、200~600モル%であることがより好ましく、300~600モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
In the gas separation membrane of the present invention, the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond. The ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ˜600 mol%.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が3.0~500モル%であることが好ましく、3.5~450モル%であることがより好ましく、4.0~400モル%であることが特に好ましい。
 さらに本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が2.0~400モル%であることが好ましく、2.5~350モル%であることがより好ましく、3.0~300モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
Furthermore, in the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 20 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the above-described compound having the siloxane bond included in the resin layer including the compound having the siloxane bond at a depth of 20 nm from the surface of the resin layer including the compound having the siloxane bond described above. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、重合可能な官能基を有していることが好ましい。このような官能基としては、エポキシ基、オキセタン基、カルボキシル基、アミノ基、ヒドロキシル基およびチオール基を挙げることができる。シロキサン結合を有する化合物を含む樹脂層はエポキシ基、オキセタン基、カルボキシル基およびこれらのうち2以上の基を有するシロキサン結合を有する化合物を含むことがより好ましい。このようなシロキサン結合を有する化合物を含む樹脂層は、前述の支持体の上に放射線硬化性組成物への放射線照射による硬化をすることにより形成されることが好ましい。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group. Examples of such functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups. The resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups. Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、ジアルキルシロキサン基を有する部分的に架橋された放射線硬化性組成物から形成された、重合性ジアルキルシロキサンであってもよい。重合性ジアルキルシロキサンは、ジアルキルシロキサン基を有するモノマー、ジアルキルシロキサン基を有する重合性オリゴマー、ジアルキルシロキサン基を有するポリマーである。ジアルキルシロキサン基としては、-{O-Si(CHn2-で表される基(n2は例えば1~100)を挙げることができる。末端にビニル基を有するポリ(ジアルキルシロキサン)化合物も好ましく用いることができる。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group. The polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group. Examples of the dialkylsiloxane group include a group represented by — {O—Si (CH 3 ) 2 } n2 — (n2 is, for example, 1 to 100). A poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi). (Trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) (hereinafter, referred to as “poly (1-trimethylsilyl-1-propyne)”) At least one selected from PTMSP), polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては市販の材料を用いることができ、例えば、シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物としては、UV9300(Momentive社製のポリジメチルシロキサン(PDMS))、X-22-162C(信越化学工業(株)製)などを好ましく用いることができる。
 シロキサン結合を有する化合物を含む樹脂層のその他の材料としては、UV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート)などを好ましく用いることができる。
A commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond. For example, as a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
As another material of the resin layer containing a compound having a siloxane bond, UV9380C (bis (4-dodecylphenyl) iodonium = hexafluoroantimonate manufactured by Momentive) or the like can be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料は、シロキサン結合を有する化合物を含む樹脂層を形成するときに有機溶媒を含む組成物として調製することができ、硬化性組成物であることが好ましい。前述のシロキサン結合を有する化合物を含む樹脂層を形成するときに用いることができる有機溶媒としては、特に制限は無く、例えばn-ヘプタンなどを挙げることができる。 The material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition. The organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
(特性)
 シロキサン結合を有する化合物を含む樹脂層の厚み(膜厚と同義)としては特に制限はないが、0.1μm以上であることが製膜の容易性の観点から好ましい。本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の厚みが150~900nmであることが好ましい、0.1~4μmであることが特に好ましく、0.3~3μmであることがより特に好ましい。シロキサン結合を有する化合物を含む樹脂層の厚みが上記の好ましい範囲にあることで良好なガス透過性能を有したまま、耐圧性を保持することができる。上記の好ましい範囲の下限値以上である場合、耐圧性はあまり変わらないがガス透過性能が良好となる。一方、上記の好ましい範囲の上限値以下である場合、耐圧性が良好となる。支持体上にシロキサン結合を有する化合物を含む樹脂層を有するガス分離膜において、SEMにより各層の厚みを評価することは困難である。そこで、シロキサン結合を有する化合物を含む樹脂層の厚みの測定についてはTOF-SIMSの深さ方向の解析から確認する。深さ方向のプロファイルにおいて、シリコーン由来のピーク強度(Si3+およびSi4+のピーク強度)の最大強度に対して、そのピーク位置から連続して存在するピーク強度が90%以上の範囲を膜厚として定義した。
 シロキサン結合を有する化合物を含む樹脂層の膜厚は、硬化性組成物の塗布量を調整することによって制御することができる。また、シロキサン結合を有する化合物を含む樹脂層の厚みを制御する方法として、塗布の方式に合わせて、以下のパラメーターを調整することで制御することができる。組成物(塗布液)の粘度、固形分濃度、塗布後硬化させるまでの時間など。例えばスピンコート法により塗布する場合は、塗布液量、スピンコート回転数を調整することによってもシロキサン結合を有する化合物を含む樹脂層の厚みを制御することができる。
(Characteristic)
Although there is no restriction | limiting in particular as thickness (synonymous with a film thickness) of the resin layer containing the compound which has a siloxane bond, It is preferable from a viewpoint of film forming ease that it is 0.1 micrometer or more. In the gas separation membrane of the present invention, the thickness of the resin layer containing a compound having a siloxane bond is preferably 150 to 900 nm, particularly preferably 0.1 to 4 μm, and preferably 0.3 to 3 μm. More particularly preferred. When the thickness of the resin layer containing the compound having a siloxane bond is in the above preferable range, the pressure resistance can be maintained while having good gas permeation performance. When it is at least the lower limit value of the above preferred range, the gas permeation performance is good although the pressure resistance is not much changed. On the other hand, when it is below the upper limit of the above preferred range, the pressure resistance is good. In a gas separation membrane having a resin layer containing a compound having a siloxane bond on a support, it is difficult to evaluate the thickness of each layer by SEM. Therefore, the measurement of the thickness of the resin layer containing the compound having a siloxane bond is confirmed from the analysis in the depth direction of TOF-SIMS. In the profile in the depth direction, with respect to the maximum intensity of the peak intensity derived from silicone (peak intensity of Si 3+ and Si 4+ ), the range where the peak intensity continuously present from the peak position is 90% or more is the film thickness Defined.
The film thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition. Moreover, as a method of controlling the thickness of the resin layer containing a compound having a siloxane bond, it can be controlled by adjusting the following parameters in accordance with the coating method. Viscosity of composition (coating liquid), solid content concentration, time to cure after coating, etc. For example, when applying by spin coating, the thickness of the resin layer containing a compound having a siloxane bond can also be controlled by adjusting the amount of coating solution and the spin coating rotation speed.
<追加樹脂層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の他に追加の樹脂層を含んでも良い(以下、追加樹脂層)。
<Additional resin layer>
The gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
 追加樹脂層に含まれる樹脂は、以下に挙げられるが、これらに限定されるわけではない。具体的には、前述のシロキサン結合を有する化合物、ポリイミド類、ポリアミド類、セルロース類、ポリエチレングリコール類、ポリベンゾオキサゾール類であることが好ましく、前述のシロキサン結合を有する化合物、ポリイミド、ポリベンゾオキサゾールおよび酢酸セルロースから選ばれる少なくとも1種であることがより好ましい。本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層を有し、ポリイミド化合物を含む層をさらに追加樹脂層として有することが特に好ましい。 The resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
 ポリイミド化合物としては、反応性基を有するポリイミドであることが好ましい。 The polyimide compound is preferably a polyimide having a reactive group.
 以下において、追加樹脂層の樹脂が反応性基を有するポリイミドである場合について代表例として説明することがあるが、本発明は反応性基を有するポリマーが反応性基を有するポリイミドである場合これに限定されるものではない。 In the following, the case where the resin of the additional resin layer is a polyimide having a reactive group may be described as a representative example, but the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
 本発明に用いることができる反応性基を有するポリイミドについて以下に詳しく説明する。
 本発明において、反応性基を有するポリイミド化合物は、反応性基を有するポリマーが、ポリイミド単位と、側鎖に反応性基(好ましくは求核性の反応性基であり、より好ましくはカルボキシル基、アミノ基またはヒドロキシル基)を有する繰り返し単位とを含むことが好ましい。
 より具体的に説明すれば、反応性基を有するポリマーが、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことが好ましい。
 さらに、反応性基を有するポリマーは、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(II-a)又は(II-b)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことがより好ましい。
 本発明に用いることができる反応性基を有するポリイミドは、上記各繰り返し単位以外の繰り返し単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いることができる反応性基を有するポリイミドは、下記各式で表される各繰り返し単位のみからなることが特に好ましい。
The polyimide having a reactive group that can be used in the present invention will be described in detail below.
In the present invention, the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group.
More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
Furthermore, the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
The polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas. When 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(I)において、Rは、下記式(I-a)~(I-h)のいずれかで表される構造の基を示す。下記式(I-a)~(I-h)において、*は式(I)のカルボニル基との結合部位を示す。式(I)におけるRを母核と呼ぶことがあるが、この母核Rは式(I-a)、(I-b)または(I-d)で表される基であることが好ましく、(I-a)または(I-d)で表される基であることがより好ましく、(I-a)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any of the following formulas (Ia) to (Ih). In the following formulas (Ia) to (Ih), * represents a bonding site with the carbonyl group of the formula (I). R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
・X、X、X
 X、X、Xは、単結合又は2価の連結基を示す。これらの2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。
・ X 1 , X 2 , X 3
X 1 , X 2 and X 3 represent a single bond or a divalent linking group. As these divalent linking groups, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable. When R x represents a substituent, specific examples thereof include the substituent group Z described below. Among them, an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. . In the present specification, when “may be linked to each other to form a ring”, it may be bonded by a single bond, a double bond or the like to form a cyclic structure, It may form a condensed ring structure.
・L
 Lは-CH=CH-又は-CH-を示し、好ましくは-CH=CH-である。
・ L
L represents —CH 2 ═CH 2 — or —CH 2 —, preferably —CH 2 ═CH 2 —.
・R、R
 R、Rは水素原子又は置換基を示す。その置換基としては、下記に示される置換基群Zより選ばれるいずれか1つを用いることができる。RおよびRは互いに結合して環を形成していてもよい。
・ R 1 , R 2
R 1 and R 2 represent a hydrogen atom or a substituent. As the substituent, any one selected from the substituent group Z shown below can be used. R 1 and R 2 may be bonded to each other to form a ring.
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
・R
 Rはアルキル基又はハロゲン原子を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
・ R 3
R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4. R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
・R、R
 R、Rはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R、Rが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R、Rはアルキル基である場合、メチル基又はエチル基であることが好ましく、トリフルオロメチルも好ましい。
・ R 4 , R 5
R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable. M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
When R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
・R、R、R
 R、R、Rは置換基を示す。ここでRとRが互いに結合して環を形成してもよい。これらの置換基の数を示すl2、m2、n2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。
・ R 6 , R 7 , R 8
R 6 , R 7 and R 8 represent a substituent. Here, R 7 and R 8 may be bonded to each other to form a ring. L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
・J
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基、又はアリーレン基を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。
・ J 1
J 1 represents a single bond or a divalent linking group. As the linking group, * —COO N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ~ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group. * Represents the binding site on the phenylene group side, and ** represents the opposite binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
・A
 Aは架橋反応をし得る基であれば特に制限はないが、求核性の反応性基であることが好ましく、カルボキシル基、アミノ基、ヒドロキシル基、及び-S(=O)OHから選ばれる基を示すことがより好ましい。前述のアミノ基の好ましい範囲は、後記置換基群Zで説明するアミノ基の好ましい範囲と同義である。Aは特に好ましくはカルボキシル基、アミノ基またはヒドロキシル基であり、より特に好ましくはカルボキシル基又はヒドロキシル基であり、特に好ましくはカルボキシル基である。
・ A 1
A 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S (═O) 2 OH. It is more preferable to show the group selected. The preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below. A 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
 置換基群Z
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、パラ-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably An alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl, and an aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably an aryl group having 6 to 12 carbon atoms, such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group, hetero A cyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.), an alkoxy group (preferably having a carbon number) To 30 and more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably Is an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group ( Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms. Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシル基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphate amide, phenyl phosphate amide, etc.), hydroxyl group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom) ,
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a sulfo group, a carboxyl group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, even an aromatic heterocyclic ring The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Specific examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably). Is a silica having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms. Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 本発明に用いうるポリイミド化合物において、前述の式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性とガス分離選択性を考慮して適宜に調整される。 In the polyimide compound that can be used in the present invention, the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
 本発明に用いうる反応性基を有するポリイミド中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 In the polyimide having a reactive group that can be used in the present invention, the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
 本発明に用いることができる反応性基を有するポリイミドの分子量は、好ましくは重量平均分子量として10,000~1000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
 本発明に用いうる反応性基を有するポリイミドは、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、株式会社エヌ・ティー・エス発行、今井淑夫、横田力男編著、最新ポリイミド~基礎と応用~、3~49頁など)で記載の手法を適宜選択することができる。 The polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine. As the method, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.) is appropriately selected. be able to.
 本発明に用いうる反応性基を有するポリイミドとして好ましい具体例を以下に挙げるが、本発明はこれらに限るものではない。なお、下記式中「100」、「x」、「y」は共重合比(モル比)を示す。「x」、「y」及び重量平均分子量の例を下記表3に示す。なお、本発明に用いうるポリイミド化合物では、yが0ではないことが好ましい。 Specific examples of preferred polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto. In the following formulae, “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 3 below. In the polyimide compound that can be used in the present invention, y is preferably not 0.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 さらに、上記の例示ポリイミド化合物P-100において共重合比xが20で、yが80としたポリマー(P-101)も好ましく用いることができる。 Furthermore, a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
 また、追加樹脂層の樹脂がポリイミドである場合、より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid 5218およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等も好ましい。 Further, when the resin of the additional resin layer is polyimide, more specifically, the product name P84 and the product from Matrimid 5218 and HP Polymers GmbH sold under the Matrimid (registered trademark) trademark of Huntsman Advanced Materials, respectively. P84 or P84HT sold under the name P84HT is also preferable.
 一方、ポリイミド以外の追加樹脂層の樹脂としては、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類を選択することができる。追加樹脂層に用いることができるセルロース類としては、全アシル基の置換度が2.0~2.7であることが好ましい。酢酸セルロースL-40(アシル基置換度2.5 株式会社ダイセル製)として市販されているセルロースアセテートも好ましく用いることができる。 On the other hand, as the resin of the additional resin layer other than polyimide, celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected. As celluloses that can be used in the additional resin layer, the substitution degree of all acyl groups is preferably 2.0 to 2.7. Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
 その他の追加樹脂層の樹脂としては、ポリエチレングリコール♯200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021号公報に記載のポリマーなどを選択することができる。 As other resin of the additional resin layer, polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
 支持体とシロキサン結合を有する化合物を含む樹脂層の間に、他の追加樹脂層が入ってもよい。他の追加樹脂層としては、例えばPVAなどの親水・疎水性の調整などを挙げることができる。 Other additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond. Examples of other additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
(特性)
 追加樹脂層の膜厚としては機械的強度、ガス分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
(Characteristic)
The film thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
 ガス透過性を高める観点から本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層は薄層であることが好ましい。シロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の厚さは通常には10μm以下であり、3μm以下であることが好ましく、1μm以下であることが特に好ましく、0.3μm以下であることがより特に好ましく、0.2μm以下であることがさらにより特に好ましい。
 なお、シロキサン結合を有する化合物を含む樹脂層以外の上記追加樹脂層の厚さは通常には0.01μm以上であり、実用上、製膜の容易性の観点から0.03μm以上が好ましく、0.1μm以上がより好ましい。
From the viewpoint of enhancing gas permeability, the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer. The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 μm or less, preferably 3 μm or less, particularly preferably 1 μm or less, and 0.3 μm or less. Is more particularly preferable, and it is even more particularly preferable that it is 0.2 μm or less.
The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 μm or more, and is practically preferably 0.03 μm or more from the viewpoint of film formation, More preferably, it is 1 μm or more.
<保護層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層上または追加樹脂層上に形成された保護層(Protective Layer)を具備するものでもよい。保護層は前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層の上に設置される層のことである。ハンドリング時や使用時に前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層と他の材料との意図しない接触を防ぐことができる。
<Protective layer>
The gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer. The protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
(材料)
 前述の保護層の材料としては特に制限はないが、前述の保護層に用いられる材料の好ましい範囲は、シロキサン結合を有する化合物を含む樹脂層に用いられる好ましい材料の範囲と同様である。特に前述の保護層が、ポリジメチルシロキサン、ポリ(1-トリメチルシリル-1-プロピン)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。
(material)
Although there is no restriction | limiting in particular as the material of the above-mentioned protective layer, The preferable range of the material used for the above-mentioned protective layer is the same as the range of the preferable material used for the resin layer containing the compound which has a siloxane bond. In particular, the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
(特性)
 前述の保護層の膜厚は、20nm~3μmであることが好ましく、50nm~2μmであることがより好ましく、100nm~1μmであることが特に好ましい。
(Characteristic)
The film thickness of the protective layer is preferably 20 nm to 3 μm, more preferably 50 nm to 2 μm, and particularly preferably 100 nm to 1 μm.
<特性、用途>
 本発明の分離膜は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。
 本発明のガス分離膜は、酸性ガスと非酸性ガスのガス混合物から、少なくとも1種の酸性ガスを分離するためのガス分離膜であることが好ましい。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)が挙げられ、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)から選択される少なくとも1種であることが好ましく、より好ましくは二酸化炭素、硫化水素又は硫黄酸化物(SOx)であり、特に好ましくは二酸化炭素である。
 前述の非酸性ガスとしては水素、メタン、窒素、及び一酸化炭素から選択される少なくとも1種であることが好ましく、より好ましくはメタン、水素であり、特に好ましくはメタンである。
 本発明のガス分離膜は、特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
<Characteristics and applications>
The separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
The gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas. Examples of the acid gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
The aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
The gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、30℃、5MPaにおける二酸化炭素の透過速度が10GPU以上であることが好ましく、10~300GPUであることがより好ましく、15~300GPUであることが特に好ましい。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 30 ° C. and 5 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、30℃、5MPaにおける二酸化炭素の透過流束のメタンの透過流束に対する比であるガス分離選択性αが30以上であることが好ましく、35以上であることがより好ましく、40以上であることが特に好ましく、50を超えることがより特に好ましい。 The gas separation membrane of the present invention is a gas separation selection which is the ratio of the carbon dioxide permeation flux to the methane permeation flux at 30 ° C. and 5 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane. The property α is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and more preferably 50 or more.
 上記選択的なガス透過には膜への溶解・拡散機構が関与すると考えられる。このような観点を活かし、PEO組成を含む分離膜が検討されている(Journal of Membrane Science,1999,160,87-99参照)。これは二酸化炭素がポリエチレンオキシ組成との相互作用が強いことに起因する。このポリエチレンオキシ膜はガラス転移温度の低い柔軟なゴム状のポリマー膜であるため、ガス種による拡散係数の差は小さく、ガス分離選択性は溶解度の差の効果によるものが主である。これに対し、本発明の好ましい態様では、前述のシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物のガラス転移温度が高く、上記溶解・拡散作用を発揮させながら、膜の熱的な耐久性という観点でも大幅に改善することができる。 It is considered that the selective gas permeation involves a dissolution / diffusion mechanism into the membrane. Taking advantage of such a viewpoint, a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility. On the other hand, in a preferred embodiment of the present invention, the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
[ガス分離膜の製造方法]
 本発明のガス分離膜を製造する方法は、特に制限は無い。
 本発明のガス分離膜を製造する方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して特定の処理を施すことが好ましい。シロキサン結合を有する化合物を含む樹脂層前駆体に対して施す特定の処理としては、シロキサン結合を有する化合物を含む樹脂層前駆体に酸素原子を浸透させる酸素原子浸透処理であることが好ましく、プラズマ処理であることがより好ましい。
 本発明のガス分離膜を製造する方法は、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、前述の酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理であることが好ましい。
[Method for producing gas separation membrane]
The method for producing the gas separation membrane of the present invention is not particularly limited.
In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond. The specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
The method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step for permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 10 cm. 3 (STP) / min or more of the carrier gas is preferable and the plasma processing is preferably performed with an input power of 23 W or more.
 本発明のガス分離膜を製造する方法の好ましい構成を、図面を用いて説明する。
 本発明のガス分離膜を製造する方法は、図5に示すように、支持体4と、シロキサン結合を有する化合物を含む樹脂層前駆体2の積層体に対し、シロキサン結合を有する化合物を含む樹脂層前駆体2の一方の表面側から特定の処理(酸素原子浸透処理5)を施す工程を含むことが好ましい。
 本発明のガス分離膜を製造する方法は、その後、シロキサン結合を有する化合物を含む樹脂層前駆体に特定の処理(酸素原子浸透処理5)を施した表面上に追加樹脂層を形成する工程を含んでいてもよい(不図示)。
A preferred configuration of the method for producing a gas separation membrane of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
The method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 本発明のガス分離膜を製造する方法は、シロキサン結合を有する化合物を含む樹脂層前駆体を前述の支持体上に形成する工程を含むことが好ましい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体を支持体上に形成する方法としては特に制限はないが、シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物を塗布することが好ましい。
 組成物の固形分濃度(粘度)が1~50質量%であることが好ましく、2~40質量%であることがより好ましく、3~11質量%であることが特に好ましい。組成物の固形分濃度が高いほど、シロキサン結合を有する化合物を含む樹脂層を薄くしやすい。
 組成物の滴下量としては、0.001~1ml/cmであることが好ましく、0.002~0.5ml/cmであることがより好ましく、0.005~0.05ml/cmであることが特に好ましい。組成物の滴下量が少ないほど、シロキサン結合を有する化合物を含む樹脂層を薄くしやすい。
 組成物の塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法やディップコート法、バーコート法を適宜用いることができる。スピンコート回転数は100~10000rpm(round per minite)であることが好ましく、500~2500rpmであることがより好ましく、700~1500rpmであることが特に好ましい。スピンコート回転数が大きいほど、シロキサン結合を有する化合物を含む樹脂層を薄くしやすい。
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物は、硬化性組成物であることが好ましい。組成物の塗布後、硬化させるまでの時間が0.01~60分間であることが好ましく、0.02~50分間であることがより好ましく、0.5~2分間であることが特に好ましい。組成物の塗布後、硬化させるまでの時間が好ましい範囲であると、支持体との良好な密着性、および、良好な硬化膜の表面平滑性を得やすい。
 シロキサン結合を有する化合物を含む樹脂層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギー(放射線強度)は10~2000mW/cmであることが好ましい。
<Formation of resin layer precursor containing compound having siloxane bond>
The method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
The method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply.
The solid content concentration (viscosity) of the composition is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and particularly preferably 3 to 11% by mass. The higher the solid content concentration of the composition, the easier it is to make the resin layer containing the compound having a siloxane bond thinner.
The dropping amount of the composition is preferably 0.001 to 1 ml / cm 2 , more preferably 0.002 to 0.5 ml / cm 2 , and 0.005 to 0.05 ml / cm 2 . It is particularly preferred. The smaller the amount of the composition dropped, the easier it is to make the resin layer containing the compound having a siloxane bond thinner.
There is no restriction | limiting in particular as a coating method of a composition, Although a well-known method can be used, For example, a spin coat method, a dip coat method, and a bar coat method can be used suitably. The spin coating rotation speed is preferably 100 to 10,000 rpm (round per minute), more preferably 500 to 2500 rpm, and particularly preferably 700 to 1500 rpm. The larger the spin coat rotation speed, the easier it is to make the resin layer containing the compound having a siloxane bond thinner.
The resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions. The time until the composition is cured after application of the composition is preferably 0.01 to 60 minutes, more preferably 0.02 to 50 minutes, and particularly preferably 0.5 to 2 minutes. When the time until curing after application of the composition is in a preferable range, it is easy to obtain good adhesion to the support and good surface smoothness of the cured film.
Although there is no restriction | limiting in particular as a method of radiation irradiation to a curable composition when forming the resin layer containing the compound which has a siloxane bond, Electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used. Depending on the material used, it can be appropriately selected.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy (radiation intensity) is preferably 10 to 2000 mW / cm 2 .
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane. (Polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
<シロキサン結合を有する化合物を含む樹脂層前駆体の処理>
 本発明のガス分離膜を製造する方法はシロキサン結合を有する化合物を含む樹脂層前駆体に対して(好ましくは一方の表面側から)酸素原子を浸透させる特定の処理(酸素原子浸透処理)を施す工程を含むことが好ましく、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Si、好ましくはさらにΔ1およびΔ2がそれぞれ上述の範囲となるまで上述の特定の処理を行うことがより好ましい。
<Treatment of resin layer precursor containing a compound having a siloxane bond>
In the method for producing a gas separation membrane of the present invention, a specific treatment (oxygen atom permeation treatment) for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond. And a minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond, preferably Δ1 and Δ2 respectively. It is more preferable to perform the specific process described above until the above range is reached.
 上述の特定の処理を行う方法としては特に制限はないが、例えば、シロキサン結合を有する化合物を含む樹脂層前駆体の一方の表面側からプラズマ処理を行う方法を挙げることができる。
 本発明のガス分離膜の製造方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 前述の酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理であることが好ましい。
 例えば、前述のプラズマ処理を以下の条件で5~30秒間行う方法を挙げることができる。
プラズマ処理条件:酸素流量10cm(STP)/min以上、アルゴン流量100cm(STP)/min、投入電力(放電出力)23W以上。
Although there is no restriction | limiting in particular as a method of performing the above-mentioned specific process, For example, the method of performing plasma processing from the one surface side of the resin layer precursor containing the compound which has a siloxane bond can be mentioned.
The method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
It is preferable that the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more.
For example, a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned.
Plasma treatment conditions: oxygen flow rate 10 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more.
 プラズマ処理は上記の条件で5秒間以上であることがガス分離選択性を高め、かつ、耐傷性を高くしてガス分離選択性を低下し難くする観点からより好ましく、10秒間以上であることが特に好ましく、20秒間以上であることがより特に好ましい。
 一方、前述のプラズマ処理が、上記の条件で1000秒間以下であることが好ましい。上述の特定の処理がプラズマ処理である場合、短時間処理で十分な効果が発現するため、ロール トゥ ロールでの製造への応用も可能である。前述のプラズマ処理が、上記の条件で40秒間以下であることがより好ましく、30秒間以下であることが特に好ましい。
 また、プラズマ処理による積算エネルギー量は25~500000J/cmが好ましく、2500~100000J/cmがより好ましい。
The plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more.
On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions. When the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll. The aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
Further, the cumulative energy amount by the plasma treatment is preferably 25 ~ 500000J / cm 2, and more preferably 2500 ~ 100000J / cm 2.
 本発明に適用されるプラズマ処理は、安定したプラズマを発生させるため減圧プラズマを利用し、その大型の真空チャンバ内で被処理体を処理する態様が挙げられる。昨今では大気圧雰囲気下での処理が可能である大気圧プラズマ処理装置が開発されている。そこではプロセス室内にガスを導入し、大気圧雰囲気下で高密度プラズマを安定して発生させることができる。大気圧プラズマ処理装置のシステム構成としては、ガス混合・制御部、反応器および搬送コンベヤ(もしくはXYテーブル)から構成されるものが挙げられる。円形ノズルよりスポット的にプラズマジェットを吹き出して処理するものも提案されている。
 プラズマ処理条件としては、アルゴン流量が5~500cm(STP)/分であることが好ましく、50~200cm(STP)/分であることがより好ましく、80~120cm(STP)/分であることが特に好ましい。本発明のガス分離膜の製造方法では、酸素流量が10cm(STP)/min以上であり、10~100cm(STP)/分であることが好ましく、15~100cm(STP)/分であることがより好ましく、20~50cm(STP)/分であることが特に好ましい。
 プラズマ処理条件としては、真空度が0.6~100Paであることが好ましく、1~60Paであることがより好ましく、2~40Paであることが特に好ましい。
 本発明のガス分離膜の製造方法では、プラズマ処理条件としては、投入電力(放電出力)が23W以上であり、23~1000Wであることが好ましく、40~1000Wであることがより好ましく、110~500Wであることが特に好ましい。
 プラズマ処理の変わりにコロナ処理などを用いることもできる。
The plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber. Recently, an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere has been developed. In this case, gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere. Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table). There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
As plasma treatment conditions, the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred. In the method for producing a gas separation membrane of the present invention, the oxygen flow rate is 10 cm 3 (STP) / min or more, preferably 10 to 100 cm 3 (STP) / min, and 15 to 100 cm 3 (STP) / min. More preferably, it is particularly preferably 20 to 50 cm 3 (STP) / min.
As plasma treatment conditions, the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
In the method for producing a gas separation membrane of the present invention, as plasma treatment conditions, the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
Corona treatment or the like can be used instead of plasma treatment.
<追加樹脂層の調製方法>
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の調製方法としては特に制限はなく、公知の材料を商業的に入手しても、公知の方法で形成しても、特定の樹脂を用いて後述の方法で形成してもよい。
<Method for preparing additional resin layer>
The method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する方法としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の材料および有機溶媒を含む組成物を下層(例えば、シロキサン結合を有する化合物を含む樹脂層)に塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 本発明のガス分離膜の前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。
The method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond). A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
The conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., and −10 to 80 ° C. More preferred is 5 to 50 ° C.
 本発明においては、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。 In the present invention, a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
<保護層の形成>
 本発明のガス分離膜の製造方法は、前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する工程を含んでいてもよい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する方法としては特に制限はないが、前述の保護層の材料および有機溶媒を含む組成物を塗布することが好ましい。有機溶媒としては、前述のシロキサン結合を有する化合物を含む樹脂層の形成に用いられる有機溶媒を挙げることができる。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 保護層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~2000mW/cmであることが好ましい。
<Formation of protective layer>
The manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
The method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply. As an organic solvent, the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a protective layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, according to the material to be used suitably. You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 2000 mW / cm 2 .
<ガス混合物の分離方法>
 本発明のガス分離膜を用いることで、ガス混合物の分離をすることができる。
 本発明のガス分離膜を用いるガス混合物の分離方法において、原料のガス混合物の成分は原料産地や用途又は使用環境などによって影響されるものであり、特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン又は二酸化炭素及び窒素又は二酸化炭素及び水素であることが好ましい。
すなわち、ガス混合物における二酸化炭素及びメタン又は二酸化炭素及び水素の占める割合が、二酸化炭素の割合として5~50%であることが好ましく、更に好ましくは10~40%である。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下である場合、本発明のガス分離膜を用いるガス混合物の分離方法は特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。
 ガス混合物の分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法であることが好ましい。ガス分離の際の圧力は3MPa~10MPaであることが好ましく、4MPa~7MPaであることがより好ましく、5MPa~7MPaであることが特に好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
<Separation method of gas mixture>
By using the gas separation membrane of the present invention, the gas mixture can be separated.
In the method for separating a gas mixture using the gas separation membrane of the present invention, the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined. The main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen.
That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide. When the gas mixture is in the presence of an acidic gas such as carbon dioxide or hydrogen sulfide, the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
The method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C.
[ガス分離膜モジュール、ガス分離装置]
 本発明のガス分離膜モジュールは、本発明のガス分離膜を有する。
 本発明のガス分離膜は多孔質支持体と組み合わせた薄層複合膜とすることが好ましく、更にはこれを用いたガス分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、薄層複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置とすることができる。本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明のガス分離膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としてのガス分離回収装置に適用してもよい。
[Gas separation membrane module, gas separation device]
The gas separation membrane module of the present invention has the gas separation membrane of the present invention.
The gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection | recovery or separation refinement | purification using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module. The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. The gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
{第4の態様}
 条件4を満たす第4の態様について説明する。
{Fourth aspect}
A fourth mode that satisfies condition 4 will be described.
[ガス分離膜]
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなる。
 このような構成により、本発明のガス分離膜は高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い。本発明では、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなるようにすることで、高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高いガス分離膜を得ることができる。
 分離選択性を有する層とは、厚さ1~30μmの膜を形成し、得られた膜に対して、40℃の温度下、ガス供給側の全圧力を0.5MPaにして、二酸化炭素(CO)及びメタン(CH)の純ガスを供給した際の、二酸化炭素の透過係数(PCO)とメタンの透過係数(PCH)の比(PCO/PCH)が、1.5以上となる層を意味する。
 従来はガス分離膜の分離選択性を有する層としてはポリイミド化合物を有する層がよく用いられてきており、酸素原子浸透処理をされたシロキサン結合を有する化合物を含む樹脂層を有することによってポリイミド化合物を有する層を有さずに高圧下でのガス透過性およびガス分離選択性の少なくとも一方が高い本発明のガス分離膜の構成は従来知られていない。
 ここで、ガス分離膜のガス透過性とガス分離選択性は一般的にトレードオフの関係にある。すなわち、ガス分離膜は、ガス透過性が高まるとガス分離選択性は低下する傾向にあり、ガス透過性が低下するとガス分離選択性は高まる傾向にある。そのため、従来のガス分離膜はガス透過性とガス分離選択性をともに高くすることが困難であった。それに対して本発明のガス分離膜は、ガス透過性とガス分離選択性をともに高くすることができる。
 本発明のガス分離膜は、図6(B)に示すような表面からグラデーションを持って酸素原子が導入された構造のシロキサン結合を有する化合物を含む樹脂層3を有することが好ましい。酸素原子が導入された部位はシロキサン結合により孔を形成する。また酸素が導入されることにより、ポリマーの熱運動は減少している。このため、ガスを選択的に、多く透過させることができる孔が生成している。このため、表面を処理する前のシロキサン結合を有する化合物を含む樹脂層(図6(A)に示すような酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜11)と異なり、高いガス分離選択性を得ることが出来る。
 また、シリカ(後述の一般式(1)で表される4価のケイ素原子Si4+を有する化合物)とシリコーン(後述の一般式(2)または(3)で表される2または3価のケイ素原子Si2+またはSi3+を有する)が入り乱れた図6(B)に示すようなグラデーション構造部を有することにより、シリカ/シリコーン界面の密着性が増し、高いCO分圧であっても膜が破壊されず、高選択性を維持される。シロキサン結合を有する化合物を含む樹脂層がシリカとシリコーンが入り乱れたグラデーション構造部を有することは、後述のX/Yの値が好ましい範囲にあることと関連がある。
 また、CVD(Chemical Vapor Deposition)法等を用い、膜厚方向に酸素原子導入のグラデーションを有さず、図6(C)に示すような膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を作製することは可能である。このような膜と、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3とを比較すると、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位は、膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜12と比較して薄い。膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜を、本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層3中、酸素原子が密に導入された部位の厚みと同等に薄くすることは困難である。
 一方、本発明のガス分離膜を、ガス透過性を大幅に高くして、ガス分離選択性を低くするように設計することもできる。また、本発明のガス分離膜を、ガス透過性を低くして、ガス分離選択性を大幅に高くするように設計することもできる。これらの場合であっても、本発明のガス分離膜を従来のガス分離膜と同じガス透過性の性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス分離選択性は高くなり、また、本発明のガス分離膜を従来のガス分離膜と同じガス分離選択性性能にすれば本発明のガス分離膜の方が従来のガス分離膜よりもガス透過性は高くなる。
 以下、本発明のガス分離膜の好ましい態様について説明する。
[Gas separation membrane]
The gas separation membrane of the present invention is a gas separation membrane having a resin layer containing a compound having a siloxane bond, and is obtained when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. The three-component positron lifetime τ3 is 3.40 to 4.20 ns.
With such a configuration, the gas separation membrane of the present invention has high gas permeability at high pressure and / or gas separation selectivity. In the present invention, when the positron lifetime τ3 of the third component is 3.40 to 4.20 ns when a positron is injected from the surface of the resin layer containing a compound having a siloxane bond with an intensity of 1 keV, A gas separation membrane having at least one of gas permeability under high pressure and gas separation selectivity can be obtained.
The layer having separation selectivity is a film having a thickness of 1 to 30 μm, and the obtained film is carbon dioxide (at a temperature of 40 ° C., the total pressure on the gas supply side is set to 0.5 MPa. The ratio of the carbon dioxide permeability coefficient (PCO 2 ) to the methane permeability coefficient (PCH 4 ) (PCO 2 / PCH 4 ) when pure gases of CO 2 ) and methane (CH 4 ) are supplied is 1.5. It means the layer which becomes the above.
Conventionally, a layer having a polyimide compound has often been used as a layer having gas separation membrane separation selectivity, and a polyimide compound is obtained by having a resin layer containing a compound having a siloxane bond subjected to oxygen atom permeation treatment. The structure of the gas separation membrane of the present invention that does not have a layer and has at least one of gas permeability and gas separation selectivity under high pressure has not been known.
Here, the gas permeability and gas separation selectivity of the gas separation membrane are generally in a trade-off relationship. In other words, the gas separation membrane tends to decrease the gas separation selectivity when the gas permeability increases, and the gas separation selectivity tends to increase when the gas permeability decreases. Therefore, it has been difficult for conventional gas separation membranes to increase both gas permeability and gas separation selectivity. In contrast, the gas separation membrane of the present invention can increase both gas permeability and gas separation selectivity.
The gas separation membrane of the present invention preferably has a resin layer 3 containing a compound having a siloxane bond having a structure in which oxygen atoms are introduced from the surface with gradation as shown in FIG. 6B. Sites where oxygen atoms are introduced form pores by siloxane bonds. In addition, the introduction of oxygen reduces the thermal motion of the polymer. For this reason, the hole which can permeate | transmit many gas selectively has produced | generated. For this reason, unlike a resin layer containing a compound having a siloxane bond before the surface treatment (polydimethylsiloxane membrane 11 not subjected to the oxygen atom permeation treatment step as shown in FIG. 6A), high gas separation is achieved. Selectivity can be obtained.
Further, silica (a compound having a tetravalent silicon atom Si 4+ represented by general formula (1) described later) and silicone (a divalent or trivalent silicon represented by general formula (2) or (3) described later). By having a gradation structure as shown in FIG. 6 (B) in which atoms Si 2+ or Si 3+ are disturbed, adhesion at the silica / silicone interface is increased, and the film can be formed even at high CO 2 partial pressure. High selectivity is maintained without being destroyed. The fact that the resin layer containing a compound having a siloxane bond has a gradation structure part in which silica and silicone are disturbed is related to the value of X / Y described below being in a preferable range.
In addition, polydimethylsilane in which oxygen atoms are uniformly introduced in the film thickness direction as shown in FIG. 6C without using gradation of oxygen atom introduction in the film thickness direction using a CVD (Chemical Vapor Deposition) method or the like. It is possible to produce a siloxane film. When such a membrane is compared with the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention, oxygen atoms are present in the resin layer 3 containing a compound having a siloxane bond of the gas separation membrane of the present invention. The densely introduced portion is thinner than the polydimethylsiloxane film 12 into which oxygen atoms are uniformly introduced in the film thickness direction. The polydimethylsiloxane membrane in which oxygen atoms are uniformly introduced in the film thickness direction is equal to the thickness of the portion where the oxygen atoms are densely introduced in the resin layer 3 containing a compound having a siloxane bond in the gas separation membrane of the present invention. It is difficult to make it thinner.
On the other hand, the gas separation membrane of the present invention can be designed to greatly increase gas permeability and lower gas separation selectivity. In addition, the gas separation membrane of the present invention can be designed to have low gas permeability and greatly increase gas separation selectivity. Even in these cases, if the gas separation membrane of the present invention has the same gas permeability as that of the conventional gas separation membrane, the gas separation membrane of the present invention is more gas selective than the conventional gas separation membrane. In addition, if the gas separation membrane of the present invention has the same gas separation selectivity as the conventional gas separation membrane, the gas separation membrane of the present invention has higher gas permeability than the conventional gas separation membrane. .
Hereinafter, preferred embodiments of the gas separation membrane of the present invention will be described.
<構成>
 本発明のガス分離膜は、薄層複合膜(ガス分離複合膜と言われることもある)、非対称膜または中空糸であることが好ましく、薄層複合膜であることがより好ましい。
 以下においてガス分離膜が薄層複合膜である場合を代表例として説明するときがあるが、本発明のガス分離膜は薄層複合膜によって限定されるものではない。
<Configuration>
The gas separation membrane of the present invention is preferably a thin layer composite membrane (sometimes referred to as a gas separation composite membrane), an asymmetric membrane or a hollow fiber, and more preferably a thin layer composite membrane.
Hereinafter, a case where the gas separation membrane is a thin layer composite membrane may be described as a representative example, but the gas separation membrane of the present invention is not limited to the thin layer composite membrane.
 本発明のガス分離膜の好ましい構成を、図面を用いて説明する。図1に示した本発明のガス分離膜10の一例は薄層複合膜であって、支持体4と、シロキサン結合を有する化合物を含む樹脂層3とを有するガス分離膜である。
 図2に示した本発明のガス分離膜10の他の一例は、支持体4とシロキサン結合を有する化合物を含む樹脂層3に加えて、シロキサン結合を有する化合物を含む樹脂層3の支持体4とは反対側にポリイミド化合物を含む層(後述の追加樹脂層)1をさらに有する。
 本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1層のみ有していても、2層以上有していてもよい。本発明のガス分離膜はシロキサン結合を有する化合物を含む樹脂層を1~5層有することが好ましく、1~3層有することがより好ましく、製造コストの観点から1~2層有することが特に好ましく、1層のみ有することがより特に好ましい。図3に示した本発明のガス分離膜10の他の一例は、シロキサン結合を有する化合物を含む樹脂層3を2層有する。
A preferred configuration of the gas separation membrane of the present invention will be described with reference to the drawings. An example of the gas separation membrane 10 of the present invention shown in FIG. 1 is a thin layer composite membrane, which is a gas separation membrane having a support 4 and a resin layer 3 containing a compound having a siloxane bond.
Another example of the gas separation membrane 10 of the present invention shown in FIG. 2 is that the support 4 of the resin layer 3 containing a compound having a siloxane bond is added to the support 4 and the resin layer 3 containing a compound having a siloxane bond. Further, a layer (a later-described additional resin layer) 1 containing a polyimide compound is further provided on the opposite side.
The gas separation membrane of the present invention may have only one resin layer containing a compound having a siloxane bond, or may have two or more layers. The gas separation membrane of the present invention preferably has 1 to 5 resin layers containing a compound having a siloxane bond, more preferably 1 to 3 layers, and particularly preferably 1 to 2 layers from the viewpoint of production cost. It is particularly preferable to have only one layer. Another example of the gas separation membrane 10 of the present invention shown in FIG. 3 has two resin layers 3 containing a compound having a siloxane bond.
 本明細書において「支持体上」とは、支持体と分離選択性を有する層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、図1に示したように分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。 In the present specification, “on the support” means that another layer may be interposed between the support and the layer having separation selectivity. As for the upper and lower expressions, unless otherwise specified, the direction in which the gas to be separated is supplied is “up” and the direction in which the separated gas is emitted is “down” as shown in FIG. .
 図4中、シロキサン結合を有する化合物を含む樹脂層3の表面は、符号6で表される。
 また、図4中、dが10nmである場合、シロキサン結合を有する化合物を含む樹脂層3の表面から(支持体方向へ)10nmの深さにおける、「シロキサン結合を有する化合物を含む樹脂層の表面」6と平行な面が、符号7で表される「シロキサン結合を有する化合物を含む樹脂層の表面から(支持体方向へ)10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の面」である。
In FIG. 4, the surface of the resin layer 3 containing a compound having a siloxane bond is represented by reference numeral 6.
Further, in FIG. 4, when d is 10 nm, “the surface of the resin layer containing a compound having a siloxane bond” at a depth of 10 nm from the surface of the resin layer 3 containing a compound having a siloxane bond (toward the support). "A surface parallel to 6 is represented by reference numeral 7" The surface of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond (toward the support) " It is.
<支持体>
 本発明のガス分離膜は、支持体を含むことが好ましく、シロキサン結合を有する化合物を含む樹脂層が支持体上に形成されることがより好ましい。支持体は、薄く、多孔質な素材であることが、十分なガス透過性を確保する上で好ましい。
<Support>
The gas separation membrane of the present invention preferably contains a support, and more preferably a resin layer containing a compound having a siloxane bond is formed on the support. The support is preferably a thin and porous material in order to ensure sufficient gas permeability.
 本発明のガス分離膜は、多孔質性の支持体の表面ないし内面にシロキサン結合を有する化合物を含む樹脂層3を形成・配置するようにしてもよく、表面に形成することで簡便に薄層複合膜とすることができる。多孔質性の支持体の表面にシロキサン結合を有する化合物を含む樹脂層3を形成することで、高ガス分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有するガス分離膜とすることができる。 In the gas separation membrane of the present invention, the resin layer 3 containing a compound having a siloxane bond may be formed and disposed on the surface or the inner surface of the porous support, and a thin layer can be easily formed by forming on the surface. It can be a composite membrane. By forming the resin layer 3 containing a compound having a siloxane bond on the surface of a porous support, a gas separation membrane having an advantage of having both high gas separation selectivity and high gas permeability and further mechanical strength It can be.
 本発明のガス分離膜が薄層複合膜である場合、薄層複合膜は、多孔質の支持体の表面に、上記のシロキサン結合を有する化合物を含む樹脂層3をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。具体的には、支持体は、多孔質層(Porous Layer)をシロキサン結合を有する化合物を含む樹脂層3側に有することが好ましく、シロキサン結合を有する化合物を含む樹脂層3側に配置された多孔質層と不織布(Non-Woven)の積層体であることがより好ましい。 When the gas separation membrane of the present invention is a thin-layer composite membrane, the thin-layer composite membrane is obtained by applying a coating liquid (dope) that forms the resin layer 3 containing the compound having a siloxane bond on the surface of the porous support. It is preferably formed by coating (in this specification, coating means to include an aspect of being attached to the surface by dipping). Specifically, the support preferably has a porous layer (Porous Layer) on the side of the resin layer 3 containing a compound having a siloxane bond, and is porous on the side of the resin layer 3 containing a compound having a siloxane bond. More preferably, it is a laminate of a non-woven fabric (Non-Woven).
 支持体に好ましく適用される多孔質層は、機械的強度及び高ガス透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質層の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~80%である。また、多孔質層の分画分子量が100,000以下であることが好ましく、さらに、その気体透過性は二酸化炭素透過速度で3×10-5cm(STP;STPはStandard Temperature and Pressureの略語である)/cm・cm・sec・cmHg(30GPU;GPUは Gas Permeation Unit の略語である)以上であることが好ましい。多孔質層の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質層の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。 The porous layer preferably applied to the support is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability, and may be either organic or inorganic material. However, it is preferably a porous film of an organic polymer, and its thickness is 1 to 3000 μm, preferably 5 to 500 μm, more preferably 5 to 150 μm. The porous structure of this porous layer usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less, and a porosity of preferably 20 to 90%. Preferably, it is 30 to 80%. The molecular weight cutoff of the porous layer is preferably 100,000 or less, and the gas permeability is 3 × 10 −5 cm 3 (STP; STP is an abbreviation for Standard Temperature and Pressure). ) / Cm 2 · cm · sec · cmHg (30 GPU; GPU is an abbreviation for Gas Permeation Unit). Examples of the material for the porous layer include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous layer may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 薄層複合膜においては、シロキサン結合を有する化合物を含む樹脂層3側に配置される多孔質層の下部に機械的強度を付与するために織布、不織布、ネット等が設けられることが好ましく、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the thin-layer composite film, it is preferable that a woven fabric, a nonwoven fabric, a net, or the like is provided to give mechanical strength to the lower portion of the porous layer disposed on the resin layer 3 side containing the compound having a siloxane bond, Nonwoven fabrics are preferably used from the viewpoint of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<シロキサン結合を有する化合物を含む樹脂層>
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層を有する。
<Resin layer containing a compound having a siloxane bond>
The gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond.
(第三成分の陽電子寿命τ3)
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなり、3.40~4.11nsとなることが好ましく、3.40~4.10nsとなることがより好ましく、3.40~3.99となることが特に好ましい。
 陽電子消滅法は、陽電子が極めて小さいことを利用し、他手法では測定困難な1Åから10nm程度の孔径の空孔(自由体積孔)の評価を行う方法である。ポリマー等の高分子化合物を含む層の空孔は、陽電子の寿命スペクトルの長寿命の成分である第三成分を解析し、第三成分(o-Ps)の陽電子寿命τ3を計測することで、計算することができる。陽電子は高分子中で電子と結びつきオルソポジトロニウムo-Psを形成する。このo-Psは空孔中にトラップされ消滅すると考えられている。その時のo-Psの寿命τは空孔の半径Rの関数で表される。陽電子寿命の解析は非線形最小二乗プログラムPOSITRONFITを用い、行うことができる。同時に空孔の空孔率を表す、第三成分の相対強度I3も計算される。
 また、電子線形加速器利用陽電子ビーム装置を用いると、陽電子の打ち込みエネルギーを変えることが出来、低エネルギーではより表面の、高エネルギーではより内部の空孔の情報を得ることが可能である。1keVの打ち込みエネルギーでは主に表面から深さ方向に約20nm、3keVの打ち込みエネルギーでは主に表面から深さ方向に200nmの情報を得ることができる。
 シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が例えば3.40~4.20nsであると、シロキサン結合を有する化合物を含む樹脂層の表面から深さ方向(支持体方向)に約20nmに平均すると孔径が0.78~0.86nmの空孔が存在していると予想される。このような孔径の空孔がシロキサン結合を有する化合物を含む樹脂層の表面から深さ方向(支持体方向)に約20nmに存在していることで、シロキサン結合を有する化合物を含む樹脂層はCOとCHの分離において適度な孔径を有し、ガス透過性とガス分離選択性をともに高くできる。実際はシロキサンとシリカの混合物であるため、比較的大きな孔径と小さな孔径がブレンドされており、その比率が変わってきているのではないかと考えている。
(Third component positron lifetime τ3)
The gas separation membrane of the present invention has a third component positron lifetime τ3 of 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond. It is preferably 3.40 to 4.11 ns, more preferably 3.40 to 4.10 ns, and particularly preferably 3.40 to 3.99.
The positron annihilation method is a method that utilizes the fact that positrons are extremely small and evaluates pores (free volume holes) having a diameter of about 1 to 10 nm, which is difficult to measure by other methods. The vacancies in the layer containing a polymer compound such as a polymer are analyzed by analyzing the third component, which is a long-life component of the positron lifetime spectrum, and measuring the positron lifetime τ3 of the third component (o-Ps). Can be calculated. Positrons combine with electrons in the polymer to form ortho-positronium o-Ps. This o-Ps is considered to be trapped in the vacancies and disappear. The lifetime τ 3 of o-Ps at that time is expressed as a function of the radius R of the hole. The analysis of the positron lifetime can be performed using the nonlinear least square program POSITRONFIT. At the same time, the relative intensity I3 of the third component representing the porosity of the holes is also calculated.
In addition, when a positron beam device using an electron linear accelerator is used, it is possible to change the positron implantation energy, and it is possible to obtain information on the surface vacancies at a lower energy and at a higher energy. With an implantation energy of 1 keV, information of about 20 nm mainly from the surface in the depth direction can be obtained. With an implantation energy of 3 keV, information of 200 nm mainly from the surface in the depth direction can be obtained.
When the positron lifetime τ3 of the third component is 3.40 to 4.20 ns, for example, when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond, the compound having a siloxane bond is included. When averaged to about 20 nm in the depth direction (support direction) from the surface of the resin layer, pores having a pore diameter of 0.78 to 0.86 nm are expected to exist. A resin layer containing a compound having a siloxane bond is formed by having such pores having a diameter of about 20 nm in the depth direction (support direction) from the surface of the resin layer containing a compound having a siloxane bond. In the separation of 2 and CH 4 , it has an appropriate pore size, and can improve both gas permeability and gas separation selectivity. Since it is actually a mixture of siloxane and silica, a relatively large pore size and a small pore size are blended, and it is thought that the ratio has changed.
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3をX、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を3keVで打ち込んだ場合の第三成分の陽電子寿命τ3をYとして、
0.88≦X/Y≦0.99
を満たすことがガス透過性とガス分離選択性をともに高くする観点から好ましく、
0.88≦X/Y≦0.98
を満たすことがより好ましく、
0.88≦X/Y≦0.97
を満たすことが特に好ましい。
 1keVの打ち込みエネルギーでは主に表面から深さ方向に約20nm、3keVの打ち込みエネルギーでは主に表面から深さ方向に200nmの情報を得ることができる。
 X/Yが1未満の範囲であれば、X/Yが高いほど、酸素原子がシロキサン結合を有する化合物を含む樹脂層(このシロキサン結合を有する化合物を含む樹脂層が、ガス分離選択性が高いいわゆる分離選択性を有する層として機能する)の厚み方向へ内部まで浸透していることになる。表面を改質し密着性改善だけを目的にしたコロナ処理やプラズマ処理ではシロキサン結合を有する化合物を含む樹脂層の表面から十分な深さまで、ガス分離選択性を有するほど十分に酸素は入り込まない。
The gas separation membrane of the present invention is a resin layer containing a compound having a siloxane bond having X as the third component positron lifetime τ3 when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. Y is the positron lifetime τ3 of the third component when a positron is implanted at 3 keV from the surface of
0.88 ≦ X / Y ≦ 0.99
Is preferable from the viewpoint of increasing both gas permeability and gas separation selectivity,
0.88 ≦ X / Y ≦ 0.98
More preferably,
0.88 ≦ X / Y ≦ 0.97
It is particularly preferable to satisfy
With an implantation energy of 1 keV, information of about 20 nm mainly from the surface in the depth direction can be obtained. With an implantation energy of 3 keV, information of 200 nm mainly from the surface in the depth direction can be obtained.
If X / Y is less than 1, the higher the X / Y, the higher the resin layer containing a compound having a siloxane bond in the oxygen atom (the resin layer containing the compound having a siloxane bond has higher gas separation selectivity. It functions as a layer having so-called separation selectivity) and penetrates to the inside in the thickness direction. In the corona treatment or plasma treatment aiming only at improving the adhesion by modifying the surface, oxygen does not sufficiently enter from the surface of the resin layer containing a compound having a siloxane bond to a sufficient depth so as to have gas separation selectivity.
(第三成分の相対強度I3)
 本発明のガス分離膜は、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の相対強度I3が13~41%となることがガス透過性とガス分離選択性をともに高くする観点から好ましく、13~40%となることがより好ましく、13~39%となることが特に好ましく、13~33%となることがより特に好ましい。
 第三成分の相対強度I3は、空孔(自由体積孔)の空孔率を表す。シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の相対強度I3が例えば13~41%であると、シロキサン結合を有する化合物を含む樹脂層の表面から深さ方向(支持体方向)に約20nmにおける空孔率が13~41%であると予想される。シロキサン結合を有する化合物を含む樹脂層の表面から深さ方向(支持体方向)に約20nmにおける空孔率がこのような範囲であることで、シロキサン結合を有する化合物を含む樹脂層はCOとCHの分離において適度な空孔率を有し、ガス透過性とガス分離選択性をともに高くできる。
(Relative strength of third component I3)
The gas separation membrane of the present invention has a gas permeability that the relative intensity I3 of the third component is 13 to 41% when a positron is injected at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond. From the viewpoint of increasing both gas separation selectivity, it is preferably 13 to 40%, more preferably 13 to 39%, and particularly preferably 13 to 33%.
The relative intensity I3 of the third component represents the porosity of free holes (free volume holes). When the relative intensity I3 of the third component when a positron is shot at a strength of 1 keV from the surface of the resin layer containing a compound having a siloxane bond is, for example, 13 to 41%, the resin layer containing the compound having a siloxane bond It is expected that the porosity at about 20 nm in the depth direction (support direction) from the surface is 13 to 41%. Since the porosity at about 20 nm in the depth direction (support direction) from the surface of the resin layer containing a compound having a siloxane bond is in such a range, the resin layer containing a compound having a siloxane bond is CO 2 and In the separation of CH 4 , it has an appropriate porosity, and can improve both gas permeability and gas separation selectivity.
(シロキサン結合を有する化合物を含む樹脂層の表面)
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)は、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出する。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比も同様に算出する。
 シロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)を算出する。
 続いてシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求めるためにC60イオンによるエッチングを行う。
 具体的には、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60 :10keV、10nAとし、2mm×2mmの領域を10nmエッチングする。この膜にてESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を算出する。シロキサン結合を有する化合物を含む樹脂層の表面からのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出する。この値は材質により、適宜最適な数値を用いるものとする。
(Surface of resin layer containing compound having siloxane bond)
O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms; The O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond, is calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis). Similarly, the carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, is also calculated.
A porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc. Included in Quantera SXM manufactured by the company, X-ray source: Al—Kα ray (1490 eV, 25 W, diameter of 100 μm), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond An O / Si ratio (B), which is a ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, is calculated.
Subsequently, an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Is performed with C 60 ions.
Specifically, Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, to 10nm etching an area of 2 mm × 2 mm. An ESCA apparatus is used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond. The depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond is calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. As this value, an optimal value is appropriately used depending on the material.
 本明細書中、前述のシロキサン結合を有する化合物を含む樹脂層の表面は、O/Si比を前述のガス分離膜の表面(好ましくは支持体とは反対側の表面)から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面である。
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層を有さない場合、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で、O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面を特定する。
 その結果、上述の方法において、多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」であることが確認される。
In this specification, the surface of the resin layer containing the compound having a siloxane bond described above is O 2 when the O / Si ratio is measured from the surface of the gas separation membrane (preferably the surface opposite to the support). / Si ratio is the maximum, and the number of silicon atoms is 3% (atomic%) or more.
When there is no other layer on the surface of the resin layer containing a compound having a siloxane bond, oxygen atoms of the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond When the O / Si ratio is measured from the surface of the gas separation membrane in the same manner as the method for obtaining the O / Si ratio (A), which is the ratio of the number to the number of silicon atoms, the O / Si ratio is maximum. And a plane containing 3% (atomic%) or more of silicon atoms is specified.
As a result, in the above-described method, a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present). The surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. It is confirmed that it is “surface”.
 シロキサン結合を有する化合物を含む樹脂層の表面に他の層(例えばポリイミドを含む層)を有する場合、シロキサン結合を有する化合物を含む樹脂層の表面(すなわちO/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面)を、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で求める。
 その結果、上述の方法において、多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」である。具体的には、「多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面」から、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」を意味する。
When the surface of the resin layer containing a compound having a siloxane bond has another layer (for example, a layer containing polyimide), the surface of the resin layer containing a compound having a siloxane bond (that is, the O / Si ratio is set to the above-mentioned gas separation membrane). The depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond, the surface having the maximum O / Si ratio when measured from the surface and containing 3% (atomic%) or more of silicon atoms) The resin layer containing a compound having a siloxane bond in is obtained by a method similar to the method for obtaining the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms.
As a result, in the above-described method, a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present). The surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. Surface ". Specifically, “comprising a compound having a siloxane bond in a state in which a resin layer containing a compound having a siloxane bond is formed on the porous support (without any other layer (for example, a layer containing polyimide)). From “the surface of the resin layer”, “the surface where the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane and the number of silicon atoms is 3% (atomic%) or more” "Means.
 ガス分離膜は、上記を満たすシロキサン結合を有する化合物を含む樹脂層が面内に50%以上あることが好ましく、70%以上あることがさらに好ましく、90%以上あることが特に好ましい。
 ガス分離膜の面内には、上記を満たすシロキサン結合を有する化合物を含む樹脂層以外の他の領域が存在してもよい。他の領域としては、例えば接着剤や粘着材が設けられた領域や、シロキサン結合を有する化合物を含む樹脂層に対して特定の処理(好ましくは酸素原子浸透処理)が十分ではない領域などを挙げることができる。
In the gas separation membrane, a resin layer containing a compound having a siloxane bond that satisfies the above conditions is preferably 50% or more, more preferably 70% or more, and particularly preferably 90% or more.
In the plane of the gas separation membrane, there may be other regions other than the resin layer containing a compound having a siloxane bond that satisfies the above. Examples of other regions include a region where an adhesive or a pressure-sensitive adhesive is provided, a region where a specific treatment (preferably oxygen atom permeation treatment) is not sufficient for a resin layer containing a compound having a siloxane bond, and the like. be able to.
(材料)
 前述のシロキサン結合を有する化合物を含む樹脂層は、シロキサン結合を有する化合物を含む。シロキサン結合を有する化合物は、「少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物」であってもよい。また、シロキサン結合を有する化合物は、「シロキサン結合を有し、かつ、繰り返し単位を有する化合物」であってもよく、その中ではポリシロキサン単位を有する化合物であることが好ましい。
(material)
The resin layer containing a compound having a siloxane bond includes a compound having a siloxane bond. The compound having a siloxane bond may be “a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom”. The compound having a siloxane bond may be a “compound having a siloxane bond and having a repeating unit”, and among them, a compound having a polysiloxane unit is preferable.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000033
 一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000033
In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
 一般式(2)中のR11はヒドロキシル基、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、ヒドロキシル基、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることがより好ましい。
 一般式(2)中のR11が表すヒドロキシル基やカルボキシル基は、任意の塩を形成していてもよい。
 一般式(2)および一般式(3)中、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。なお、*は後述の一般式(1)における酸素原子との結合部位であってもよく、#は後述の一般式(1)におけるケイ素原子との結合部位であってもよい。
R 11 in the general formula (2) is preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group, and a hydroxyl group, an alkyl group having 1 or more carbon atoms, amino It is preferably a group, an epoxy group or a carboxyl group, more preferably a hydroxyl group, an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group.
The hydroxyl group and carboxyl group represented by R 11 in the general formula (2) may form an arbitrary salt.
In general formula (2) and general formula (3), * represents a binding site with # in general formula (2) or general formula (3), and # in general formula (2) or general formula (3) Represents the binding site of *. In addition, * may be a bonding site with an oxygen atom in the general formula (1) described later, and # may be a bonding site with a silicon atom in the general formula (1) described later.
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物が下記一般式(1)で表される繰り返し単位を有することが好ましい。
一般式(1)
Figure JPOXMLDOC01-appb-C000034
一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
 このようなシロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、高圧下での高いガス透過性およびガス分離選択性を発現することができる。
 また、シロキサン結合を有する化合物を、シロキサン結合を有する化合物を含む樹脂層の材料として用い、上述のシロキサン結合を有する化合物を含む樹脂層を形成した場合、いかなる理論に拘泥するものでもないが、酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれてSiOxの組成となることで高圧下での高いガス透過性およびガス分離選択性を発現していると考えられる。特に、ガス透過性が高いことで知られているポリジメチルシロキサンを用いた場合も上述のシロキサン結合を有する化合物を含む樹脂層とすることで高圧下での高いガス透過性および分離選択性を発現することができる。酸素原子がシロキサン結合を有する化合物を含む樹脂層の表面だけでなく、厚み方向へ内部まで取り込まれて、シロキサン結合を有する化合物を含む樹脂層の表面およびシロキサン結合を有する化合物を含む樹脂層の厚み方向へ内部において、シロキサン結合を有する化合物が少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有することが好ましい。
In the gas separation membrane of the present invention, the compound having a siloxane bond described above preferably has a repeating unit represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000034
In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
When such a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond is formed, high gas permeability and gas under high pressure Separation selectivity can be expressed.
Further, when a compound having a siloxane bond is used as a material for a resin layer containing a compound having a siloxane bond, and the resin layer containing the compound having a siloxane bond described above is formed, it is not bound by any theory. Not only the surface of the resin layer containing a compound containing a siloxane bond in the atoms but also the inside of the resin in the thickness direction to form a composition of SiOx, thereby exhibiting high gas permeability and gas separation selectivity under high pressure. it is conceivable that. In particular, even when polydimethylsiloxane, which is known for its high gas permeability, is used, it exhibits high gas permeability and separation selectivity under high pressure by using a resin layer containing the above-mentioned compound having a siloxane bond. can do. Not only the surface of the resin layer containing the compound having a siloxane bond but also the surface of the resin layer containing the compound having a siloxane bond and the thickness of the resin layer containing the compound having a siloxane bond. It is preferable that the compound having a siloxane bond has at least a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) inside in the direction.
 一般式(1)におけるRは、一般式(1)中、Rはそれぞれ独立に炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基またはカルボキシル基であることが好ましく、炭素数1以上のアルキル基、アミノ基、エポキシ基またはカルボキシル基であることがより好ましく、炭素数1以上のアルキル基、エポキシ基またはカルボキシル基であることが特に好ましい。
 一般式(1)におけるRが表す炭素数1以上のアルキル基としては、炭素数1~10のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましく、メチル基が特に好ましい。Rが表す炭素数1以上のアルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアリール基としては、炭素数6~20のアリール基が好ましく、フェニル基が特に好ましい。
 一般式(1)におけるRが表すフッ化アルキル基としては、炭素数1~10のフッ化アルキル基が好ましく、炭素数1~3のフッ化アルキル基がより好ましく、トリフロロメチル基が特に好ましい。Rが表すフッ化アルキル基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるRが表すアルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、メトキシ基、エトキシ基、プロピルオキシ基がより好ましく、メトキシ基が特に好ましい。Rが表す炭素数1以上のアルコキシ基は、直鎖でも分枝でも環状であってもよい。
 一般式(1)におけるnは2以上の整数を表し、40~800であることが好ましく、50~700であることがより好ましく、60~500であることが特に好ましい。
R in the general formula (1) is preferably an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group or a carboxyl group in the general formula (1). Of these, an alkyl group, an amino group, an epoxy group or a carboxyl group is more preferred, and an alkyl group having 1 or more carbon atoms, an epoxy group or a carboxyl group is particularly preferred.
The alkyl group having 1 or more carbon atoms represented by R in the general formula (1) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group. The alkyl group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
As the aryl group represented by R in the general formula (1), an aryl group having 6 to 20 carbon atoms is preferable, and a phenyl group is particularly preferable.
The fluorinated alkyl group represented by R in the general formula (1) is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, more preferably a fluorinated alkyl group having 1 to 3 carbon atoms, and particularly preferably a trifluoromethyl group. . The fluorinated alkyl group represented by R may be linear, branched or cyclic.
The alkoxy group represented by R in the general formula (1) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or a propyloxy group, and particularly preferably a methoxy group. The alkoxy group having 1 or more carbon atoms represented by R may be linear, branched or cyclic.
In the general formula (1), n represents an integer of 2 or more, preferably 40 to 800, more preferably 50 to 700, and particularly preferably 60 to 500.
 一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物は、一般式(1)で表される繰り返し単位以外の分子末端に任意の置換基を有していてもよい。一般式(1)で表される繰り返し単位を有するシロキサン結合を有する化合物の分子末端に有していてもよい置換基の例および好ましい範囲は、一般式(1)におけるRの例および好ましい範囲と同様である。 The compound having a siloxane bond having a repeating unit represented by the general formula (1) may have an arbitrary substituent at the molecular end other than the repeating unit represented by the general formula (1). Examples and preferred ranges of substituents that may be present at the molecular ends of the compound having a siloxane bond having a repeating unit represented by the general formula (1) are the examples and preferred ranges of R in the general formula (1) It is the same.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が、前述の一般式(1)で表される繰り返し単位、ならびに、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が100~600モル%であることが好ましく、200~600モル%であることがより好ましく、300~600モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the surface of the resin layer containing the compound having a siloxane bond is represented by the repeating unit represented by the general formula (1) and at least the general formula (2). Or a compound having a siloxane bond having a repeating unit represented by the general formula (3).
In the gas separation membrane of the present invention, the above general formula of the repeating unit represented by the above general formula (3) in the above compound having the siloxane bond included in the surface of the resin layer containing the above compound having the siloxane bond. The ratio of the repeating unit represented by (2) and the repeating unit represented by the general formula (1) is preferably 100 to 600 mol%, more preferably 200 to 600 mol%, Particularly preferred is ˜600 mol%.
 本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が3.0~500モル%であることが好ましく、3.5~450モル%であることがより好ましく、4.0~400モル%であることが特に好ましい。
 さらに本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から100nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が、前述の一般式(1)で表される繰り返し単位、及び、少なくとも前述の一般式(2)で表される繰り返し単位または前述の一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが好ましい。本発明のガス分離膜では、前述のシロキサン結合を有する化合物を含む樹脂層の表面から100nmの深さにおける前述のシロキサン結合を有する化合物を含む樹脂層が含む前述のシロキサン結合を有する化合物における、前述の一般式(3)で表される繰り返し単位の前述の一般式(2)で表される繰り返し単位および前述の一般式(1)で表される繰り返し単位に対する比率が2.0~400モル%であることが好ましく、2.5~350モル%であることがより好ましく、3.0~300モル%であることが特に好ましい。
In the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 10 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 10 nm from the surface of the resin layer including the compound having the siloxane bond. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3.0 to 500 mol%. It is preferably 3.5 to 450 mol%, more preferably 4.0 to 400 mol%.
Furthermore, in the gas separation membrane of the present invention, the resin layer containing the compound having the siloxane bond described above at a depth of 100 nm from the surface of the resin layer containing the compound having the siloxane bond is represented by the general formula (1). And a compound having a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). In the gas separation membrane of the present invention, the compound having the siloxane bond described above is included in the resin layer including the compound having the siloxane bond at a depth of 100 nm from the surface of the resin layer including the compound having the siloxane bond. The ratio of the repeating unit represented by the general formula (3) to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 2.0 to 400 mol%. Preferably, it is 2.5 to 350 mol%, more preferably 3.0 to 300 mol%.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、重合可能な官能基を有していることが好ましい。このような官能基としては、エポキシ基、オキセタン基、カルボキシル基、アミノ基、ヒドロキシル基およびチオール基を挙げることができる。シロキサン結合を有する化合物を含む樹脂層はエポキシ基、オキセタン基、カルボキシル基およびこれらのうち2以上の基を有するシロキサン結合を有する化合物を含むことがより好ましい。このようなシロキサン結合を有する化合物を含む樹脂層は、前述の支持体の上に放射線硬化性組成物への放射線照射による硬化をすることにより形成されることが好ましい。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond preferably has a polymerizable functional group. Examples of such functional groups include epoxy groups, oxetane groups, carboxyl groups, amino groups, hydroxyl groups, and thiol groups. The resin layer containing a compound having a siloxane bond more preferably contains an epoxy group, an oxetane group, a carboxyl group, and a compound having a siloxane bond having two or more of these groups. Such a resin layer containing a compound having a siloxane bond is preferably formed on the aforementioned support by curing the radiation curable composition by irradiation with radiation.
 シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物は、ジアルキルシロキサン基を有する部分的に架橋された放射線硬化性組成物から形成された、重合性ジアルキルシロキサンであってもよい。重合性ジアルキルシロキサンは、ジアルキルシロキサン基を有するモノマー、ジアルキルシロキサン基を有する重合性オリゴマー、ジアルキルシロキサン基を有するポリマーである。ジアルキルシロキサン基としては、-{O-Si(CHn2-で表される基(n2は例えば1~100)を挙げることができる。末端にビニル基を有するポリ(ジアルキルシロキサン)化合物も好ましく用いることができる。 The compound having a siloxane bond used in the resin layer containing a compound having a siloxane bond may be a polymerizable dialkylsiloxane formed from a partially crosslinked radiation-curable composition having a dialkylsiloxane group. The polymerizable dialkylsiloxane is a monomer having a dialkylsiloxane group, a polymerizable oligomer having a dialkylsiloxane group, or a polymer having a dialkylsiloxane group. Examples of the dialkylsiloxane group include a group represented by — {O—Si (CH 3 ) 2 } n2 — (n2 is, for example, 1 to 100). A poly (dialkylsiloxane) compound having a vinyl group at the terminal can also be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for a resin layer material containing a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (Polydiphenylsiloxane), polydi (trifluoropropyl) siloxane (Polydi). (Trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) (hereinafter, referred to as “poly (1-trimethylsilyl-1-propyne)”) At least one selected from PTMSP), polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne) Mukoto more preferably, it is particularly preferred that it include a polydimethylsiloxane.
 シロキサン結合を有する化合物を含む樹脂層の材料に用いられるシロキサン結合を有する化合物としては市販の材料を用いることができ、例えば、シロキサン結合を有する化合物を含む樹脂層に用いられるシロキサン結合を有する化合物としては、UV9300(Momentive社製のポリジメチルシロキサン(PDMS))、X-22-162C(信越化学工業(株)製)などを好ましく用いることができる。
 シロキサン結合を有する化合物を含む樹脂層のその他の材料としては、UV9380C(Momentive社製のビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート)などを好ましく用いることができる。
A commercially available material can be used as the compound having a siloxane bond used for the material of the resin layer containing a compound having a siloxane bond. For example, as a compound having a siloxane bond used for a resin layer containing a compound having a siloxane bond For example, UV9300 (polydimethylsiloxane (PDMS) manufactured by Momentive), X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be preferably used.
As another material of the resin layer containing a compound having a siloxane bond, UV9380C (bis (4-dodecylphenyl) iodonium = hexafluoroantimonate manufactured by Momentive) or the like can be preferably used.
 シロキサン結合を有する化合物を含む樹脂層の材料は、シロキサン結合を有する化合物を含む樹脂層を形成するときに有機溶媒を含む組成物として調製することができ、硬化性組成物であることが好ましい。前述のシロキサン結合を有する化合物を含む樹脂層を形成するときに用いることができる有機溶媒としては、特に制限は無く、例えばn-ヘプタンなどを挙げることができる。 The material of the resin layer containing a compound having a siloxane bond can be prepared as a composition containing an organic solvent when forming a resin layer containing a compound having a siloxane bond, and is preferably a curable composition. The organic solvent that can be used when forming the resin layer containing the compound having a siloxane bond is not particularly limited, and examples thereof include n-heptane.
(厚み)
 シロキサン結合を有する化合物を含む樹脂層の膜厚(厚みと同義)としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層の厚みは0.1μm以上であることが製膜の容易性の観点から好ましく、0.1~5μmであることがより好ましく、0.1~4μmであることが特に好ましく、0.3~3μmであることがより特に好ましい。シロキサン結合を有する化合物を含む樹脂層の厚みはSEMで求めることができる。
 シロキサン結合を有する化合物を含む樹脂層の膜厚を上記の上限値よりも薄くすると、シロキサン結合を有する化合物を含む樹脂層のCOによる膨潤により孔径が押し広げられる効果が抑制でき、ガス分離選択性が上がる傾向が観察されている。
 シロキサン結合を有する化合物を含む樹脂層の厚みは、硬化性組成物の塗布量を調整することによって制御することができる。
(Thickness)
The film thickness (synonymous with the thickness) of the resin layer containing a compound having a siloxane bond is not particularly limited, but the thickness of the resin layer containing the compound having a siloxane bond is 0.1 μm or more. From the viewpoint of ease, it is preferably 0.1 to 5 μm, more preferably 0.1 to 4 μm, and particularly preferably 0.3 to 3 μm. The thickness of the resin layer containing a compound having a siloxane bond can be determined by SEM.
When the film thickness of the resin layer containing a compound having a siloxane bond is made thinner than the above upper limit, the effect of expanding the pore diameter due to the CO 2 swelling of the resin layer containing the compound having a siloxane bond can be suppressed, and gas separation selection can be performed. A tendency to increase sex has been observed.
The thickness of the resin layer containing the compound having a siloxane bond can be controlled by adjusting the coating amount of the curable composition.
<追加樹脂層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層の他に追加の樹脂層を含んでも良い(以下、追加樹脂層)。
<Additional resin layer>
The gas separation membrane of the present invention may include an additional resin layer in addition to the above-described resin layer containing a compound having a siloxane bond (hereinafter referred to as an additional resin layer).
 追加樹脂層に含まれる樹脂は、以下に挙げられるが、これらに限定されるわけではない。具体的には、前述のシロキサン結合を有する化合物、ポリイミド類、ポリアミド類、セルロース類、ポリエチレングリコール類、ポリベンゾオキサゾール類であることが好ましく、前述のシロキサン結合を有する化合物、ポリイミド、ポリベンゾオキサゾールおよび酢酸セルロースから選ばれる少なくとも1種であることがより好ましい。本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層を有し、ポリイミド化合物を含む層をさらに追加樹脂層として有することが特に好ましい。 The resin included in the additional resin layer is listed below, but is not limited thereto. Specifically, the above-described compounds having a siloxane bond, polyimides, polyamides, celluloses, polyethylene glycols, and polybenzoxazoles are preferable, and the above-described compounds having a siloxane bond, polyimide, polybenzoxazole, and More preferably, it is at least one selected from cellulose acetate. It is particularly preferable that the gas separation membrane of the present invention has a resin layer containing a compound having a siloxane bond as described above, and further has a layer containing a polyimide compound as an additional resin layer.
 ポリイミド化合物としては、反応性基を有するポリイミドであることが好ましい。 The polyimide compound is preferably a polyimide having a reactive group.
 以下において、追加樹脂層の樹脂が反応性基を有するポリイミドである場合について代表例として説明することがあるが、本発明は反応性基を有するポリマーが反応性基を有するポリイミドである場合これに限定されるものではない。 In the following, the case where the resin of the additional resin layer is a polyimide having a reactive group may be described as a representative example, but the present invention may be used when the polymer having a reactive group is a polyimide having a reactive group. It is not limited.
 本発明に用いることができる反応性基を有するポリイミドについて以下に詳しく説明する。
 本発明において、反応性基を有するポリイミド化合物は、反応性基を有するポリマーが、ポリイミド単位と、側鎖に反応性基(好ましくは求核性の反応性基であり、より好ましくはカルボキシル基、アミノ基またはヒドロキシル基)を有する繰り返し単位とを含むことが好ましい。
 より具体的に説明すれば、反応性基を有するポリマーが、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことが好ましい。
 さらに、反応性基を有するポリマーは、下記式(I)で表される繰り返し単位の少なくとも1種と、下記式(II-a)又は(II-b)で表される繰り返し単位の少なくとも1種と、下記式(III-a)又は(III-b)で表される繰り返し単位の少なくとも1種とを含むことがより好ましい。
 本発明に用いることができる反応性基を有するポリイミドは、上記各繰り返し単位以外の繰り返し単位を含むことができるが、そのモル数は、上記各式で表される各繰り返し単位のモル数の和を100としたときに、20以下であることが好ましく、0~10であることがより好ましい。本発明に用いることができる反応性基を有するポリイミドは、下記各式で表される各繰り返し単位のみからなることが特に好ましい。
The polyimide having a reactive group that can be used in the present invention will be described in detail below.
In the present invention, the polyimide compound having a reactive group is a polymer having a reactive group, a polyimide unit and a reactive group (preferably a nucleophilic reactive group in the side chain, more preferably a carboxyl group, And a repeating unit having an amino group or a hydroxyl group.
More specifically, the polymer having a reactive group is represented by at least one repeating unit represented by the following formula (I) and the following formula (III-a) or (III-b): It is preferable to include at least one repeating unit.
Furthermore, the polymer having a reactive group includes at least one repeating unit represented by the following formula (I) and at least one repeating unit represented by the following formula (II-a) or (II-b): And at least one repeating unit represented by the following formula (III-a) or (III-b).
The polyimide having a reactive group that can be used in the present invention may contain a repeating unit other than the above repeating units, and the number of moles thereof is the sum of the number of moles of each repeating unit represented by the above formulas. When 100 is 100, it is preferably 20 or less, more preferably 0 to 10. It is particularly preferable that the polyimide having a reactive group that can be used in the present invention consists only of each repeating unit represented by the following formulas.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
  式(I)において、Rは、下記式(I-a)~(I-h)のいずれかで表される構造の基を示す。下記式(I-a)~(I-h)において、*は式(I)のカルボニル基との結合部位を示す。式(I)におけるRを母核と呼ぶことがあるが、この母核Rは式(I-a)、(I-b)または(I-d)で表される基であることが好ましく、(I-a)または(I-d)で表される基であることがより好ましく、(I-a)で表される基であることが特に好ましい。 In the formula (I), R represents a group having a structure represented by any of the following formulas (Ia) to (Ih). In the following formulas (Ia) to (Ih), * represents a bonding site with the carbonyl group of the formula (I). R in the formula (I) may be referred to as a mother nucleus, and the mother nucleus R is preferably a group represented by the formula (Ia), (Ib) or (Id), A group represented by (Ia) or (Id) is more preferred, and a group represented by (Ia) is particularly preferred.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
・X、X、X
 X、X、Xは、単結合又は2価の連結基を示す。これらの2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zが挙げられ、なかでもアルキル基が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、本明細書において「互いに連結して環を形成してもよい」というときには、単結合、二重結合等により結合して環状構造を形成するものであってもよく、また、縮合して縮環構造を形成するものであってもよい。
・ X 1 , X 2 , X 3
X 1 , X 2 and X 3 represent a single bond or a divalent linking group. As these divalent linking groups, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring) , —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y is a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably Phenyl group)), or a combination thereof, and a single bond or —C (R x ) 2 — is more preferable. When R x represents a substituent, specific examples thereof include the substituent group Z described below. Among them, an alkyl group is preferable, an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. . In the present specification, when “may be linked to each other to form a ring”, it may be bonded by a single bond, a double bond or the like to form a cyclic structure, It may form a condensed ring structure.
・L
 Lは-CH=CH-又は-CH-を示し、好ましくは-CH=CH-である。
・ L
L represents —CH 2 ═CH 2 — or —CH 2 —, preferably —CH 2 ═CH 2 —.
・R、R
 R、Rは水素原子又は置換基を示す。その置換基としては、下記に示される置換基群Zより選ばれるいずれか1つを用いることができる。RおよびRは互いに結合して環を形成していてもよい。
・ R 1 , R 2
R 1 and R 2 represent a hydrogen atom or a substituent. As the substituent, any one selected from the substituent group Z shown below can be used. R 1 and R 2 may be bonded to each other to form a ring.
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
・R
 Rはアルキル基又はハロゲン原子を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。Rの数を示すl1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。Rはアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
・ R 3
R 3 represents an alkyl group or a halogen atom. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. L1 representing the number of R 3 is an integer of 0 to 4, preferably 1 to 4, and more preferably 3 to 4. R 3 is preferably an alkyl group, and more preferably a methyl group or an ethyl group.
・R、R
 R、Rはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示す。これらのアルキル基及びハロゲン原子の好ましいものは、後記置換基群Zで規定したアルキル基及びハロゲン原子の好ましい範囲と同義である。R、Rが連結した構造に特に制限はないが、単結合、-O-又は-S-が好ましい。R、Rの数を示すm1、n1は0~4の整数であるが、1~4が好ましく、3~4がより好ましい。
 R、Rはアルキル基である場合、メチル基又はエチル基であることが好ましく、トリフルオロメチルも好ましい。
・ R 4 , R 5
R 4 and R 5 each represents an alkyl group or a halogen atom, or a group that forms a ring together with X 2 by being linked to each other. Preferable examples of these alkyl groups and halogen atoms are the same as the preferable ranges of the alkyl groups and halogen atoms defined in Substituent group Z described later. The structure in which R 4 and R 5 are linked is not particularly limited, but a single bond, —O— or —S— is preferable. M1 and n1 representing the number of R 4 and R 5 are integers of 0 to 4, preferably 1 to 4, and more preferably 3 to 4.
When R 4 and R 5 are alkyl groups, they are preferably methyl groups or ethyl groups, and trifluoromethyl is also preferable.
・R、R、R
 R、R、Rは置換基を示す。ここでRとRが互いに結合して環を形成してもよい。これらの置換基の数を示すl2、m2、n2は0~4の整数であるが、0~2が好ましく、0~1がより好ましい。
・ R 6 , R 7 , R 8
R 6 , R 7 and R 8 represent a substituent. Here, R 7 and R 8 may be bonded to each other to form a ring. L2, m2, and n2 representing the number of these substituents are integers of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
・J
 Jは単結合又は2価の連結基を表す。連結基としては*-COO-**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、*-SO -**(R~Rは水素原子、アルキル基、アリール基を示し、その好ましい範囲は後記置換基群Zで説明するものと同義である。)、アルキレン基、又はアリーレン基を表す。*はフェニレン基側の結合部位、**はその逆の結合部位を表す。Jは、単結合、メチレン基、フェニレン基であることが好ましく、単結合が特に好ましい。
・ J 1
J 1 represents a single bond or a divalent linking group. As the linking group, * —COO N + R b R c R d — ** (R b to R d are a hydrogen atom, an alkyl group, and an aryl group, and preferred ranges thereof are those described in Substituent Group Z below. synonymous), * -. SO 3 - N + R e R f R g - ** (R e ~ R g is a hydrogen atom, an alkyl group, an aryl group, its preferred range is below substituent group Z And an alkylene group or an arylene group. * Represents the binding site on the phenylene group side, and ** represents the opposite binding site. J 1 is preferably a single bond, a methylene group or a phenylene group, and particularly preferably a single bond.
・A
 Aは架橋反応をし得る基であれば特に制限はないが、求核性の反応性基であることが好ましく、カルボキシル基、アミノ基、ヒドロキシル基、及び-S(=O)OHから選ばれる基を示すことがより好ましい。前述のアミノ基の好ましい範囲は、後記置換基群Zで説明するアミノ基の好ましい範囲と同義である。Aは特に好ましくはカルボキシル基、アミノ基またはヒドロキシル基であり、より特に好ましくはカルボキシル基又はヒドロキシル基であり、特に好ましくはカルボキシル基である。
・ A 1
A 1 is not particularly limited as long as it is a group capable of undergoing a crosslinking reaction, but is preferably a nucleophilic reactive group, and includes a carboxyl group, an amino group, a hydroxyl group, and —S (═O) 2 OH. It is more preferable to show the group selected. The preferred range of the amino group described above is synonymous with the preferred range of the amino group described in Substituent Group Z below. A 1 is particularly preferably a carboxyl group, an amino group or a hydroxyl group, more particularly preferably a carboxyl group or a hydroxyl group, and particularly preferably a carboxyl group.
 置換基群Z
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、パラ-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, such as cyclopropyl, Cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl, allyl, -Butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably An alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl and 3-pentynyl, and an aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably an aryl group having 6 to 12 carbon atoms, such as phenyl, para-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group, hetero A cyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzyl Amino, diphenylamino, ditolylamino, etc.), an alkoxy group (preferably having a carbon number) To 30 and more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably Is an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. ),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のカルバモイル基であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 A carbamoyl group (preferably a carbamoyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group ( Preferably, it is an arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 1 carbon atoms. Of a heterocyclic thio group, e.g. pyridylthio, 2-benzoxazolyl thio, and 2-benzthiazolylthio the like.),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシル基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphate amide, phenyl phosphate amide, etc.), hydroxyl group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom) ,
 シアノ基、スルホ基、カルボキシル基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a sulfo group, a carboxyl group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, even an aromatic heterocyclic ring The hetero atom may be a non-aromatic hetero ring, and examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Specific examples thereof include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably). Is a silica having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms. Groups such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyloxy, triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 本発明に用いうるポリイミド化合物において、前述の式(I)、(II-a)、(II-b)、(III-a)、(III-b)で表される各繰り返し単位の比率は、特に制限されるものではなく、ガス分離の目的(回収率、純度など)に応じガス透過性とガス分離選択性を考慮して適宜に調整される。 In the polyimide compound that can be used in the present invention, the ratio of each repeating unit represented by the aforementioned formula (I), (II-a), (II-b), (III-a), (III-b) is as follows: It is not particularly limited, and is appropriately adjusted in consideration of gas permeability and gas separation selectivity according to the purpose of gas separation (recovery rate, purity, etc.).
 本発明に用いうる反応性基を有するポリイミド中、式(II-a)及び(II-b)の各繰り返し単位の総モル数(EII)に対する式(III-a)及び(III-b)の各繰り返し単位の総モル数(EIII)の比(EII/EIII)は、5/95~95/5であることが好ましく、10/90~80/20であることがより好ましく、20/80~60/40であることがさらに好ましい。 In the polyimide having a reactive group that can be used in the present invention, the formulas (III-a) and (III-b) with respect to the total number of moles (E II ) of each repeating unit of the formulas (II-a) and (II-b) The ratio (E II / E III ) of the total number of moles (E III ) of each repeating unit is preferably 5/95 to 95/5, more preferably 10/90 to 80/20, More preferably, it is 20/80 to 60/40.
 本発明に用いることができる反応性基を有するポリイミドの分子量は、好ましくは重量平均分子量として10,000~1000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000である。 The molecular weight of the polyimide having a reactive group that can be used in the present invention is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, Preferably, it is 20,000 to 200,000.
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 Unless otherwise specified, the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
 本発明に用いうる反応性基を有するポリイミドは、特定の2官能酸無水物(テトラカルボン酸二無水物)と特定のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な書籍(例えば、株式会社エヌ・ティー・エス発行、今井淑夫、横田力男編著、最新ポリイミド~基礎と応用~、3~49頁など)で記載の手法を適宜選択することができる。 The polyimide having a reactive group that can be used in the present invention can be synthesized by condensation polymerization of a specific bifunctional acid anhydride (tetracarboxylic dianhydride) and a specific diamine. As the method, the method described in a general book (for example, published by NTS, edited by Ikuo Imai, Rikio Yokota, latest polyimide-basics and applications-pages 3-49, etc.) is appropriately selected. be able to.
 本発明に用いうる反応性基を有するポリイミドとして好ましい具体例を以下に挙げるが、本発明はこれらに限るものではない。なお、下記式中「100」、「x」、「y」は共重合比(モル比)を示す。「x」、「y」及び重量平均分子量の例を下記表4に示す。なお、本発明に用いうるポリイミド化合物では、yが0ではないことが好ましい。 Specific examples of preferred polyimides having a reactive group that can be used in the present invention are listed below, but the present invention is not limited thereto. In the following formulae, “100”, “x”, and “y” represent copolymerization ratios (molar ratios). Examples of “x”, “y” and weight average molecular weight are shown in Table 4 below. In the polyimide compound that can be used in the present invention, y is preferably not 0.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 さらに、上記の例示ポリイミド化合物P-100において共重合比xが20で、yが80としたポリマー(P-101)も好ましく用いることができる。 Furthermore, a polymer (P-101) having a copolymerization ratio x of 20 and y of 80 in the above exemplified polyimide compound P-100 can also be preferably used.
 また、追加樹脂層の樹脂がポリイミドである場合、より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid 5218およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等も好ましい。 Further, when the resin of the additional resin layer is polyimide, more specifically, the product name P84 and the product from Matrimid 5218 and HP Polymers GmbH sold under the Matrimid (registered trademark) trademark of Huntsman Advanced Materials, respectively. P84 or P84HT sold under the name P84HT is also preferable.
 一方、ポリイミド以外の追加樹脂層の樹脂としては、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類を選択することができる。追加樹脂層に用いることができるセルロース類としては、全アシル基の置換度が2.0~2.7であることが好ましい。酢酸セルロースL-40(アシル基置換度2.5 株式会社ダイセル製)として市販されているセルロースアセテートも好ましく用いることができる。 On the other hand, as the resin of the additional resin layer other than polyimide, celluloses such as cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose, and nitrocellulose can be selected. As celluloses that can be used in the additional resin layer, the substitution degree of all acyl groups is preferably 2.0 to 2.7. Cellulose acetate commercially available as cellulose acetate L-40 (acyl group substitution degree 2.5, manufactured by Daicel Corporation) can also be preferably used.
 その他の追加樹脂層の樹脂としては、ポリエチレングリコール♯200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021号公報に記載のポリマーなどを選択することができる。 As other resin of the additional resin layer, polyethylene glycols such as a polymer obtained by polymerizing polyethylene glycol # 200 diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), polymers described in JP-T-2010-513021, and the like are selected. be able to.
 支持体とシロキサン結合を有する化合物を含む樹脂層の間に、他の追加樹脂層が入ってもよい。他の追加樹脂層としては、例えばPVAなどの親水・疎水性の調整などを挙げることができる。 Other additional resin layers may be inserted between the support and the resin layer containing a compound having a siloxane bond. Examples of other additional resin layers include adjustment of hydrophilicity / hydrophobicity such as PVA.
(特性)
 追加樹脂層の厚みとしては機械的強度、ガス分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。
(Characteristic)
The thickness of the additional resin layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and gas separation selectivity.
 ガス透過性を高める観点から本発明のガス分離膜のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層は薄層であることが好ましい。シロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の厚みは通常には10μm以下であり、3μm以下であることが好ましく、1μm以下であることが特に好ましく、0.3μm以下であることがより特に好ましく、0.2μm以下であることがさらにより特に好ましい。
 なお、シロキサン結合を有する化合物を含む樹脂層以外の上記追加樹脂層の厚さは通常には0.01μm以上であり、実用上、製膜の容易性の観点から0.03μm以上が好ましく、0.1μm以上がより好ましい。
From the viewpoint of enhancing gas permeability, the additional resin layer other than the resin layer containing the compound having a siloxane bond of the gas separation membrane of the present invention is preferably a thin layer. The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 10 μm or less, preferably 3 μm or less, particularly preferably 1 μm or less, and preferably 0.3 μm or less. More particularly preferred, it is even more particularly preferred that it is 0.2 μm or less.
The thickness of the additional resin layer other than the resin layer containing the compound having a siloxane bond is usually 0.01 μm or more, and is practically preferably 0.03 μm or more from the viewpoint of film formation, More preferably, it is 1 μm or more.
<保護層>
 本発明のガス分離膜は、前述のシロキサン結合を有する化合物を含む樹脂層上または追加樹脂層上に形成された保護層(Protective Layer)を具備するものでもよい。保護層は前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層の上に設置される層のことである。ハンドリング時や使用時に前述のシロキサン結合を有する化合物を含む樹脂層または追加樹脂層と他の材料との意図しない接触を防ぐことができる。
<Protective layer>
The gas separation membrane of the present invention may be provided with a protective layer (Protective Layer) formed on the resin layer containing the compound having a siloxane bond or on the additional resin layer. The protective layer is a layer placed on the resin layer containing the compound having a siloxane bond or the additional resin layer. It is possible to prevent unintentional contact between the resin layer containing the compound having a siloxane bond or the additional resin layer and other materials during handling or use.
(材料)
 前述の保護層の材料としては特に制限はないが、前述の保護層に用いられる材料の好ましい範囲は、シロキサン結合を有する化合物を含む樹脂層に用いられる好ましい材料の範囲と同様である。特に前述の保護層が、ポリジメチルシロキサン、ポリ(1-トリメチルシリル-1-プロピン)およびポリエチレンオキサイドから選ばれる少なくとも1種であることが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)であることがより好ましく、ポリジメチルシロキサンであることが特に好ましい。
(material)
Although there is no restriction | limiting in particular as the material of the above-mentioned protective layer, The preferable range of the material used for the above-mentioned protective layer is the same as the range of the preferable material used for the resin layer containing the compound which has a siloxane bond. In particular, the protective layer is preferably at least one selected from polydimethylsiloxane, poly (1-trimethylsilyl-1-propyne) and polyethylene oxide, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propyne). Is more preferable, and polydimethylsiloxane is particularly preferable.
(特性)
 前述の保護層の厚みは、20nm~3μmであることが好ましく、50nm~2μmであることがより好ましく、100nm~1μmであることが特に好ましい。
(Characteristic)
The thickness of the protective layer is preferably 20 nm to 3 μm, more preferably 50 nm to 2 μm, and particularly preferably 100 nm to 1 μm.
<特性、用途>
 本発明の分離膜は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。
 本発明のガス分離膜は、酸性ガスと非酸性ガスのガス混合物から、少なくとも1種の酸性ガスを分離するためのガス分離膜であることが好ましい。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)が挙げられ、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、及び窒素酸化物(NOx)から選択される少なくとも1種であることが好ましく、より好ましくは二酸化炭素、硫化水素又は硫黄酸化物(SOx)であり、特に好ましくは二酸化炭素である。
 前述の非酸性ガスとしては水素、メタン、窒素、及び一酸化炭素から選択される少なくとも1種であることが好ましく、より好ましくはメタン、水素であり、特に好ましくはメタンである。
 本発明のガス分離膜は、特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
<Characteristics and applications>
The separation membrane of the present invention can be suitably used as a gas separation recovery method and a gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
The gas separation membrane of the present invention is preferably a gas separation membrane for separating at least one acidic gas from a gas mixture of acidic gas and non-acidic gas. Examples of the acid gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen oxide (NOx), and carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxide (SOx), and nitrogen. It is preferably at least one selected from oxides (NOx), more preferably carbon dioxide, hydrogen sulfide or sulfur oxide (SOx), and particularly preferably carbon dioxide.
The aforementioned non-acidic gas is preferably at least one selected from hydrogen, methane, nitrogen, and carbon monoxide, more preferably methane and hydrogen, and particularly preferably methane.
The gas separation membrane of the present invention is preferably a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane).
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃、6MPaにおける二酸化炭素の透過速度が10GPU以上であることが好ましく、10~300GPUであることがより好ましく、15~300GPUであることが特に好ましく、30~300GPUであることがより特に好ましい。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the carbon dioxide permeation rate at 40 ° C. and 6 MPa is preferably 10 GPU or more, more preferably 10 to 300 GPU. 15 to 300 GPU is particularly preferable, and 30 to 300 GPU is more preferable.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
 本発明のガス分離膜は、分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、6MPaにおける二酸化炭素の透過流束のメタンの透過流束に対する比であるガス分離選択性αが30以上であることが好ましく、35以上であることがより好ましく、40以上であることが特に好ましく、50以上であることがより特に好ましい。 The gas separation membrane of the present invention is a gas separation selection which is a ratio of the permeation flux of carbon dioxide to the permeation flux of methane at 40 ° C. and 6 MPa when the gas to be separated is a mixed gas of carbon dioxide and methane. The property α is preferably 30 or more, more preferably 35 or more, particularly preferably 40 or more, and particularly preferably 50 or more.
 上記選択的なガス透過には膜への溶解・拡散機構が関与すると考えられる。このような観点を活かし、PEO組成を含む分離膜が検討されている(Journal of Membrane Science,1999,160,87-99参照)。これは二酸化炭素がポリエチレンオキシ組成との相互作用が強いことに起因する。このポリエチレンオキシ膜はガラス転移温度の低い柔軟なゴム状のポリマー膜であるため、ガス種による拡散係数の差は小さく、ガス分離選択性は溶解度の差の効果によるものが主である。これに対し、本発明の好ましい態様では、前述のシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物のガラス転移温度が高く、上記溶解・拡散作用を発揮させながら、膜の熱的な耐久性という観点でも大幅に改善することができる。 It is considered that the selective gas permeation involves a dissolution / diffusion mechanism into the membrane. Taking advantage of such a viewpoint, a separation membrane containing a PEO composition has been studied (see Journal of Membrane Science, 1999, 160, 87-99). This is because carbon dioxide has a strong interaction with the polyethyleneoxy composition. Since the polyethyleneoxy membrane is a flexible rubber-like polymer membrane having a low glass transition temperature, the difference in diffusion coefficient due to the gas species is small, and the gas separation selectivity is mainly due to the effect of the difference in solubility. On the other hand, in a preferred embodiment of the present invention, the glass transition temperature of the compound having a siloxane bond contained in the resin layer containing the compound having a siloxane bond described above is high, and the film is heated while exhibiting the dissolution / diffusion action. From the viewpoint of durability, it can be greatly improved.
[ガス分離膜の製造方法]
 本発明のガス分離膜を製造する方法は、特に制限は無い。
 本発明のガス分離膜を製造する方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して特定の処理を施すことが好ましい。シロキサン結合を有する化合物を含む樹脂層前駆体に対して施す特定の処理としては、シロキサン結合を有する化合物を含む樹脂層前駆体に酸素原子を浸透させる酸素原子浸透処理であることが好ましく、プラズマ処理であることがより好ましい。
 本発明のガス分離膜を製造する方法は、以下の本発明のガス分離膜の製造方法であることが好ましい。
 本発明のガス分離膜の製造方法は、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、前述の酸素原子浸透処理工程が酸素流量45cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上でアノードカップリングを用いたプラズマ処理である。
[Method for producing gas separation membrane]
The method for producing the gas separation membrane of the present invention is not particularly limited.
In the method for producing a gas separation membrane of the present invention, it is preferable to perform a specific treatment on the resin layer precursor containing a compound having a siloxane bond. The specific treatment to be applied to the resin layer precursor containing a compound having a siloxane bond is preferably an oxygen atom permeation treatment in which oxygen atoms permeate the resin layer precursor containing a compound having a siloxane bond. It is more preferable that
The method for producing a gas separation membrane of the present invention is preferably the following method for producing a gas separation membrane of the present invention.
The method for producing a gas separation membrane of the present invention includes an oxygen atom permeation treatment step for permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond, and the oxygen atom permeation treatment step described above includes an oxygen flow rate of 45 cm 3. (STP) / Plasma treatment using a carrier gas of at least min and using anode coupling at an input power of 23 W or more.
 本発明のガス分離膜を製造する方法および本発明のガス分離膜の製造方法の好ましい構成を、図面を用いて説明する。
 本発明のガス分離膜を製造する方法は、図5に示すように、支持体4と、シロキサン結合を有する化合物を含む樹脂層前駆体2の積層体に対し、シロキサン結合を有する化合物を含む樹脂層前駆体2の一方の表面側から特定の処理(酸素原子浸透処理5)を施す工程を含むことが好ましい。
 本発明のガス分離膜を製造する方法は、その後、シロキサン結合を有する化合物を含む樹脂層前駆体に特定の処理(酸素原子浸透処理5)を施した表面上に追加樹脂層を形成する工程を含んでいてもよい(不図示)。
A preferred configuration of the method for producing a gas separation membrane of the present invention and the method for producing a gas separation membrane of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the method for producing a gas separation membrane of the present invention is a resin containing a compound having a siloxane bond with respect to a laminate of a support 4 and a resin layer precursor 2 containing a compound having a siloxane bond. It is preferable to include a step of performing a specific treatment (oxygen atom permeation treatment 5) from one surface side of the layer precursor 2.
The method for producing a gas separation membrane of the present invention includes a step of forming an additional resin layer on a surface obtained by performing a specific treatment (oxygen atom permeation treatment 5) on a resin layer precursor containing a compound having a siloxane bond. It may be included (not shown).
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 本発明のガス分離膜を製造する方法は、シロキサン結合を有する化合物を含む樹脂層前駆体を前述の支持体上に形成する工程を含むことが好ましい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体を支持体上に形成する方法としては特に制限はないが、シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物を塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法やディップコート法、バーコート法を適宜用いることができる。
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料および有機溶媒を含む組成物は、硬化性組成物であることが好ましい。シロキサン結合を有する化合物を含む樹脂層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~2000mW/cmであることが好ましい。
<Formation of resin layer precursor containing compound having siloxane bond>
The method for producing a gas separation membrane of the present invention preferably includes a step of forming a resin layer precursor containing a compound having a siloxane bond on the aforementioned support.
The method for forming the resin layer precursor containing the compound having a siloxane bond on the support is not particularly limited, but a resin layer precursor material containing a compound having a siloxane bond and a composition containing an organic solvent are used. It is preferable to apply. The coating method is not particularly limited, and a known method can be used. For example, a spin coating method, a dip coating method, or a bar coating method can be appropriately used.
The resin layer precursor material containing a compound having a siloxane bond and the composition containing an organic solvent are preferably curable compositions. Although there is no restriction | limiting in particular as a method of radiation irradiation to a curable composition when forming the resin layer containing the compound which has a siloxane bond, Electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used. Depending on the material used, it can be appropriately selected.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 2000 mW / cm 2 .
 シロキサン結合を有する化合物を含む樹脂層前駆体の材料に用いられるシロキサン結合を有する化合物としては、ポリジメチルシロキサン(以下、PDMSとも言う)、ポリジフェニルシロキサン(Polydiphenyl siloxane)、ポリジ(トリフルオロプロピル)シロキサン(Polydi(trifluoropropyl)siloxane)、ポリメチル(3,3,3-トリフロオロプロピル)シロキサン(Poly[methyl(3,3,3-trifluoropropyl)siloxane])、ポリ(1-トリメチルシリル-1-プロピン)(以下、PTMSPとも言う)から選ばれる少なくとも1種を含むことが好ましく、ポリジメチルシロキサンまたはポリ(1-トリメチルシリル-1-プロピン)を含むことがより好ましく、ポリジメチルシロキサンを含むことが特に好ましい。 Examples of the compound having a siloxane bond used for the material of the resin layer precursor including a compound having a siloxane bond include polydimethylsiloxane (hereinafter also referred to as PDMS), polydiphenylsiloxane (polydiphenylsiloxane), and polydi (trifluoropropyl) siloxane. (Polydi (trifluoropropyl) siloxane), polymethyl (3,3,3-trifluoropropyl) siloxane (Poly [methyl (3,3,3-trifluoropropyl) siloxane]), poly (1-trimethylsilyl-1-propyne) ( In the following, it preferably contains at least one selected from PTMSP, and polydimethylsiloxane or poly (1-trimethylsilyl-1-propylene). ) More preferably containing, it is particularly preferred that it include a polydimethylsiloxane.
<シロキサン結合を有する化合物を含む樹脂層前駆体の処理>
 本発明のガス分離膜を製造する方法はシロキサン結合を有する化合物を含む樹脂層前駆体に対して(好ましくは一方の表面側から)酸素原子を浸透させる特定の処理(酸素原子浸透処理)を施す工程を含むことが好ましく、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなるまで上述の特定の処理を行うことがより好ましい。
<Treatment of resin layer precursor containing a compound having a siloxane bond>
In the method for producing a gas separation membrane of the present invention, a specific treatment (oxygen atom permeation treatment) for infiltrating oxygen atoms (preferably from one surface side) is performed on a resin layer precursor containing a compound having a siloxane bond. Preferably, the process includes the steps described above until the positron lifetime τ3 of the third component is 3.40 to 4.20 ns when a positron is injected at a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond. It is more preferable to perform a specific process.
 上述の特定の処理を行う方法としては特に制限はないが、例えば、シロキサン結合を有する化合物を含む樹脂層前駆体の一方の表面側からプラズマ処理を行う方法を挙げることができる。
 本発明のガス分離膜の製造方法では、シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
 前述の酸素原子浸透処理工程が酸素流量45cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上でアノードカップリングを用いたプラズマ処理である。
 例えば、前述のプラズマ処理を以下の条件で5~30秒間行う方法を挙げることができる。
プラズマ処理条件:酸素流量45cm(STP)/min以上、アルゴン流量100cm(STP)/min、投入電力(放電出力)23W以上、アノードカップリング。
Although there is no restriction | limiting in particular as a method of performing the above-mentioned specific process, For example, the method of performing plasma processing from the one surface side of the resin layer precursor containing the compound which has a siloxane bond can be mentioned.
The method for producing a gas separation membrane of the present invention includes an oxygen atom infiltration treatment step of infiltrating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
The above-described oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more and using anode coupling at an input power of 23 W or more.
For example, a method of performing the above-described plasma treatment for 5 to 30 seconds under the following conditions can be mentioned.
Plasma treatment conditions: oxygen flow rate 45 cm 3 (STP) / min or more, argon flow rate 100 cm 3 (STP) / min, input power (discharge output) 23 W or more, anode coupling.
 プラズマ処理は上記の条件で5秒間以上であることがガス分離選択性を高め、かつ、耐傷性を高くしてガス分離選択性を低下し難くする観点からより好ましく、10秒間以上であることが特に好ましく、20秒間以上であることがより特に好ましい。
 一方、前述のプラズマ処理が、上記の条件で1000秒間以下であることが好ましい。上述の特定の処理がプラズマ処理である場合、短時間処理で十分な効果が発現するため、ロール トゥ ロールでの製造への応用も可能である。前述のプラズマ処理が、上記の条件で40秒間以下であることがより好ましく、30秒間以下であることが特に好ましい。
 また、プラズマ処理による積算エネルギー量は25~500000J/cmが好ましく、2500~100000J/cmがより好ましい。
The plasma treatment is preferably 5 seconds or longer under the above conditions, more preferably from the viewpoint of enhancing gas separation selectivity and increasing the scratch resistance and making it difficult to reduce gas separation selectivity. Particularly preferred, more preferably 20 seconds or more.
On the other hand, it is preferable that the above-mentioned plasma treatment be performed for 1000 seconds or less under the above conditions. When the above-mentioned specific treatment is a plasma treatment, a sufficient effect can be obtained by a short time treatment, and therefore, it can be applied to production by roll-to-roll. The aforementioned plasma treatment is more preferably 40 seconds or less under the above conditions, and particularly preferably 30 seconds or less.
Further, the cumulative energy amount by the plasma treatment is preferably 25 ~ 500000J / cm 2, and more preferably 2500 ~ 100000J / cm 2.
 本発明に適用されるプラズマ処理は、安定したプラズマを発生させるため減圧プラズマを利用し、その大型の真空チャンバ内で被処理体を処理する態様が挙げられる。昨今では大気圧雰囲気下での処理が可能である大気圧プラズマ処理装置が開発されている。そこではプロセス室内にガスを導入し、大気圧雰囲気下で高密度プラズマを安定して発生させることができる。大気圧プラズマ処理装置のシステム構成としては、ガス混合・制御部、反応器および搬送コンベヤ(もしくはXYテーブル)から構成されるものが挙げられる。円形ノズルよりスポット的にプラズマジェットを吹き出して処理するものも提案されている。
 プラズマ処理条件としては、アルゴン流量が5~500cm(STP)/分であることが好ましく、50~200cm(STP)/分であることがより好ましく、80~120cm(STP)/分であることが特に好ましい。本発明のガス分離膜の製造方法では、酸素流量が45cm(STP)/min以上であり、50cm(STP)/分以上であることが好ましく、50~100cm(STP)/分であることがより好ましい。
 プラズマ処理条件としては、真空度が0.6~100Paであることが好ましく、1~60Paであることがより好ましく、2~40Paであることが特に好ましい。
 本発明のガス分離膜の製造方法では、プラズマ処理条件としては、投入電力(放電出力)が23W以上であり、23~1000Wであることが好ましく、40~1000Wであることがより好ましく、110~500Wであることが特に好ましい。
 本発明のガス分離膜の製造方法では、プラズマ処理条件としては、アノードカップリングを用いることがガス分離選択性の観点から好ましい。
 プラズマ処理の変わりにコロナ処理などを用いることもできる。
The plasma treatment applied to the present invention includes a mode in which a low-pressure plasma is used to generate a stable plasma, and an object to be processed is processed in a large vacuum chamber. Recently, an atmospheric pressure plasma processing apparatus capable of processing in an atmospheric pressure atmosphere has been developed. In this case, gas can be introduced into the process chamber and high-density plasma can be stably generated under an atmospheric pressure atmosphere. Examples of the system configuration of the atmospheric pressure plasma processing apparatus include a system composed of a gas mixing / control unit, a reactor, and a transfer conveyor (or XY table). There has also been proposed a method in which a plasma jet is blown out in a spot manner from a circular nozzle.
As plasma treatment conditions, the argon flow rate is preferably 5 to 500 cm 3 (STP) / min, more preferably 50 to 200 cm 3 (STP) / min, and 80 to 120 cm 3 (STP) / min. It is particularly preferred. In the manufacturing method of the gas separation membrane of the present invention, the oxygen flow 45cm 3 (STP) / min or more, it is preferably, 50 ~ 100cm 3 (STP) / min is 50cm 3 (STP) / min or more It is more preferable.
As plasma treatment conditions, the degree of vacuum is preferably 0.6 to 100 Pa, more preferably 1 to 60 Pa, and particularly preferably 2 to 40 Pa.
In the method for producing a gas separation membrane of the present invention, as plasma treatment conditions, the input power (discharge output) is 23 W or more, preferably 23 to 1000 W, more preferably 40 to 1000 W, more preferably 110 to Particularly preferred is 500 W.
In the method for producing a gas separation membrane of the present invention, it is preferable to use anode coupling as the plasma treatment condition from the viewpoint of gas separation selectivity.
Corona treatment or the like can be used instead of plasma treatment.
<追加樹脂層の調製方法>
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の調製方法としては特に制限はなく、公知の材料を商業的に入手しても、公知の方法で形成しても、特定の樹脂を用いて後述の方法で形成してもよい。
<Method for preparing additional resin layer>
The method for preparing the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, and a specific resin may be used regardless of whether a known material is obtained commercially or formed by a known method. You may form by the method of mentioning later using.
 前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する方法としては特に制限はないが、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層の材料および有機溶媒を含む組成物を下層(例えば、シロキサン結合を有する化合物を含む樹脂層)に塗布することが好ましい。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 本発明のガス分離膜の前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。
The method for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond is not particularly limited, but the material of the additional resin layer other than the resin layer containing the compound having the siloxane bond and the organic solvent are used. It is preferable to apply the composition containing the composition to a lower layer (for example, a resin layer containing a compound having a siloxane bond). A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
The conditions for forming the additional resin layer other than the resin layer containing the compound having a siloxane bond in the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., and −10 to 80 ° C. More preferred is 5 to 50 ° C.
 本発明においては、前述のシロキサン結合を有する化合物を含む樹脂層以外の追加樹脂層を形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。 In the present invention, a gas such as air or oxygen may coexist at the time of forming an additional resin layer other than the resin layer containing a compound having a siloxane bond as described above, but it is preferably in an inert gas atmosphere.
<保護層の形成>
 本発明のガス分離膜の製造方法は、前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する工程を含んでいてもよい。
 前述のシロキサン結合を有する化合物を含む樹脂層前駆体の表面処理を行った表面上に保護層を形成する方法としては特に制限はないが、前述の保護層の材料および有機溶媒を含む組成物を塗布することが好ましい。有機溶媒としては、前述のシロキサン結合を有する化合物を含む樹脂層の形成に用いられる有機溶媒を挙げることができる。塗布方法としては特に制限はなく公知の方法を用いることができるが、例えばスピンコート法を用いることができる。
 保護層を形成するときの硬化性組成物への放射線照射の方法としては特に制限はないが、電子線、紫外線(UV)、可視光または赤外線照射を用いることができ、用いる材料に応じて適宜選択することができる。
 放射線照射時間は1~30秒であることが好ましい。
 放射エネルギーは10~2000mW/cmであることが好ましい。
<Formation of protective layer>
The manufacturing method of the gas separation membrane of this invention may include the process of forming a protective layer on the surface which performed the surface treatment of the resin layer precursor containing the compound which has the above-mentioned siloxane bond.
The method for forming the protective layer on the surface of the resin layer precursor containing the compound having a siloxane bond described above is not particularly limited, but a composition containing the protective layer material and the organic solvent is not particularly limited. It is preferable to apply. As an organic solvent, the organic solvent used for formation of the resin layer containing the compound which has the above-mentioned siloxane bond can be mentioned. A coating method is not particularly limited and a known method can be used. For example, a spin coating method can be used.
Although there is no restriction | limiting in particular as a method of radiation irradiation to the curable composition when forming a protective layer, Although an electron beam, an ultraviolet-ray (UV), visible light, or infrared irradiation can be used, according to the material to be used suitably. You can choose.
The irradiation time is preferably 1 to 30 seconds.
The radiant energy is preferably 10 to 2000 mW / cm 2 .
<ガス混合物の分離方法>
 本発明のガス分離膜を用いることで、ガス混合物の分離をすることができる。
 本発明のガス分離膜を用いるガス混合物の分離方法において、原料のガス混合物の成分は原料産地や用途又は使用環境などによって影響されるものであり、特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン又は二酸化炭素及び窒素又は二酸化炭素及び水素であることが好ましい。
すなわち、ガス混合物における二酸化炭素及びメタン又は二酸化炭素及び水素の占める割合が、二酸化炭素の割合として5~50%であることが好ましく、更に好ましくは10~40%である。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下である場合、本発明のガス分離膜を用いるガス混合物の分離方法は特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。
 ガス混合物の分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法であることが好ましい。ガス分離の際の圧力は3MPa~10MPaであることが好ましく、4MPa~7MPaであることがより好ましく、5MPa~7MPaであることが特に好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。
<Separation method of gas mixture>
By using the gas separation membrane of the present invention, the gas mixture can be separated.
In the method for separating a gas mixture using the gas separation membrane of the present invention, the components of the raw material gas mixture are affected by the raw material production area, application, or use environment, and are not particularly defined. The main components are preferably carbon dioxide and methane or carbon dioxide and nitrogen or carbon dioxide and hydrogen.
That is, the proportion of carbon dioxide and methane or carbon dioxide and hydrogen in the gas mixture is preferably 5 to 50%, more preferably 10 to 40% as the proportion of carbon dioxide. When the gas mixture is in the presence of an acidic gas such as carbon dioxide or hydrogen sulfide, the separation method of the gas mixture using the gas separation membrane of the present invention exhibits particularly excellent performance, preferably carbonization such as carbon dioxide and methane. Excellent performance in separation of hydrogen, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
The method for separating the gas mixture is preferably a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure at the time of gas separation is preferably from 3 MPa to 10 MPa, more preferably from 4 MPa to 7 MPa, and particularly preferably from 5 MPa to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C.
[ガス分離膜モジュール、ガス分離装置]
 本発明のガス分離膜モジュールは、本発明のガス分離膜を有する。
 本発明のガス分離膜は多孔質支持体と組み合わせた薄層複合膜とすることが好ましく、更にはこれを用いたガス分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、薄層複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置とすることができる。本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明のガス分離膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜・吸収ハイブリッド法としてのガス分離回収装置に適用してもよい。
[Gas separation membrane module, gas separation device]
The gas separation membrane module of the present invention has the gas separation membrane of the present invention.
The gas separation membrane of the present invention is preferably a thin layer composite membrane combined with a porous support, and more preferably a gas separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out the separation separation collection | recovery or separation refinement | purification using the gas separation membrane of this invention, a thin layer composite membrane, or a gas separation membrane module. The gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. The gas separation membrane of the present invention may be applied to a gas separation and recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in, for example, JP-A-2007-297605.
 以下に実施例と比較例(なお比較例は公知技術というわけではない)を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 なお、文中「部」及び「%」とあるのは特に示さない限り質量基準とする。
Hereinafter, the present invention will be described more specifically by way of examples and comparative examples (note that comparative examples are not known techniques). The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In the text, “parts” and “%” are based on mass unless otherwise specified.
{第1の態様}
 まず、条件1を満たす第1の態様の実施例を示す。
{First aspect}
First, the Example of the 1st aspect which satisfy | fills the conditions 1 is shown.
[実施例1]
<シロキサン結合を有する化合物を含む樹脂層前駆体液の調製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mlの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業(株)製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
Figure JPOXMLDOC01-appb-C000041
[Example 1]
<Preparation of resin layer precursor liquid containing a compound having a siloxane bond>
(Preparation of radiation curable polymer having dialkylsiloxane group)
In a 150 ml three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.), DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0.007 g was added and dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.).
Figure JPOXMLDOC01-appb-C000041
(重合性の放射線硬化性組成物の調製)
 20℃まで冷却した放射線硬化性ポリマー溶液5gを、n-ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5gおよびオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(Preparation of polymerizable radiation curable composition)
5 g of the radiation curable polymer solution cooled to 20 ° C. was diluted with 95 g of n-heptane. To the obtained solution, 0.5 g of UV9380C (manufactured by Momentive) as a photopolymerization initiator and 0.1 g of organics TA-10 (manufactured by Matsumoto Fine Chemical) are added, and a polymerizable radiation curable composition is prepared. Prepared.
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として重合性の放射線硬化性組成物をスピンコートした後、UV強度9kW/m、UV照射時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有するシロキサン結合を有する化合物を含み、厚み1μmのシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
<Formation of resin layer precursor containing compound having siloxane bond>
PAN (polyacrylonitrile) porous film (Polyacrylonitrile porous film is present on the nonwoven fabric, including the nonwoven fabric, the film thickness is about 180 μm) The spin-coated polymerizable radiation curable composition as a support, and then the UV intensity UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under UV treatment conditions of 9 kW / m 2 and UV irradiation time of 10 seconds, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond having a dialkylsiloxane group and having a siloxane bond having a thickness of 1 μm was formed on the porous support.
<シロキサン結合を有する化合物を含む樹脂層前駆体の酸素原子浸透処理-プラズマ処理->
 シロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体をデスクトップ真空プラズマ装置(ユーテック社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を25Wとし、処理時間10秒でプラズマ処理を行った。
 得られた複合膜を実施例1のガス分離膜とした。
<Oxygen atom permeation treatment of a resin layer precursor containing a compound having a siloxane bond-plasma treatment->
Put porous support to form a resin layer precursor comprising a compound having a siloxane bond to the desktop vacuum plasma apparatus (UTEC Corporation), the oxygen flow rate 20 cm 3 of carrier gas conditions (STP) / min, argon flow rate 100 cm 3 ( STP) / min, the degree of vacuum was 30 Pa, the input power was 25 W, and the plasma treatment was performed for a treatment time of 10 seconds.
The obtained composite membrane was used as the gas separation membrane of Example 1.
(シロキサン結合を有する化合物を含む樹脂層のケイ素原子、酸素原子及び炭素原子の数の算出)
 プラズマ処理を行ったシロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体の中心をサンプリングし、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)は、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出した。
 シロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)を算出した。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比も同様に算出した。
 続いてシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求めるためにC60イオンによるエッチングを行った。すなわち、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60 :10keV、10nAとし、2mm×2mmの領域を10nmエッチングした。この膜にてESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を算出した。シロキサン結合を有する化合物を含む樹脂層の表面からのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出した。この値は材質が変わるごとに求めることが出来、適宜材料に最適な数値を用いるものとする。
 得られたシロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と、シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比(B)から、A/Bの値を算出し、下記表5および表6に記載した。
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)と同様の方法で、シロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(C)を求めた。また、O/Si比(B)とO/Si比(C)から、C/Bの値を算出し、下記表5および表6に記載した。またシロキサン結合を有する化合物を含む樹脂層の表面における炭素原子の数のケイ素原子の数に対する比である炭素/ケイ素比の値を下記表5および表6に記載した。
 前述のシロキサン結合を有する化合物を含む樹脂層の表面は、O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面である。シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層の酸素原子の数のケイ素原子の数に対する比であるO/Si比(A)を求める方法と同様の方法で、O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面を特定した。
 その結果、上述の方法において、多孔質支持体の上にシロキサン結合を有する化合物を含む樹脂層を形成した状態(他の層(例えばポリイミドを含む層)なしの状態)でのシロキサン結合を有する化合物を含む樹脂層の表面は、「O/Si比を前述のガス分離膜の表面から測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面」であることが確認された。
(Calculation of the number of silicon atoms, oxygen atoms and carbon atoms in a resin layer containing a compound having a siloxane bond)
A compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond is sampled by sampling the center of the porous support on which the resin layer containing the compound having a siloxane bond has been subjected to plasma treatment. O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing to the number of silicon atoms, and the number of oxygen atoms on the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms The ratio O / Si (B) was calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
A porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc. Included in Quantera SXM manufactured by the company, X-ray source: Al—Kα ray (1490 eV, 25 W, diameter of 100 μm), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond The O / Si ratio (B), which is the ratio of the number of oxygen atoms on the surface of the resin layer to the number of silicon atoms, was calculated. The carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, was also calculated in the same manner.
Subsequently, an O / Si ratio (A) which is a ratio of the number of oxygen atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms (A ) Was performed with C 60 ions. That is, Physical Electronics, Inc. The ion beam intensity was C 60 + : 10 keV, 10 nA, and a 2 mm × 2 mm region was etched by 10 nm with a Quantera SXM attached C 60 ion gun. An ESCA apparatus was used for this film to calculate an O / Si ratio (A) that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing a compound having a siloxane bond. The depth of the resin layer containing the compound having a siloxane bond from the surface of the resin layer containing the compound having a siloxane bond was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
O / Si ratio (A) which is the ratio of the number of oxygen atoms of the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond to the number of silicon atoms And the value of A / B is calculated from the O / Si ratio (B), which is the ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond, 6.
Similar to the O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. O / Si ratio (C), which is the ratio of the number of oxygen atoms in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing a compound having a siloxane bond to the number of silicon atoms Asked. Moreover, the value of C / B was computed from O / Si ratio (B) and O / Si ratio (C), and it described in Table 5 and Table 6 below. Tables 5 and 6 below show the values of the carbon / silicon ratio, which is the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
The surface of the resin layer containing the compound having a siloxane bond has the maximum O / Si ratio when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% ( Atomic%) or more. Method for obtaining O / Si ratio (A), which is the ratio of the number of oxygen atoms to the number of silicon atoms in a resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond In the same way as above, when the O / Si ratio is measured from the surface of the gas separation membrane, the surface where the O / Si ratio is maximum and the number of silicon atoms is 3% (atomic%) or more is specified. did.
As a result, in the above-described method, a compound having a siloxane bond in a state where a resin layer containing a compound having a siloxane bond is formed on the porous support (a state in which no other layer (for example, a layer containing polyimide) is present). The surface of the resin layer containing “the O / Si ratio is maximum when the O / Si ratio is measured from the surface of the gas separation membrane, and the number of silicon atoms is 3% (Atomic%) or more. Surface ".
 シロキサン結合を有する化合物を含む樹脂層の表面が、一般式(1)で表される繰り返し単位、及び、少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことを、以下の方法で確認した。
 ESCAにて、Si2pスペクトルを測定し、得られたピークのカーブフィッティングから、Siの価数(Si2+、Si3+およびSi4+)を分離・定量した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例1~8では100~600モル%であり、一方で実施例9~12では100~500モル%であることを同様の方法で確認した。
 シロキサン結合を有する化合物を含む樹脂層の表面から10nmおよび30nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が、一般式(1)で表される繰り返し単位、及び、少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことを、以下の方法で確認した。
 実施例と同様のエッチング処理をしてESCAにて、Si2pスペクトルを測定し、得られたピークのカーブフィッティングから、Siの価数(Si2+、Si3+およびSi4+)を分離・定量した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例1~8では3~500モル%であり、一方で実施例9~12では5~400モル%であることを同様の方法で確認した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から30nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例1~8では3~400モル%であり、一方で実施例9~12では5~300モル%であることを同様の方法で確認した。
The surface of the resin layer containing a compound having a siloxane bond is a repeating unit represented by the general formula (1) and a repeating unit represented by at least the general formula (2) or the general formula (3). It was confirmed by the following method that a compound having a siloxane bond having a unit was included.
The Si2p spectrum was measured by ESCA, and the valence of Si (Si 2+ , Si 3+ and Si 4+ ) was separated and quantified from the curve fitting of the obtained peak.
The repeating unit represented by the general formula (2) of the repeating unit represented by the general formula (3) and the general formula (1) in the compound having a siloxane bond included in the surface of the resin layer containing the compound having a siloxane bond. It was confirmed by a similar method that the ratio to the repeating unit represented by) was 100 to 600 mol% in Examples 1 to 8 and 100 to 500 mol% in Examples 9 to 12.
A resin layer containing a compound having a siloxane bond at a depth of 10 nm and 30 nm from the surface of the resin layer containing a compound having a siloxane bond is a repeating unit represented by the general formula (1) and at least the general formula (2) It was confirmed by the following method that it contains a compound having a siloxane bond having a repeating unit represented by formula (3) or a repeating unit represented by formula (3).
The Si2p spectrum was measured by ESCA using the same etching treatment as in Example, and the valences of Si (Si 2+ , Si 3+ and Si 4+ ) were separated and quantified from the curve fitting of the obtained peaks.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 1 to 8, while 5 to 400 in Examples 9 to 12. It was confirmed by the same method that it was mol%.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 30 nm from the surface of the resin layer containing the compound having a siloxane bond The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 400 mol% in Examples 1 to 8, while 5 to 300 in Examples 9 to 12. It was confirmed by the same method that it was mol%.
[実施例2~8]
 実施例1において、シロキサン結合を有する化合物を含む樹脂層前駆体のプラズマ処理の投入電力を25Wから下記表に記載のとおりにそれぞれ変更した以外は実施例1と同様にして実施例2~8のガス分離膜を得た。
[Examples 2 to 8]
In Example 1, the input power of the plasma treatment of the resin layer precursor containing the compound having a siloxane bond was changed from 25 W as shown in the following table, respectively. A gas separation membrane was obtained.
[実施例9~10]
 実施例8において、シロキサン結合を有する化合物を含む樹脂層前駆体材料をPDMSからそれぞれPolydiphenyl siloxane、Poly[methyl(3,3,3-trifluoropropyl)siloxane]にそれぞれ変更した以外は実施例8と同様にして実施例9~10のガス分離膜を得た。
 Polydiphenyl siloxaneはSigma Aldrich社製の商品名482153として入手できるものを用い、Poly[methyl(3,3,3-trifluoropropyl)siloxane](略称PMTFPS)はSigma Aldrich社製の商品名481645として入手できるものを用いる。
[Examples 9 to 10]
Example 8 was the same as Example 8 except that the resin layer precursor material containing a compound having a siloxane bond was changed from PDMS to Polydiphenyl siloxane and Poly [methyl (3,3,3-trifluoropropyl) siloxane], respectively. Thus, gas separation membranes of Examples 9 to 10 were obtained.
Polyphenyl siloxane is available under the trade name 482153 manufactured by Sigma Aldrich, and Poly [methyl (3,3-trifluoropropyl) siloxane] (abbreviated as PMTFPS) is available under the trade name 48 available from Sigma Aldrich 45. Use.
[実施例11]
 実施例4において、酸素原子浸透処理を行った後、シロキサン結合を有する化合物を含む樹脂層の上にさらに重合性の放射線硬化性組成物をスピンコートし、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行ってから乾燥させた。このようにして、厚み1μmの2層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
 2層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体をデスクトップ真空プラズマ装置(YOUTEC社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を100Wとし、処理時間10秒で2回目の酸素原子浸透処理であるプラズマ処理を行った。
 得られたガス分離膜を実施例11のガス分離膜とした。
[Example 11]
In Example 4, after the oxygen atom permeation treatment, a polymerizable radiation curable composition was further spin-coated on the resin layer containing the compound having a siloxane bond, and the UV intensity was 24 kW / m and the treatment time was 10 seconds. The sample was subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under the following UV treatment conditions, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a second layer having a thickness of 1 μm was formed.
A porous support on which a resin layer precursor containing a compound having a siloxane bond in the second layer is formed is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), the carrier gas conditions are oxygen flow rate 20 cm 3 (STP) / min, argon A plasma treatment, which is a second oxygen atom infiltration treatment, was performed at a flow rate of 100 cm 3 (STP) / min, a degree of vacuum of 30 Pa, an input power of 100 W, and a treatment time of 10 seconds.
The obtained gas separation membrane was used as the gas separation membrane of Example 11.
[実施例12]
 実施例11において、2回目の酸素原子浸透処理を2層目のシロキサン結合を有する化合物を含む樹脂層前駆体に対して行った後、2層目のシロキサン結合を有する化合物を含む樹脂層の上にさらに重合性の放射線硬化性組成物をスピンコートし、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行ってから乾燥させた。このようにして、厚み1μmの3層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
 3層目のシロキサン結合を有する化合物前駆体を含む樹脂層を形成した多孔質支持体をデスクトップ真空プラズマ装置(YOUTEC社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を100Wとし、処理時間10秒で3回目の酸素原子浸透処理であるプラズマ処理を行った。
 得られたガス分離膜を実施例12のガス分離膜とした。
[Example 12]
In Example 11, after the second oxygen atom permeation treatment was performed on the resin layer precursor containing a compound having a siloxane bond in the second layer, the resin layer containing a compound having a siloxane bond in the second layer was applied. Further, a polymerizable radiation curable composition was spin-coated, and subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions with a UV intensity of 24 kW / m and a treatment time of 10 seconds. Dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a third layer having a thickness of 1 μm was formed.
A porous support formed with a resin layer containing a compound precursor having a siloxane bond in the third layer is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), and the carrier gas conditions are oxygen flow rate 20 cm 3 (STP) / min, argon The flow rate was 100 cm 3 (STP) / min, the degree of vacuum was 30 Pa, the input power was 100 W, and the plasma treatment, which is the third oxygen atom infiltration treatment, was performed in a treatment time of 10 seconds.
The obtained gas separation membrane was used as the gas separation membrane of Example 12.
[比較例1]
 実施例1において、シロキサン結合を有する化合物を含む樹脂層前駆体のプラズマ処理の投入電力を25Wから10Wに変更した以外は実施例1と同様にして、比較例1のガス分離膜を得た。
[Comparative Example 1]
In Example 1, a gas separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that the input power for plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W to 10 W.
[比較例2]
 実施例1において、キャリアガス条件を酸素流量20cm(STP)/minから0cm(STP)/minに変更した以外は実施例1と同様にして、比較例2のガス分離膜を得た。
[Comparative Example 2]
A gas separation membrane of Comparative Example 2 was obtained in the same manner as in Example 1, except that the carrier gas condition was changed from 20 cm 3 (STP) / min to 0 cm 3 (STP) / min in Example 1.
[比較例3]
 Journal of Membrane Science 99 (1995) 139-147に記載されている手法に基づき、Ar雰囲気下において、5Wで120秒間ポリジメチルシロキサン膜を処理し、複合膜を作製した。得られた複合膜を、実施例1と同様にして評価を行った。高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が30度となるよう調整してガス分離性能を評価した。二酸化炭素(CO)、メタン(CH)の体積比が6:94の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定しようと試みたところ、圧力を保持することが出来なかった。
[Comparative Example 3]
Based on the technique described in Journal of Membrane Science 99 (1995) 139-147, a polydimethylsiloxane film was treated with 5 W for 120 seconds under an Ar atmosphere to produce a composite film. The obtained composite membrane was evaluated in the same manner as in Example 1. A stainless steel cell made of SUS316 (manufactured by DENISSEN) having high pressure resistance was used to adjust the cell temperature to 30 ° C., and gas separation performance was evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2 When an attempt was made to measure the gas permeability of each of 2 and CH 4 by TCD detection type gas chromatography, the pressure could not be maintained.
[比較例4]
 Journal of Membrane Science440 (2013) 1-8に記載されている手法に基づき、ポリジメチルシロキサン膜を大気圧プラズマ処理し、複合膜を作製した。得られた複合膜を、実施例1と同様にして評価を行った。高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が30℃となるよう調整してガス分離性能を評価した。二酸化炭素(CO)、メタン(CH)の体積比が6:94の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定しようと試みたところ、圧力を保持することができなかった。
[Comparative Example 4]
Based on the method described in Journal of Membrane Science 440 (2013) 1-8, the polydimethylsiloxane film was subjected to atmospheric pressure plasma treatment to produce a composite film. The obtained composite membrane was evaluated in the same manner as in Example 1. Using a SUS316 stainless steel cell (DENISSEN) having high-pressure resistance, the cell temperature was adjusted to 30 ° C., and the gas separation performance was evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2 When an attempt was made to measure the gas permeability of each of 2 and CH 4 by TCD detection type gas chromatography, the pressure could not be maintained.
[実施例13]
<追加樹脂層の作製>
(ポリマー(P-101)の合成)
 下記反応スキームでポリマー(P-101)を合成した。
[Example 13]
<Preparation of additional resin layer>
(Synthesis of polymer (P-101))
A polymer (P-101) was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
ポリマー(P-101)の合成:
 1Lの三口フラスコにN-メチルピロリドン123ml、6FDA(東京化成株式会社製、製品番号:H0771)54.97g(0.124mol)を加えて40℃で溶解させ、窒素気流下で攪拌しているところに、2,3,5,6-テトラメチルフェニレンジアミン(東京化成株式会社製、製品番号:T1457)4.098g(0.0248mol)、3,5-ジアミノ安息香酸15.138g(0.0992mol)のN-メチルピロリドン84.0ml溶液を30分かけて系内を40℃に保ちつつ滴下した。反応液を40℃で2.5時間攪拌した後、ピリジン(和光純薬株式会社製)2.94g(0.037mol)、無水酢酸(和光純薬株式会社製)31.58g(0.31mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、反応液にアセトン676.6mLを加え、希釈した。5Lステンレス容器にメタノール1.15L、アセトン230mLを加えて攪拌しているところに、反応液のアセトン希釈液を滴下した。得られたポリマー結晶を吸引ろ過し、60℃で送風乾燥させて50.5gのポリマー(P-101)を得た。なお、このポリマー(P-101)は、前掲の例示ポリイミド化合物P-100においてX:Y=20:80としたものである。下記表6中、ポリマー(P-101)のことを、PIと省略して記載した。
Synthesis of polymer (P-101):
N-methylpyrrolidone 123 ml, 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., product number: H0771) 54.97 g (0.124 mol) was added to a 1 L three-necked flask and dissolved at 40 ° C. and stirred under a nitrogen stream. 2,3,5,6-tetramethylphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1457) 4.098 g (0.0248 mol), 3,5-diaminobenzoic acid 15.138 g (0.0992 mol) Of N-methylpyrrolidone in an amount of 84.0 ml was added dropwise over 30 minutes while maintaining the system at 40 ° C. After stirring the reaction solution at 40 ° C. for 2.5 hours, 2.94 g (0.037 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.), 31.58 g (0.31 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) Each was added and further stirred at 80 ° C. for 3 hours. Thereafter, 676.6 mL of acetone was added to the reaction solution for dilution. The acetone dilution liquid of the reaction liquid was dripped at the place which added methanol 1.15L and acetone 230mL to the 5L stainless steel container and stirred. The obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101). This polymer (P-101) is the same as the above-described exemplified polyimide compound P-100 with X: Y = 20: 80. In Table 6 below, the polymer (P-101) is abbreviated as PI.
(追加樹脂層の形成)
 30ml褐色バイアル瓶に、ポリマー(P-101)を1.4g、メチルエチルケトン8.6gを混合して25℃で30分攪拌した。その後、攪拌した溶液を実施例5と同様にシロキサン結合を有する化合物を含む樹脂層のプラズマ処理面上にスピンコートし、厚み150nmの追加樹脂層を形成し、ガス分離膜を得た。
 得られた分離膜を、実施例13のガス分離膜とした。
(Formation of additional resin layer)
In a 30 ml brown vial, 1.4 g of polymer (P-101) and 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. Thereafter, the stirred solution was spin-coated on the plasma-treated surface of the resin layer containing a compound having a siloxane bond in the same manner as in Example 5 to form an additional resin layer having a thickness of 150 nm to obtain a gas separation membrane.
The obtained separation membrane was used as the gas separation membrane of Example 13.
[実施例14]
 シロキサン結合を有する化合物を含む樹脂層を実施例6と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例13と同様の方法で追加樹脂層を形成し、実施例14のガス分離膜を得た。
[Example 14]
An additional resin layer is formed in the same manner as in Example 13 except that a resin layer containing a compound having a siloxane bond, which is obtained by plasma-treating a resin layer containing a compound having a siloxane bond under the same conditions as in Example 6, A gas separation membrane of Example 14 was obtained.
[実施例15]
 シロキサン結合を有する化合物を含む樹脂層を実施例7と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例13と同様の方法で追加樹脂層を形成し、実施例15のガス分離膜を得た。
[Example 15]
An additional resin layer is formed in the same manner as in Example 13 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 7 is used. A gas separation membrane of Example 15 was obtained.
[評価]
<ガス分離膜のガス分離性能の評価>
 得られた薄層複合膜である各実施例および比較例のガス分離膜において、高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が30度となるよう調整して評価した。二酸化炭素(CO)、メタン(CH)の体積比が6:94の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各実施例および比較例のガス分離膜のガス分離選択性は、この膜のCHの透過係数PCH4に対するCOの透過係数PCO2の割合(PCO2/PCH4)として計算した。各実施例および比較例のガス分離膜のCO透過性は、この膜のCOの透過度QCO2(単位:GPU)とした。
 なお、ガス透過性の単位は、圧力差あたりの透過流束(透過率、透過度、Permeanceとも言う)を表すGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕または透過係数を表すbarrer(バーラー)単位〔1barrer=1×10-10cm(STP)・cm/cm・sec・cmHg〕で表す。本明細書中では、GPU単位の場合は記号Qを用いて表し、barrer単位の場合は記号Pを用いて表した。
 ガス透過性(COの透過度QCO2)が30GPU以上かつ、ガス分離選択性が40以上となる場合は評価をAAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上30GPU未満かつ、ガス分離選択性が30以上40未満となる場合は評価をAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上かつガス分離選択性が30未満、もしくは、ガス透過性(COの透過度QCO2)が10GPU未満かつガス分離選択性が30以上となる場合は評価をBとし、
 ガス透過性(COの透過度QCO2)が10GPU未満かつ、ガス分離選択性が30未満となる場合、もしくは圧力がかからず(圧力を保持することが出来ず)試験が行えなかった場合は評価をCとした。
[Evaluation]
<Evaluation of gas separation performance of gas separation membrane>
In each of the gas separation membranes of the Examples and Comparative Examples, which are the obtained thin-layer composite membranes, evaluation was performed using a high-pressure resistant SUS316 stainless steel cell (DENISSEN) and adjusting the cell temperature to 30 degrees. did. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2 The gas permeability of each of 2 and CH 4 was measured by TCD detection type gas chromatography. The gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). The CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
The unit of gas permeability is a GPU (GPU) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 ) representing a permeation flux (also referred to as permeability, permeability, and Permeance) per pressure difference. · Sec · cmHg] or a barrer unit (1 barrer = 1 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg) representing a transmission coefficient. In this specification, the unit of GPU is represented by the symbol Q, and the unit of barrer is represented by the symbol P.
When the gas permeability (CO 2 permeability Q CO2 ) is 30 GPU or more and the gas separation selectivity is 40 or more, the evaluation is AA,
When the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and less than 30 GPU and the gas separation selectivity is 30 or more and less than 40, the evaluation is A,
The gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more. If so, the evaluation is B,
When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 上記表5および表6より、Bの値が本発明で規定する下限値を下回る場合(比較例1)およびA/Bの値が本発明で規定する下限値を下回る場合(比較例2)に比較し、本発明のガス分離膜は高圧下におけるガス透過性(CO透過度)およびガス分離選択性の少なくとも一方が高いことが分かった。 From Table 5 and Table 6 above, when the value of B is lower than the lower limit specified in the present invention (Comparative Example 1) and when the value of A / B is lower than the lower limit specified in the present invention (Comparative Example 2). In comparison, it was found that the gas separation membrane of the present invention has high gas permeability (CO 2 permeability) and gas separation selectivity under high pressure.
[実施例16~19]
 以下の実施例16~19により、流動性のあるPDMSを減少させることで、保管耐性や湿熱耐性が向上する結果がわかった。詳細を以下において説明する。
 実施例6と類似する方法でPAN多孔質支持体の上に1層の厚み600nmのシロキサン結合を有する化合物としてPDMSを含む重合性の放射線硬化性組成物を塗布して、下記表7に記載のようにUV照射条件を変えて、ゲル分率の異なるサンプルを作製した。
 詳しくは、実施例1におけるFusion UV System社製、Light Hammer 10、D-バルブを用いたUV強度9kW/m、UV照射時間10秒のUV処理条件から、同じ装置を用いてUV積算光量(積算エネルギー量)が下記表7の値となるようUV-A照射ランプの照射強度を変えて調整した。
 その後、ゲル分率の異なるサンプルに対し、実施例6と類似する下記表7に記載の条件でプラズマ処理したサンプルを実施例16~19のガス分離膜とした。
 得られたガス分離膜について、実施例1と同様に特性を評価し、得られた結果を下記表7に記載した。
[Examples 16 to 19]
From the following Examples 16 to 19, it was found that the storage resistance and wet heat resistance were improved by reducing the flowable PDMS. Details are described below.
A polymerizable radiation-curable composition containing PDMS as a compound having a siloxane bond having a thickness of 600 nm was applied on a PAN porous support in the same manner as in Example 6 and described in Table 7 below. In this way, samples having different gel fractions were prepared by changing the UV irradiation conditions.
Specifically, from the UV processing conditions of Example 1 made by Fusion UV System, Light Hammer 10, UV intensity of 9 kW / m 2 using a D-bulb, and UV irradiation time of 10 seconds, the same apparatus was used to obtain a UV integrated light amount ( Adjustment was made by changing the irradiation intensity of the UV-A irradiation lamp so that the integrated energy amount was a value shown in Table 7 below.
Thereafter, samples having different gel fractions and subjected to plasma treatment under the conditions shown in Table 7 below, which are similar to those of Example 6, were used as gas separation membranes of Examples 16-19.
About the obtained gas separation membrane, the characteristic was evaluated similarly to Example 1, and the obtained result was described in following Table 7.
<ゲル分率>
 実施例16~19のガス分離膜と同様の方法で、UV照射まで行ったゲル分率測定用サンプルを別途作製し、以下の方法でシロキサン結合を有する化合物を含む樹脂層のゲル分率を測定した。
 支持体の上にシロキサン結合を有する化合物を含む樹脂層を有するゲル分率測定用サンプルを切り出し、サンプルを作製した。サンプルをクロロホルム溶媒に24時間浸漬し、浸漬前後でのXRF(X-ray fluorescence analysis)におけるSi成分の信号強度を測定した。
 XRFは、測定装置としてXRF-1700(商品名、島津製作所製社製)を用いて、X線電圧/電流40kV/95mA、絞り30mmφ(直径)、試料マスク30mmφ(直径)で測定を行った。
 浸漬前のサンプルのSi成分の信号強度をXa、浸漬後のサンプルのSi成分の信号強度をXbとしたとき、Xb/Xa*100(%)をガス分離膜のゲル分率とした。なお、ガス分離膜を製造する場合、重合性の放射線硬化性組成物は、支持体に一定量染み込み、残りがシロキサン結合を有する化合物を含む樹脂層を形成する。サンプルをクロロホルム溶媒に浸漬すると、XRFでは支持体に染み込んだ重合性の放射線硬化性組成物と、シロキサン結合を有する化合物を含む樹脂層を形成した重合性の放射線硬化性組成物の両方のうちUV照射でゲル化されていない成分が留出し、ゲル化された成分が残る。XaおよびXbは、サンプルのシロキサン結合を有する化合物を含む樹脂層の表面から支持体の反対側の表面までの深さ方向のSi成分の信号強度を連続的に測定し、深さ方向のSi成分の信号強度を合計した値である。
 得られた結果を下記表7に記載した。
 なお、ガス分離性能や保管耐性や湿熱耐性の評価は、上記クロロホルム溶媒への浸漬を行わずにプラズマ処理したサンプルを用いて評価を行った。
<Gel fraction>
Separately prepare a sample for gel fraction measurement up to UV irradiation in the same manner as the gas separation membranes of Examples 16 to 19, and measure the gel fraction of the resin layer containing the compound having a siloxane bond by the following method. did.
A sample for gel fraction measurement having a resin layer containing a compound having a siloxane bond on a support was cut out to prepare a sample. The sample was immersed in a chloroform solvent for 24 hours, and the signal intensity of the Si component in XRF (X-ray fluorescence analysis) before and after immersion was measured.
XRF was measured using an XRF-1700 (trade name, manufactured by Shimadzu Corporation) as a measuring device, with an X-ray voltage / current of 40 kV / 95 mA, a diaphragm of 30 mmφ (diameter), and a sample mask of 30 mmφ (diameter).
When the signal intensity of the Si component of the sample before immersion was Xa and the signal intensity of the Si component of the sample after immersion was Xb, Xb / Xa * 100 (%) was taken as the gel fraction of the gas separation membrane. In the case of producing a gas separation membrane, the polymerizable radiation-curable composition soaks in a certain amount into the support, and the rest forms a resin layer containing a compound having a siloxane bond. When the sample is immersed in a chloroform solvent, in XRF, UV of both a polymerizable radiation curable composition soaked in a support and a polymerizable radiation curable composition in which a resin layer containing a compound having a siloxane bond is formed. The components that have not been gelled by irradiation distill off, leaving the gelled components. Xa and Xb continuously measure the signal intensity of the Si component in the depth direction from the surface of the resin layer containing the compound having a siloxane bond to the opposite surface of the support, and the Si component in the depth direction This is the sum of the signal intensities.
The obtained results are shown in Table 7 below.
The gas separation performance, storage resistance, and wet heat resistance were evaluated using a sample that was plasma-treated without being immersed in the chloroform solvent.
<保管耐性>
 保管耐性は、プラズマ処理した直後にガス透過性を評価した結果と、室温、50%環境下で2週間おいたサンプルのガス透過性を評価した結果を比べて、以下の基準で評価した。
 ガス透過性が50%以上変化したものをB、50%未満の変化しかしなかったものをAとした。
 得られた結果を下記表7に記載した。
<Storage resistance>
Storage resistance was evaluated according to the following criteria, comparing the results of gas permeability evaluation immediately after plasma treatment with the results of gas permeability evaluation of samples placed at room temperature in a 50% environment for 2 weeks.
The gas permeability changed by 50% or more was designated as B, and the gas permeability changed by less than 50% was designated as A.
The obtained results are shown in Table 7 below.
<湿熱耐性>
 湿熱(輸送)耐性はプラズマ処理した直後にガス透過性を評価した結果と、70℃、65%環境下で2週間おいたサンプルのガス透過性を評価した結果を比べて、以下の基準で評価した。
 ガス透過性が50%以上変化したものをB、50%未満の変化しかしなかったものをAとした。
 得られた結果を下記表7に記載した。
<Humidity heat resistance>
Wet heat (transport) resistance was evaluated according to the following criteria, comparing the results of gas permeability evaluation immediately after plasma treatment with the results of gas permeability evaluation of a sample placed at 70 ° C and 65% for 2 weeks. did.
The gas permeability changed by 50% or more was designated as B, and the gas permeability changed by less than 50% was designated as A.
The obtained results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 上記表7に示した結果のとおり、ガス分離膜のゲル分率が45%以上であると保管耐性が良好となった。また、ゲル分率が55%以上であると保管耐性に加えて湿熱耐性が良好となった。 As the results shown in Table 7 above, when the gel fraction of the gas separation membrane was 45% or more, the storage resistance was good. Further, when the gel fraction was 55% or more, the wet heat resistance was good in addition to the storage resistance.
[実施例101~119]
-モジュール化-
 実施例1~19で作製したガス分離膜を用いて、特開平5-168869号公報の[0012]~[0017]を参考に、スパイラル型モジュールを作製した。得られたガス分離膜モジュールを、実施例101~119のガス分離膜モジュールとした。
 作製した実施例101~119のガス分離膜モジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
 作製した実施例101~119のガス分離膜モジュールは、リーフ(リーフとはスパイラル型モジュールにおいて透過側の空間が中心管に接続されている、封筒状に折り曲げられたガス分離膜の部分のことを言う)の片面の中心の10cm×10cm内よりランダムに1cm×1cmを10点採取し、実施例1の方法に従い、表面と深さ方向の元素比を算出すると、10点中9点以上で内蔵する分離膜の通りのものであることを確認した。またスパイラルモジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
[Examples 101 to 119]
-modularization-
Using the gas separation membranes produced in Examples 1 to 19, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869. The obtained gas separation membrane modules were designated as gas separation membrane modules of Examples 101 to 119.
It was confirmed that the produced gas separation membrane modules of Examples 101 to 119 were good according to the performance of the built-in gas separation membrane.
The produced gas separation membrane modules of Examples 101 to 119 are leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module). 10 points of 1 cm × 1 cm are sampled randomly from within 10 cm × 10 cm of the center of one side, and the element ratio in the surface and depth direction is calculated according to the method of Example 1, and built-in at 9 points or more out of 10 points. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
{第2の態様}
 条件2を満たす第2の態様の実施例を示す。
{Second aspect}
The Example of the 2nd aspect which satisfy | fills the conditions 2 is shown.
[実施例1001]
<シロキサン結合を有する化合物を含む樹脂層前駆体を形成するための、重合性の放射線硬化性組成物の調製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mlの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業(株)製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
Figure JPOXMLDOC01-appb-C000046
[Example 1001]
<Preparation of polymerizable radiation-curable composition for forming a resin layer precursor containing a compound having a siloxane bond>
(Preparation of radiation curable polymer having dialkylsiloxane group)
In a 150 ml three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.), DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0.007 g was added and dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.).
Figure JPOXMLDOC01-appb-C000046
(重合性の放射線硬化性組成物の調製)
 20℃まで冷却した放射線硬化性ポリマー溶液に対して、固形分が10質量%になるようにn-ヘプタンで希釈した。得られた溶液に対し、光重合開始剤であるIO591(東京化成社製)0.5gおよびチタンイソポロポキシド(aldrich社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(Preparation of polymerizable radiation curable composition)
The radiation curable polymer solution cooled to 20 ° C. was diluted with n-heptane so that the solid content was 10% by mass. To the obtained solution, 0.5 g of IO591 (manufactured by Tokyo Chemical Industry Co., Ltd.) that is a photopolymerization initiator and 0.1 g of titanium isoporopoxide (manufactured by aldrich) are added, and a polymerizable radiation-curable composition is obtained. Prepared.
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、厚みは200μm)を多孔質支持体として重合性の放射線硬化性組成物を3000rpm、滴下量0.04ml/cmの条件でスピンコートした後、30min室温保管した。その後、重合性の放射線硬化性組成物にUV強度24kW/m、UV照射時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行い、シロキサン結合を有する化合物を含む樹脂層前駆体を硬化させた。PAN多孔質膜のうち、シロキサン結合を有する化合物がほとんど充填されなかった領域が多孔質支持体Aとなり、残りの領域がシロキサン結合を有する化合物を含む樹脂層の多孔質支持体B中に存在する領域GLiとなった。
 このようにして、シロキサン結合を有する化合物を含む樹脂層の多孔質支持体B中に存在する領域GLi(厚み200nm)と、シロキサン結合を有する化合物を含む樹脂層の多孔質支持体B上に存在する領域GLe(厚み140nm)とを含む、シロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
<Formation of resin layer precursor containing compound having siloxane bond>
PAN (Polyacrylonitrile) porous membrane (Polyacrylonitrile porous membrane is present on the nonwoven fabric, including the nonwoven fabric, the thickness is 200 μm) As a porous support, the polymerizable radiation curable composition is 3000 rpm, the dropping amount is 0.04 ml. After spin coating under the conditions of / cm 2 , it was stored at room temperature for 30 min. Thereafter, the polymerizable radiation curable composition was subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions of a UV intensity of 24 kW / m 2 and a UV irradiation time of 10 seconds to form a siloxane bond. The resin layer precursor containing a compound having the following was cured. Of the PAN porous membrane, a region in which the compound having a siloxane bond is hardly filled becomes the porous support A, and the remaining region is present in the porous support B of the resin layer containing the compound having a siloxane bond. It became area | region GLi.
Thus, the region GLi (thickness 200 nm) present in the porous support B of the resin layer containing the compound having a siloxane bond and the porous support B of the resin layer containing the compound having a siloxane bond exist. A resin layer precursor containing a compound having a siloxane bond including a region GLe (thickness 140 nm) to be formed was formed.
<シロキサン結合を有する化合物を含む樹脂層前駆体の酸素原子浸透処理-プラズマ処理->
 シロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体Aをデスクトップ真空プラズマ装置(ユーテック社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を150Wとし、処理時間10秒でプラズマ処理を行った。
 得られた複合膜を実施例1001のガス分離膜とした。
<Oxygen atom permeation treatment of a resin layer precursor containing a compound having a siloxane bond-plasma treatment->
A porous support A on which a resin layer precursor containing a compound having a siloxane bond is formed is placed in a desktop vacuum plasma apparatus (manufactured by Utec Co., Ltd.), the carrier gas conditions are an oxygen flow rate of 20 cm 3 (STP) / min, and an argon flow rate of 100 cm 3. Plasma treatment was performed at (STP) / min, a degree of vacuum of 30 Pa, an input power of 150 W, and a treatment time of 10 seconds.
The obtained composite membrane was used as the gas separation membrane of Example 1001.
(GLe、GLiの算出)
 各実施例および比較例のガス分離膜の厚みは以下のように測定した。
 アルバック・ファイ製Ar-GCIB銃搭載のTOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry、TRIFT V nano TOF)を用いて測定を行った。一次イオン源として、Bi3++(30kV)を用いた。帯電中和に20eV電子銃を併用した。深さ方向解析にはAr-GCIB(Ar2500+、15kV)を用いた。シリコーン由来のピーク強度の最大強度を求めて、GLe、GLiおよび多孔質支持体Aの厚みを求めた。得られたGLe、GLiの厚みの値を下記表8に記載した。また、GLiの厚みGLeの厚みに対する割合を百分率で求め、結果を下記表8に記載した。
 またこのように定義したGLe、GLiに対して、それぞれの領域における表層(表面から)20nm中の一般式(3)で表される繰り返し単位の含有率を求めた。ESCA(Electron Spectroscopy FOR Chemical Analysis)解析による深さ方向の解析から、Si2Pスペクトルを得た。Si2Pスペクトルピークのカーブフィッティングから、ケイ素原子の価数(Si2+、Si3+およびSi4+)を分離・定量した。深さに対するSi4+、Si3+、Si2+のプロファイルを測定し、全Si成分(Si4+、Si3+、Si2+の合計)に対するSi4+の割合を表層から20nmまでの積分値として算出し、GLeの表層20nmの一般式(3)で表される繰り返し単位の含有率と、GLiの表層20nmの一般式(3)で表される繰り返し単位の含有率とした。N=5測定における平均値を採用し、結果を下記表8に記載した。また、GLeの表層20nmの一般式(3)で表される繰り返し単位の含有率と、GLiの表層20nmの一般式(3)で表される繰り返し単位の含有率との差を計算し、下記表8に記載した。
 あわせて、シロキサン結合を有する化合物を含む樹脂層のGLeの表層20nmと、GLeの表面が、一般式(1)で表される繰り返し単位、一般式(2)で表される繰り返し単位、及び、一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが確認された。
 シロキサン結合を有する化合物を含む樹脂層の表面から支持体方向へのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出した。この値は材質が変わるごとに求めることが出来、適宜材料に最適な数値を用いるものとする。
 前述のシロキサン結合を有する化合物を含む樹脂層の表面(GLeの表面)は、同様にESCAによりO/Si比を測定することで決定することが出来る。すなわち、前述のガス分離膜の多孔質支持体Aとは反対側の表面から多孔質支持体A方向へ測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面をGLeの表面とする。
(Calculation of GLe and GLi)
The thickness of the gas separation membrane of each Example and Comparative Example was measured as follows.
Measurement was performed using a TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF) equipped with an Ar-Bac Ar-GCIB gun. Bi3 ++ (30 kV) was used as the primary ion source. A 20 eV electron gun was used in combination for charge neutralization. Ar-GCIB (Ar2500 +, 15 kV) was used for the depth direction analysis. The maximum peak strength derived from silicone was determined, and the thicknesses of GLe, GLi, and porous support A were determined. The thickness values of the obtained GLe and GLi are shown in Table 8 below. Moreover, the ratio with respect to the thickness of thickness GLe of GLi was calculated | required in percentage, and the result was described in following Table 8.
Moreover, the content rate of the repeating unit represented by General formula (3) in surface layer (from the surface) 20nm in each area | region was calculated | required with respect to GLe and GLi defined in this way. Si2P spectra were obtained from analysis in the depth direction by ESCA (Electron Spectroscopy FOR Chemical Analysis) analysis. From the curve fitting of the Si2P spectral peak, the valence (Si2 + , Si3 + and Si4 + ) of the silicon atom was separated and quantified. The profile of Si 4+ , Si 3+ and Si 2+ with respect to the depth is measured, and the ratio of Si 4+ to the total Si component (total of Si 4+ , Si 3+ and Si 2+ ) is calculated as an integrated value from the surface layer to 20 nm, and GLe The content of the repeating unit represented by the general formula (3) of the surface layer 20 nm and the content of the repeating unit represented by the general formula (3) of the surface layer 20 nm of GLi. The average value in N = 5 measurement was adopted, and the results are shown in Table 8 below. Further, the difference between the content of the repeating unit represented by the general formula (3) of the surface layer 20 nm of GLe and the content of the repeating unit represented by the general formula (3) of the surface layer 20 nm of GLi was calculated, It described in Table 8.
In addition, the surface layer of GLe of the resin layer containing a compound having a siloxane bond, the surface of GLe is a repeating unit represented by the general formula (1), a repeating unit represented by the general formula (2), and It was confirmed that a compound having a siloxane bond having a repeating unit represented by the general formula (3) was included.
The depth of the resin layer containing a compound having a siloxane bond from the surface of the resin layer containing a compound having a siloxane bond in the direction of the support was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
The surface of the resin layer containing the aforementioned compound having a siloxane bond (GLe surface) can be similarly determined by measuring the O / Si ratio by ESCA. That is, the O / Si ratio is maximum when measured from the surface of the gas separation membrane opposite to the porous support A toward the porous support A, and the number of silicon atoms is 3% (Atomic). %) Or more is the surface of GLe.
[実施例1002~1011、比較例1001~1004]
 実施例1001において、シロキサン結合を有する化合物を含む樹脂層前駆体の製造条件を下記表8に記載のとおりにそれぞれ変更した以外は実施例1001と同様にして1002~1011、比較例1001~1004のガス分離膜を得た。
[Examples 1002 to 1011 and Comparative Examples 1001 to 1004]
In Example 1001, 1002 to 1011 and Comparative Examples 1001 to 1004 in the same manner as in Example 1001 except that the production conditions of the resin layer precursor containing the compound having a siloxane bond were changed as shown in Table 8 below. A gas separation membrane was obtained.
[評価]
<ガス分離膜のガス分離性能の評価>
 得られた薄層複合膜である各実施例および比較例のガス分離膜において、高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が30℃となるよう調整して評価した。二酸化炭素(CO)、メタン(CH)の体積比が6:94の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各実施例および比較例のガス分離膜のガス分離選択性は、この膜のCHの透過係数PCH4に対するCOの透過係数PCO2の割合(PCO2/PCH4)として計算した。各実施例および比較例のガス分離膜のCO透過性は、この膜のCOの透過度QCO2(単位:GPU)とした。
 なお、ガス透過性の単位は、圧力差あたりの透過流束(透過率、透過度、Permeanceとも言う)を表すGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕または透過係数を表すbarrer(バーラー)単位〔1barrer=1×10-10cm(STP)・cm/cm・sec・cmHg〕で表す。本明細書中では、GPU単位の場合は記号Qを用いて表し、barrer単位の場合は記号Pを用いて表した。
 ガス透過性(COの透過度QCO2)が30GPU以上かつ、ガス分離選択性が40以上となる場合は評価をAAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上30GPU未満かつ、ガス分離選択性が30以上40未満となる場合は評価をAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上かつガス分離選択性が30未満、もしくは、ガス透過性(COの透過度QCO2)が10GPU未満かつガス分離選択性が30以上となる場合は評価をBとし、
 ガス透過性(COの透過度QCO2)が10GPU未満かつ、ガス分離選択性が30未満となる場合、もしくは圧力がかからず(圧力を保持することが出来ず)試験が行えなかった場合は評価をCとした。
 得られた結果を下記表8に記載した。
[Evaluation]
<Evaluation of gas separation performance of gas separation membrane>
In each of the gas separation membranes of the Examples and Comparative Examples, which are the obtained thin-layer composite membranes, a SUS316 stainless steel cell (made by DENISSEN) having high pressure resistance was used, and the cell temperature was adjusted to 30 ° C. for evaluation. did. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2 The gas permeability of each of 2 and CH 4 was measured by TCD detection type gas chromatography. The gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). The CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
The unit of gas permeability is a GPU (GPU) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 ) representing a permeation flux (also referred to as permeability, permeability, and Permeance) per pressure difference. · Sec · cmHg] or a barrer unit (1 barrer = 1 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg) representing a transmission coefficient. In this specification, the unit of GPU is represented by the symbol Q, and the unit of barrer is represented by the symbol P.
When the gas permeability (CO 2 permeability Q CO2 ) is 30 GPU or more and the gas separation selectivity is 40 or more, the evaluation is AA,
When the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and less than 30 GPU and the gas separation selectivity is 30 or more and less than 40, the evaluation is A,
The gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more. If so, the evaluation is B,
When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
The obtained results are shown in Table 8 below.
<耐曲げ性の評価>
 直径20mmのロールに各実施例および比較例のガス分離膜を巻き付け、25℃、相対湿度20%の条件で24時間静置した。ロールに巻き付けた後のガス透過性能を上述の方法で評価した。ロールに巻き付ける前のガス透過性能(ガス透過性;COの透過度QCO2)に対する、ロールに巻き付けた後でのガス透過性能(ガス透過性;COの透過度QCO2)の割合(保持率)を計算した。得られた結果を以下の基準に基づいて評価した。耐曲げ性はAまたはB評価であることが好ましく、A評価であることがより好ましい。
A:保持率が80%以上。
B:保持率が80%未満、30%以上。
C:保持率が30%未満。
 得られた結果を下記表8に記載した。
<Evaluation of bending resistance>
The gas separation membrane of each Example and Comparative Example was wound around a roll having a diameter of 20 mm, and was allowed to stand for 24 hours at 25 ° C. and a relative humidity of 20%. The gas permeation performance after being wound around a roll was evaluated by the method described above. Previous gas permeability wound into a roll; for (gas permeability of CO 2 permeability Q CO2), gas permeation performance after wound into a roll; ratio of (gas permeability permeability Q CO2 of CO 2) (retention Rate). The obtained results were evaluated based on the following criteria. The bending resistance is preferably A or B evaluation, and more preferably A evaluation.
A: Retention rate is 80% or more.
B: Retention rate is less than 80% and 30% or more.
C: Retention rate is less than 30%.
The obtained results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 上記表8より、比較例1001~1004に比較し、本発明のガス分離膜は高圧下におけるガス透過性(CO透過度)およびガス分離選択性の少なくとも一方が高く、耐曲げ性が良好なガス分離膜であることが分かった。 From Table 8 above, as compared with Comparative Examples 1001 to 1004, the gas separation membrane of the present invention has high gas permeability (CO 2 permeability) and gas separation selectivity under high pressure and good bending resistance. It was found to be a gas separation membrane.
[実施例1012]
<追加樹脂層の作製>
(ポリマー(P-101)の合成)
 下記反応スキームでポリマー(P-101)を合成した。
[Example 1012]
<Preparation of additional resin layer>
(Synthesis of polymer (P-101))
A polymer (P-101) was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
ポリマー(P-101)の合成:
 1Lの三口フラスコにN-メチルピロリドン123ml、6FDA(東京化成株式会社製、製品番号:H0771)54.97g(0.124mol)を加えて40℃で溶解させ、窒素気流下で攪拌しているところに、2,3,5,6-テトラメチルフェニレンジアミン(東京化成株式会社製、製品番号:T1457)4.098g(0.0248mol)、3,5-ジアミノ安息香酸15.138g(0.0992mol)のN-メチルピロリドン84.0ml溶液を30分かけて系内を40℃に保ちつつ滴下した。反応液を40℃で2.5時間攪拌した後、ピリジン(和光純薬株式会社製)2.94g(0.037mol)、無水酢酸(和光純薬株式会社製)31.58g(0.31mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、反応液にアセトン676.6mLを加え、希釈した。5Lステンレス容器にメタノール1.15L、アセトン230mLを加えて攪拌しているところに、反応液のアセトン希釈液を滴下した。得られたポリマー結晶を吸引ろ過し、60℃で送風乾燥させて50.5gのポリマー(P-101)を得た。なお、このポリマー(P-101)は、前掲の例示ポリイミド化合物P-100においてX:Y=20:80としたものである。
Synthesis of polymer (P-101):
N-methylpyrrolidone 123 ml, 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., product number: H0771) 54.97 g (0.124 mol) was added to a 1 L three-necked flask and dissolved at 40 ° C. and stirred under a nitrogen stream. 2,3,5,6-tetramethylphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1457) 4.098 g (0.0248 mol), 3,5-diaminobenzoic acid 15.138 g (0.0992 mol) Of N-methylpyrrolidone in an amount of 84.0 ml was added dropwise over 30 minutes while maintaining the system at 40 ° C. After stirring the reaction solution at 40 ° C. for 2.5 hours, 2.94 g (0.037 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.), 31.58 g (0.31 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) Each was added and further stirred at 80 ° C. for 3 hours. Thereafter, 676.6 mL of acetone was added to the reaction solution for dilution. The acetone dilution liquid of the reaction liquid was dripped at the place which added methanol 1.15L and acetone 230mL to the 5L stainless steel container and stirred. The obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101). This polymer (P-101) is the same as the above-described exemplified polyimide compound P-100 with X: Y = 20: 80.
(追加樹脂層の形成)
 30ml褐色バイアル瓶に、ポリマー(P-101)を1.4g、メチルエチルケトン8.6gを混合して25℃で30分攪拌した。その後、実施例1008と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層上に、実施例1008と同様にスピンコートし、厚み150nmの追加樹脂層を形成し、ガス分離膜を得た。
 得られた分離膜を、実施例1012のガス分離膜とした。
(Formation of additional resin layer)
In a 30 ml brown vial, 1.4 g of polymer (P-101) and 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. Thereafter, spin coating is performed in the same manner as in Example 1008 on a resin layer containing a compound having a siloxane bond, which is plasma-treated under the same conditions as in Example 1008, to form an additional resin layer having a thickness of 150 nm, thereby obtaining a gas separation membrane. It was.
The obtained separation membrane was used as the gas separation membrane of Example 1012.
[実施例1013]
 シロキサン結合を有する化合物を含む樹脂層を実施例1009と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例1012と同様の方法で追加樹脂層を形成し、実施例1013のガス分離膜を得た。
[Example 1013]
An additional resin layer is formed in the same manner as in Example 1012 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 1009 is used. A gas separation membrane of Example 1013 was obtained.
[実施例1014]
 シロキサン結合を有する化合物を含む樹脂層を実施例1010と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例1012と同様の方法で追加樹脂層を形成し、実施例1014のガス分離膜を得た。
[Example 1014]
An additional resin layer is formed in the same manner as in Example 1012 except that a resin layer containing a compound having a siloxane bond obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 1010 is used. A gas separation membrane of Example 1014 was obtained.
 実施例1012~1014のガス分離膜に対して、前述のガス分離性能および耐曲げ性の評価についてはすべてAA評価となった。 For the gas separation membranes of Examples 1012 to 1014, the gas separation performance and the bending resistance were all evaluated as AA.
[実施例1101~1114]
-モジュール化-
 実施例1001~1014で作製したガス分離膜を用いて、特開平5-168869号公報の[0012]~[0017]を参考に、スパイラル型モジュールを作製した。得られたガス分離膜モジュールを、実施例1101~1114のガス分離膜モジュールとした。
 作製した実施例1101~1114のガス分離膜モジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
 作製した実施例1101~1114のガス分離膜モジュールは、リーフ(リーフとはスパイラル型モジュールにおいて透過側の空間が中心管に接続されている、封筒状に折り曲げられたガス分離膜の部分のことを言う)の片面の中心の10cm×10cm内よりランダムに1cm×1cmを10点採取し、実施例1001の方法に従い、表面と深さ方向の元素比を算出すると、10点中9点以上で内蔵する分離膜の通りのものであることを確認した。またスパイラルモジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
[Examples 1101 to 1114]
-modularization-
Using the gas separation membranes produced in Examples 1001 to 1014, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 1101 to 1114.
It was confirmed that the produced gas separation membrane modules of Examples 1101 to 1114 were good according to the performance of the built-in gas separation membrane.
The produced gas separation membrane modules of Examples 1101 to 1114 are leafs (the leaf is a spiral type module in which the permeate side space is connected to the central tube and is bent into an envelope shape) 10 points of 1 cm × 1 cm are sampled randomly from within 10 cm × 10 cm of the center of one side of the sample, and the element ratio in the surface and depth direction is calculated according to the method of Example 1001. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
{第3の態様}
 条件3を満たす第3の態様の実施例を示す。
{Third aspect}
The Example of the 3rd aspect which satisfy | fills the conditions 3 is shown.
[実施例2001]
<シロキサン結合を有する化合物を含む樹脂層前駆体を形成するための、重合性の放射線硬化性組成物の調製>
 20℃まで冷却したKF-102(信越化学社製、側鎖型/脂環式エポキシ変性の反応性シリコーンオイル)に対して、固形分が10質量%になるようにn-ヘプタンで希釈した。得られた溶液に対し、光重合開始剤であるIO591(東京化成社製)0.5gおよびチタンイソポロポキシド(aldrich社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
[Example 2001]
<Preparation of polymerizable radiation-curable composition for forming a resin layer precursor containing a compound having a siloxane bond>
With respect to KF-102 (Shin-Etsu Chemical Co., Ltd., side chain type / alicyclic epoxy-modified reactive silicone oil) cooled to 20 ° C., it was diluted with n-heptane so that the solid content was 10% by mass. To the obtained solution, 0.5 g of IO591 (manufactured by Tokyo Chemical Industry Co., Ltd.) that is a photopolymerization initiator and 0.1 g of titanium isoporopoxide (manufactured by aldrich) are added, and a polymerizable radiation-curable composition is obtained. Prepared.
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として重合性の放射線硬化性組成物を3000rpm、滴下量0.03ml/cmの条件でスピンコートした後、1min室温保管した。その後、重合性の放射線硬化性組成物にUV強度24kW/m、UV照射時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行い、シロキサン結合を有する化合物を含む樹脂層前駆体を硬化させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有するシロキサン結合を有する化合物を含み、厚み120nmのシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
<Formation of resin layer precursor containing compound having siloxane bond>
PAN (Polyacrylonitrile) porous membrane (Polyacrylonitrile porous membrane is present on the nonwoven fabric, including the nonwoven fabric, the film thickness is about 180 μm) Supporting the polymerizable radiation curable composition at 3000 rpm, dropping amount of 0.03 ml After spin coating under the conditions of / cm 2 , it was stored at room temperature for 1 min. Thereafter, the polymerizable radiation curable composition was subjected to UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions of a UV intensity of 24 kW / m 2 and a UV irradiation time of 10 seconds to form a siloxane bond. The resin layer precursor containing a compound having the following was cured. In this manner, a resin layer precursor containing a compound having a siloxane bond having a thickness of 120 nm and including a compound having a siloxane bond having a dialkylsiloxane group was formed on the porous support.
<シロキサン結合を有する化合物を含む樹脂層前駆体の酸素原子浸透処理-プラズマ処理->
 シロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体をデスクトップ真空プラズマ装置(ユーテック社製)に入れ、キャリアガス条件を酸素流量20cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を400Wとし、処理時間7秒でプラズマ処理を行った。
 得られた複合膜を実施例2001のガス分離膜とした。
<Oxygen atom permeation treatment of a resin layer precursor containing a compound having a siloxane bond-plasma treatment->
Put porous support to form a resin layer precursor comprising a compound having a siloxane bond to the desktop vacuum plasma apparatus (UTEC Corporation), the oxygen flow rate 20 cm 3 of carrier gas conditions (STP) / min, argon flow rate 100 cm 3 ( STP) / min, the degree of vacuum was 30 Pa, the input power was 400 W, and the plasma treatment was performed for a treatment time of 7 seconds.
The obtained composite membrane was used as the gas separation membrane of Example 2001.
<ESCA深さ解析を行う場合のSi2+およびSi3+のピークの全Siのピークに対する割合の算出>
 シロキサン結合を有する化合物を含む樹脂層中の深さ方向でのSi2+ピークとSi3+ピークの合計と、その全Siのピークに対する割合については、C60イオンによるエッチング処理を進めた樹脂に対してESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出した。
 すなわち、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60 :10keV、10nAとし、2mm×2mmの領域をエッチング速度10nm/minでエッチングを進めながら、ESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面におけるSi2pスペクトルを測定し、得られたピークのカーブフィッティングから、Siの価数(Si2+、Si3+およびSi4+)を分離・定量することで、深さ方向の各ピーク強度のプロファイルを測定した。
 そして、各深さにおける定量した全Siのピーク(Si2+、Si3+およびSi4+)の合計に対するSi2+ピークとSi3+ピークの割合を算出し、これをSi2+およびSi3+の深さ方向のプロファイルとすることで、その最小値(Si)を導出した。なお、実施例2001~2013のガス分離膜では、シロキサン結合を有する化合物を含む樹脂層の最外層(支持体とは反対側)の表面が、Si2+およびSi3+のピークの全Siのピークに対する割合の最小値(Si)を有する位置であった。
 Si2+およびSi3+のピークの全Siに対する割合(Si2++Si3+/all Si)の最小値(Si)を有する位置から10nmの深さにおけるSi2+およびSi3+のピークの全Siのピークに対する割合(Si10)(Si2++Si3+/all Si)と、Si2+およびSi3+のピークの全Siのピークに対する割合(Si2++Si3+/all Si)の最小値(Si)との差(Si10)-(Si)をΔ1とした。
 同様にSi2+および、Si3+のピークの全Siに対する割合(Si2++Si3+/all Si)の最小値(Si)を有する位置から20nmの深さにおけるSi2+および、Si3+のピークの全Siのピークに対する割合(Si20)(Si2++Si3+/all Si)と、Si2+およびSi3+のピークの全Siのピークに対する割合(Si2++Si3+/all Si)の最小値(Si)との差(Si20)-(Si)をΔ2とした。
 また、Si、Si10、Si20の算出については測定場所違いでの測定回数(N数)5回の平均値を採用した。
 さらに、Si2+、Si3+およびSi4+のピークから、シロキサン結合を有する化合物を含む樹脂層の表面におけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例2001、および、2004~2013では3~500モル%であり、一方で実施例2002、および、2003では5~400モル%であることを同様の方法で確認した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例2001および2004~2013では3~500モル%であり、一方で実施例2002および2003では5~400モル%であることを同様の方法で確認した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から20nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例2001および2004~2013では3~400モル%であり、一方で実施例2002および2003では5~300モル%であることを同様の方法で確認した。
<Calculation of ratio of Si 2+ and Si 3+ peaks to all Si peaks when ESCA depth analysis is performed>
The sum of the Si 2+ peak and Si 3+ peak in the depth direction in the resin layer containing the compound having a siloxane bond, and the ratio of the total Si peak to the resin subjected to the etching treatment with C 60 ions. It calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
That is, Physical Electronics, Inc. At Company Ltd. QuanteraSXM comes C 60 ion gun, ion beam intensity C 60 +: 10 keV, and 10 nA, while advancing the etching an area of 2mm × 2mm at an etching rate 10 nm / min, using ESCA apparatus, a siloxane bond By measuring the Si2p spectrum on the surface of the resin layer containing the compound having, and separating and quantifying the valence of Si (Si 2+ , Si 3+ and Si 4+ ) from the curve fitting of the obtained peak, The profile of each peak intensity was measured.
Then, the ratio of the Si 2+ peak and the Si 3+ peak to the sum of the quantified total Si peaks (Si 2+ , Si 3+ and Si 4+ ) at each depth is calculated, and this is calculated in the depth direction of Si 2+ and Si 3+. The minimum value (Si 0 ) was derived from the profile. In the gas separation membranes of Examples 2001 to 2013, the surface of the outermost layer (on the side opposite to the support) of the resin layer containing the compound having a siloxane bond was compared with the Si 2+ and Si 3+ peaks of all Si peaks. It was a position having the minimum value (Si 0 ).
The ratio of Si 2+ and Si 3+ to the total Si peak at a depth of 10 nm from the position having the minimum value (Si 0 ) of the ratio of Si 2+ and Si 3+ to the total Si (Si 2+ + Si 3+ / all Si) The difference between the ratio (Si 10 ) (Si 2+ + Si 3+ / all Si) and the minimum value (Si 0 ) of the ratio of Si 2+ and Si 3+ to the total Si peak (Si 2+ + Si 3+ / all Si) ( Si 10 ) − (Si 0 ) was defined as Δ1.
Similarly Si 2+ and, Si3 + Si 2+ and definitive minimum value (Si 0) depth of 20nm from a position having a ratio (Si 2+ + Si 3+ / all Si) to total Si peak, the total Si peak Si 3+ the ratio of the relative peak (Si 20) (Si 2+ + Si 3+ / all Si), the minimum value of the ratio (Si 2+ + Si 3+ / all Si) with respect to the peak of the total Si peak of Si 2+ and Si 3+ and (Si 0) The difference (Si 20 ) − (Si 0 ) between these was Δ2.
For the calculation of Si 0 , Si 10 , and Si 20 , an average value of 5 times of measurement (N number) at different measurement locations was adopted.
Furthermore, from the peaks of Si 2+ , Si 3+ and Si 4+ , the compound having a siloxane bond included in the resin layer containing a compound having a siloxane bond on the surface of the resin layer containing the compound having a siloxane bond is represented by the general formula (3). The ratio of the represented repeating unit to the repeating unit represented by the general formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 2001 and 2004 to 2013, On the other hand, in Examples 2002 and 2003, it was confirmed by the same method that it was 5 to 400 mol%.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 2001 and 2004 to 2013, while 5 in Example 2002 and 2003. It was confirmed by the same method that it was ˜400 mol%.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 20 nm from the surface of the resin layer containing the compound having a siloxane bond The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 400 mol% in Examples 2001 and 2004 to 2013, while 5 in Example 2002 and 2003. It was confirmed by the same method that it was ˜300 mol%.
<シロキサン結合を有する化合物を含む樹脂層の厚みの算出>
 各実施例および比較例のガス分離膜のシロキサン結合を有する化合物を含む樹脂層の厚みは以下のように測定した。
 アルバック・ファイ製Ar-GCIB銃搭載のTOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry、TRIFT V nano TOF)を用いて測定を行った。一次イオン源として、Bi3++(30kV)を用いた。帯電中和に20eV電子銃を併用した。深さ方向解析にはAr-GCIB(Ar2500+、15kV)を用いた。
<Calculation of thickness of resin layer containing compound having siloxane bond>
The thickness of the resin layer containing the compound having a siloxane bond in the gas separation membrane of each Example and Comparative Example was measured as follows.
Measurement was performed using a TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF) equipped with an Ar-Bac Ar-GCIB gun. Bi3 ++ (30 kV) was used as the primary ion source. A 20 eV electron gun was used in combination for charge neutralization. Ar-GCIB (Ar2500 +, 15 kV) was used for the depth direction analysis.
[実施例2002~2013および比較例2001~2003]
 実施例2001において、シロキサン結合を有する化合物を含む樹脂層前駆体の製造条件とプラズマ処理条件から下記表に示すとおりにそれぞれ変更した以外は実施例2001と同様にして実施例2002~2013および比較例2001~2003のガス分離膜を得た。
 なお、実施例2002、2003においてはシロキサン結合を有する化合物としてKF-102(信越化学社製)に代えて、UV POLY201(荒川化学工業社製、カチオン硬化型UVシリコーン樹脂)を使用した。
[Examples 2002 to 2013 and Comparative Examples 2001 to 2003]
Examples 2002 to 2013 and Comparative Example were the same as Example 2001 except that the production conditions and plasma treatment conditions of the resin layer precursor containing a compound having a siloxane bond were changed as shown in the following table. Gas separation membranes of 2001 to 2003 were obtained.
In Examples 2002 and 2003, UV POLY201 (produced by Arakawa Chemical Industries, Ltd., cation curable UV silicone resin) was used as a compound having a siloxane bond instead of KF-102 (produced by Shin-Etsu Chemical Co., Ltd.).
[評価]
<ガス分離膜のガス分離性能の評価>
 得られた薄層複合膜である各実施例および比較例のガス分離膜において、高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が30℃となるように調整して評価した。二酸化炭素(CO)、メタン(CH)の体積比が6:94の混合ガスをガス供給側の全圧力が5MPa(COの分圧:0.65MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各実施例および比較例のガス分離膜のガス分離選択性は、この膜のCHの透過係数PCH4に対するCOの透過係数PCO2の割合(PCO2/PCH4)として計算した。各実施例および比較例のガス分離膜のCO透過性は、この膜のCOの透過度QCO2(単位:GPU)とした。
 なお、ガス透過性の単位は、圧力差あたりの透過流束(透過率、透過度、Permeanceとも言う)を表すGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕または透過係数を表すbarrer(バーラー)単位〔1barrer=1×10-10cm(STP)・cm/cm・sec・cmHg〕で表す。本明細書中では、GPU単位の場合は記号Qを用いて表し、barrer単位の場合は記号Pを用いて表した。
 ガス透過性(COの透過度QCO2)が30GPU以上かつ、ガス分離選択性が40以上となる場合は評価をAAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上30GPU未満かつ、ガス分離選択性が30以上40未満となる場合は評価をAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上かつガス分離選択性が30未満、もしくは、ガス透過性(COの透過度QCO2)が10GPU未満かつガス分離選択性が30以上となる場合は評価をBとし、
 ガス透過性(COの透過度QCO2)が10GPU未満かつ、ガス分離選択性が30未満となる場合、もしくは圧力がかからず(圧力を保持することが出来ず)試験が行えなかった場合は評価をCとした。
 得られた結果を下記表9に記載した。
[Evaluation]
<Evaluation of gas separation performance of gas separation membrane>
In each of the gas separation membranes of the Examples and Comparative Examples which are the obtained thin-layer composite membranes, a high-pressure-resistant SUS316 stainless steel cell (DENISSEN) was used, and the cell temperature was adjusted to 30 ° C. evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 6:94 is adjusted so that the total pressure on the gas supply side is 5 MPa (CO 2 partial pressure: 0.65 MPa), and CO 2 The gas permeability of each of 2 and CH 4 was measured by TCD detection type gas chromatography. The gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). The CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
The unit of gas permeability is a GPU (GPU) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 ) representing a permeation flux (also referred to as permeability, permeability, and Permeance) per pressure difference. · Sec · cmHg] or a barrer unit (1 barrer = 1 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg) representing a transmission coefficient. In this specification, the unit of GPU is represented by the symbol Q, and the unit of barrer is represented by the symbol P.
When the gas permeability (CO 2 permeability Q CO2 ) is 30 GPU or more and the gas separation selectivity is 40 or more, the evaluation is AA,
When the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and less than 30 GPU and the gas separation selectivity is 30 or more and less than 40, the evaluation is A,
The gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more. If so, the evaluation is B,
When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
The obtained results are shown in Table 9 below.
<耐圧性の評価>
 ガス分離性能評価において、評価実施後に、ガス供給側の全圧力を8MPaに昇圧して1時間保持し、5MPaに減圧して1時間保持するという工程を3回繰り返す耐圧性試験を行った後で、ガス供給側の全圧力5MPaでのガス透過性能を上述の方法で評価した。耐圧性試験を行う前に測定したガス透過性能(ガス透過性;COの透過度QCO2)に対する、耐圧性試験を行った後に測定したガス透過性能(ガス透過性;COの透過度QCO2)の割合(保持率)を計算した。得られた結果を以下の基準に基づいて評価した。耐曲げ性はAA、AまたはB評価であることが好ましく、AAまたはA評価であることがより好ましく、AA評価であることが特に好ましい。
AA:80%以上。
A:70%以上、80%未満。
B:30%以上、70%未満。
C:30%未満。
 得られた結果を下記表9に記載した。
<Evaluation of pressure resistance>
In the gas separation performance evaluation, after performing the pressure resistance test after the evaluation, the process of increasing the total pressure on the gas supply side to 8 MPa and holding it for 1 hour and reducing the pressure to 5 MPa and holding it for 1 hour is repeated three times. The gas permeation performance at a total pressure of 5 MPa on the gas supply side was evaluated by the method described above. Measured gas permeability prior to performing the pressure resistance test; for (gas permeability permeability Q CO2 of CO 2), gas permeability, measured after the pressure resistance test (gas permeable, CO 2 of permeability Q The ratio (retention rate) of CO2 ) was calculated. The obtained results were evaluated based on the following criteria. The bending resistance is preferably AA, A or B evaluation, more preferably AA or A evaluation, and particularly preferably AA evaluation.
AA: 80% or more.
A: 70% or more and less than 80%.
B: 30% or more and less than 70%.
C: Less than 30%.
The obtained results are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 上記表9より、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが本発明で規定する上限値を上回る場合(比較例2001、2002)に比較し、本発明のガス分離膜は高圧下におけるガス透過性(CO透過度)およびガス分離選択性の少なくとも一方が高く、かつ、耐圧性に優れることが分かった。
 また、シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Siが本発明で規定する下限値を下回る場合(比較例2003)に比較し、本発明のガス分離膜は耐圧性はあまり変わらなかったものの、高圧下におけるガス透過性(CO透過度)およびガス分離選択性の少なくとも一方が高いことが分かった。
From Table 9 above, when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond exceeds the upper limit defined in the present invention Compared to (Comparative Examples 2001 and 2002), it is found that the gas separation membrane of the present invention has high gas permeability (CO 2 permeability) and gas separation selectivity under high pressure and excellent pressure resistance. It was.
Further, when the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing the compound having a siloxane bond is lower than the lower limit defined in the present invention (Comparative Example) Compared to 2003), the gas separation membrane of the present invention did not change much in pressure resistance, but it was found that at least one of gas permeability (CO 2 permeability) and gas separation selectivity under high pressure was high.
[実施例2014]
<追加樹脂層の作製>
(ポリマー(P-101)の合成)
 下記反応スキームでポリマー(P-101)を合成した。
[Example 2014]
<Preparation of additional resin layer>
(Synthesis of polymer (P-101))
A polymer (P-101) was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
ポリマー(P-101)の合成:
 1Lの三口フラスコにN-メチルピロリドン123ml、6FDA(東京化成株式会社製、製品番号:H0771)54.97g(0.124mol)を加えて40℃で溶解させ、窒素気流下で攪拌しているところに、2,3,5,6-テトラメチルフェニレンジアミン(東京化成株式会社製、製品番号:T1457)4.098g(0.0248mol)、3,5-ジアミノ安息香酸15.138g(0.0992mol)のN-メチルピロリドン84.0ml溶液を30分かけて系内を40℃に保ちつつ滴下した。反応液を40℃で2.5時間攪拌した後、ピリジン(和光純薬株式会社製)2.94g(0.037mol)、無水酢酸(和光純薬株式会社製)31.58g(0.31mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、反応液にアセトン676.6mLを加え、希釈した。5Lステンレス容器にメタノール1.15L、アセトン230mLを加えて攪拌しているところに、反応液のアセトン希釈液を滴下した。得られたポリマー結晶を吸引ろ過し、60℃で送風乾燥させて50.5gのポリマー(P-101)を得た。なお、このポリマー(P-101)は、前掲の例示ポリイミド化合物P-100においてX:Y=20:80としたものである。
Synthesis of polymer (P-101):
N-methylpyrrolidone 123 ml, 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., product number: H0771) 54.97 g (0.124 mol) was added to a 1 L three-necked flask and dissolved at 40 ° C. and stirred under a nitrogen stream. 2,3,5,6-tetramethylphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1457) 4.098 g (0.0248 mol), 3,5-diaminobenzoic acid 15.138 g (0.0992 mol) Of N-methylpyrrolidone in an amount of 84.0 ml was added dropwise over 30 minutes while maintaining the system at 40 ° C. After stirring the reaction solution at 40 ° C. for 2.5 hours, 2.94 g (0.037 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.), 31.58 g (0.31 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) Each was added and further stirred at 80 ° C. for 3 hours. Thereafter, 676.6 mL of acetone was added to the reaction solution for dilution. The acetone dilution liquid of the reaction liquid was dripped at the place which added methanol 1.15L and acetone 230mL to the 5L stainless steel container and stirred. The obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101). This polymer (P-101) is the same as the above-described exemplified polyimide compound P-100 with X: Y = 20: 80.
(追加樹脂層の形成)
 30ml褐色バイアル瓶に、ポリマー(P-101)を1.4g、メチルエチルケトン8.6gを混合して25℃で30分攪拌した。その後、実施例2012と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層上に、実施例2012と同様にスピンコートし、厚み120nmの追加樹脂層を形成し、ガス分離膜を得た。
 得られた分離膜を、実施例2014のガス分離膜とした。
(Formation of additional resin layer)
In a 30 ml brown vial, 1.4 g of polymer (P-101) and 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. Thereafter, spin coating is performed in the same manner as in Example 2012 on a resin layer containing a compound having a siloxane bond, which is plasma-treated under the same conditions as in Example 2012, to form an additional resin layer having a thickness of 120 nm, thereby obtaining a gas separation membrane. It was.
The obtained separation membrane was used as the gas separation membrane of Example 2014.
[実施例2015]
 シロキサン結合を有する化合物を含む樹脂層を実施例2013と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例2014と同様の方法で追加樹脂層を形成し、実施例2015のガス分離膜を得た。
[Example 2015]
An additional resin layer was formed in the same manner as in Example 2014, except that a resin layer containing a compound having a siloxane bond, which was obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 2013, was used. A gas separation membrane of Example 2015 was obtained.
 実施例2014~2015のガス分離膜に対して、前述のガス分離性能および耐圧性の評価についてはすべてAA評価となった。 For the gas separation membranes of Examples 2014 to 2015, all the gas separation performance and pressure resistance evaluation described above were AA evaluations.
[実施例2101~2115]
-モジュール化-
 実施例2001~2015で作製したガス分離膜を用いて、特開平5-168869号公報の[0012]~[0017]を参考に、スパイラル型モジュールを作製した。得られたガス分離膜モジュールを、実施例2101~2115のガス分離膜モジュールとした。
 作製した実施例2101~2115のガス分離膜モジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
 作製した実施例2101~2115のガス分離膜モジュールは、リーフ(リーフとはスパイラル型モジュールにおいて透過側の空間が中心管に接続されている、封筒状に折り曲げられたガス分離膜の部分のことを言う)の片面の中心の10cm×10cm内よりランダムに1cm×1cmを10点採取し、実施例2001の方法に従い、表面と深さ方向の元素比を算出すると、10点中9点以上で内蔵する分離膜の通りのものであることを確認した。またスパイラルモジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
[Examples 2101 to 2115]
-modularization-
Using the gas separation membranes produced in Examples 2001 to 2015, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 2101 to 2115.
It was confirmed that the produced gas separation membrane modules of Examples 2101 to 2115 were good according to the performance of the built-in gas separation membrane.
The produced gas separation membrane modules of Examples 2101 to 2115 are the leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module). 10 points of 1 cm × 1 cm are sampled randomly from within 10 cm × 10 cm of the center of one side of the sample, and the element ratio in the surface and depth direction is calculated according to the method of Example 2001. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
{第4の態様}
 条件4を満たす第4の態様の実施例を示す。
{Fourth aspect}
The Example of the 4th aspect which satisfy | fills the conditions 4 is shown.
[実施例3001]
<シロキサン結合を有する化合物を含む樹脂層前駆体を形成するための、重合性の放射線硬化性組成物の調製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマーの調製)
 150mlの3口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業(株)製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。
 これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
Figure JPOXMLDOC01-appb-C000051
[Example 3001]
<Preparation of polymerizable radiation-curable composition for forming a resin layer precursor containing a compound having a siloxane bond>
(Preparation of radiation curable polymer having dialkylsiloxane group)
In a 150 ml three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.), DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) 0.007 g was added and dissolved in 50 g of n-heptane.
This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.).
Figure JPOXMLDOC01-appb-C000051
(重合性の放射線硬化性組成物の調製)
 20℃まで冷却した放射線硬化性ポリマー溶液5gを、n-ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5gおよびオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(Preparation of polymerizable radiation curable composition)
5 g of the radiation curable polymer solution cooled to 20 ° C. was diluted with 95 g of n-heptane. To the obtained solution, 0.5 g of UV9380C (manufactured by Momentive) as a photopolymerization initiator and 0.1 g of organics TA-10 (manufactured by Matsumoto Fine Chemical) are added, and a polymerizable radiation curable composition is prepared. Prepared.
<シロキサン結合を有する化合物を含む樹脂層前駆体の形成>
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、厚みは約180μm)を支持体として重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、UV照射時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有するシロキサン結合を有する化合物を含み、厚み1μmのシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
<Formation of resin layer precursor containing compound having siloxane bond>
PAN (polyacrylonitrile) porous membrane (polyacrylonitrile porous membrane is present on the nonwoven fabric, including the nonwoven fabric, the thickness is about 180 μm) and spin-coated with a polymerizable radiation curable composition, followed by UV intensity 24 kW UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under UV treatment conditions of / m 2 and UV irradiation time of 10 seconds, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond having a dialkylsiloxane group and having a siloxane bond having a thickness of 1 μm was formed on the porous support.
<シロキサン結合を有する化合物を含む樹脂層前駆体の酸素原子浸透処理-プラズマ処理->
 シロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体をデスクトップ真空プラズマ装置(ユーテック社製)に入れ、キャリアガス条件を酸素流量50cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を25Wとし、処理時間20秒でプラズマ処理を行った。各実施例および比較例に共通するプラズマ処理の条件として、全てアノードカップリングを用い、処理時間は20秒、酸素流量を50cm(STP)/minとした。
 得られた複合膜を実施例3001のガス分離膜とした。
<Oxygen atom permeation treatment of a resin layer precursor containing a compound having a siloxane bond-plasma treatment->
Put porous support to form a resin layer precursor comprising a compound having a siloxane bond to the desktop vacuum plasma apparatus (UTEC Corporation), the oxygen flow rate 50 cm 3 of carrier gas conditions (STP) / min, argon flow rate 100 cm 3 ( STP) / min, the degree of vacuum was 30 Pa, the input power was 25 W, and the plasma treatment was performed for a treatment time of 20 seconds. As the plasma processing conditions common to each example and comparative example, anode coupling was used, the processing time was 20 seconds, and the oxygen flow rate was 50 cm 3 (STP) / min.
The obtained composite membrane was used as the gas separation membrane of Example 3001.
(シロキサン結合を有する化合物を含む樹脂層のケイ素原子の価数の算出)
 シロキサン結合を有する化合物を含む樹脂層の表面から支持体方向へ10nm、100nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層に含まれるケイ素原子の価数と、シロキサン結合を有する化合物を含む樹脂層の表面におけるケイ素原子の価数は、ESCA(Electron Spectroscopy FOR Chemical Analysis)を使用して算出した。
 シロキサン結合を有する化合物を含む樹脂層を形成した多孔質支持体をPhysical Electronics, Inc. 社製 QuanteraSXMに入れ、X線源:Al-Kα線(1490eV,25W,100μmの直径)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、シロキサン結合を有する化合物を含む樹脂層の表面におけるスペクトルを得た。またC60イオンによるエッチングを行った。具体的には、Physical Electronics, Inc.社製 QuanteraSXM付属C60イオン銃にて、イオンビーム強度はC60+:10keV、10nAとし、2mm×2mmの領域を10nm、及び100nmエッチングした。この膜にてESCA装置を用いて、シロキサン結合を有する化合物を含む樹脂層の表面から支持体方向へ10nm、100nmの深さにおけるSi2Pスペクトルと、シロキサン結合を有する化合物を含む樹脂層の表面におけるSi2Pスペクトルを得た。Si2Pスペクトルピークのカーブフィッティングから、ケイ素原子の価数(Si2+、Si3+およびSi4+)を分離・定量した。以上より、シロキサン結合を有する化合物を含む樹脂層の表面から支持体方向へ10nm、100nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層と、シロキサン結合を有する化合物を含む樹脂層の表面が、一般式(1)で表される繰り返し単位、及び、少なくとも一般式(2)で表される繰り返し単位または一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含むことが確認された。
 シロキサン結合を有する化合物を含む樹脂層の表面から支持体方向へのシロキサン結合を有する化合物を含む樹脂層の深さはシロキサン結合を有する化合物を含む樹脂層材料のエッチング速度10nm/minから算出した。この値は材質が変わるごとに求めることが出来、適宜材料に最適な数値を用いるものとする。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例3001~3007では3~500モル%であり、一方で実施例3008~3009では5~400モル%であることを同様の方法で確認した。
 また、シロキサン結合を有する化合物を含む樹脂層の表面から100nmの深さにおけるシロキサン結合を有する化合物を含む樹脂層が含むシロキサン結合を有する化合物における、一般式(3)で表される繰り返し単位の一般式(2)で表される繰り返し単位および一般式(1)で表される繰り返し単位に対する比率が実施例3001~3007では3~400モル%であり、一方で実施例3008~3009では5~300モル%であることを同様の方法で確認した。
 前述のシロキサン結合を有する化合物を含む樹脂層の表面は、同様にESCAによりO/Si比を測定することで決定することが出来る。すなわち、前述のガス分離膜の前述の支持体とは反対側の表面から前述の支持体方向へ測定した場合にO/Si比が最大であり、且つ、ケイ素原子数が3%(Atomic%)以上含まれる面を表面とする。
(Calculation of valence of silicon atom of resin layer containing compound having siloxane bond)
Resin containing a valence of silicon atoms contained in a resin layer containing a compound having a siloxane bond at a depth of 10 nm and 100 nm from the surface of the resin layer containing a compound having a siloxane bond toward the support, and a compound having a siloxane bond The valence of silicon atoms on the surface of the layer was calculated using ESCA (Electron Spectroscopy FOR Chemical Analysis).
A porous support formed with a resin layer containing a compound having a siloxane bond was obtained from Physical Electronics, Inc. Included in Quantera SXM manufactured by the company, X-ray source: Al—Kα ray (1490 eV, 25 W, diameter of 100 μm), measurement area: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, including a compound having a siloxane bond A spectrum on the surface of the resin layer was obtained. Etching with C60 ions was also performed. Specifically, Physical Electronics, Inc. With a Quantera SXM attached C60 ion gun, the ion beam intensity was C60 +: 10 keV, 10 nA, and a 2 mm × 2 mm region was etched by 10 nm and 100 nm. Using this ESCA apparatus, the Si2P spectrum at a depth of 10 nm and 100 nm from the surface of the resin layer containing a compound having a siloxane bond to the support and the Si2P surface of the resin layer containing a compound having a siloxane bond are used. A spectrum was obtained. From the curve fitting of the Si2P spectral peak, the valence (Si2 + , Si3 + and Si4 + ) of the silicon atom was separated and quantified. As described above, the surface of the resin layer containing a compound having a siloxane bond and the resin layer containing a compound having a siloxane bond at a depth of 10 nm and 100 nm from the surface of the resin layer containing the compound having a siloxane bond to the support, It is confirmed that the compound contains a compound having a repeating unit represented by the general formula (1) and a siloxane bond having at least the repeating unit represented by the general formula (2) or the repeating unit represented by the general formula (3). It was done.
The depth of the resin layer containing a compound having a siloxane bond from the surface of the resin layer containing a compound having a siloxane bond in the direction of the support was calculated from the etching rate of 10 nm / min of the resin layer material containing the compound having a siloxane bond. This value can be obtained every time the material changes, and the optimum value for the material is used as appropriate.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 500 mol% in Examples 3001 to 3007, while 5 to 400 in Examples 3008 to 3009. It was confirmed by the same method that it was mol%.
The repeating unit represented by the general formula (3) in the compound having a siloxane bond contained in the resin layer containing a compound having a siloxane bond at a depth of 100 nm from the surface of the resin layer containing the compound having a siloxane bond The ratio of the repeating unit represented by the formula (2) and the repeating unit represented by the general formula (1) is 3 to 400 mol% in Examples 3001 to 3007, while 5 to 300 in Examples 3008 to 3009. It was confirmed by the same method that it was mol%.
Similarly, the surface of the resin layer containing the compound having a siloxane bond can be determined by measuring the O / Si ratio by ESCA. That is, the O / Si ratio is maximum and the number of silicon atoms is 3% (Atomic%) when measured in the direction of the support from the surface opposite to the support of the gas separation membrane. The surface included above is defined as the surface.
(第三成分の陽電子寿命および第三成分の相対強度の測定)
 1.5cm×1.5cm角の試験片を実施例3001のガス分離膜から切り出し、市販のSiウェハに貼り付けて、室温(25℃)で真空脱気した後に、以下の条件で陽電子消滅寿命の測定を行った。以下の条件であれば、第三成分の陽電子寿命および第三成分の相対強度は一義的に定まる。
Figure JPOXMLDOC01-appb-T000052
 得られたデータを非線形最小二乗プログラムPOSITRONFITに基づき、第三成分の解析を行い、第三成分の陽電子寿命τ3(ns)および第三成分の相対強度I3を、ビーム強度1keV,3keVそれぞれに関して計算した(P. Kirkegaard, M. Eldrup, O. E. Mogensen, N. J. Pedersen,Computer Physics Communications, 23, 307 (1981))。得られた結果を下記表に記載した。
 なお、シロキサン結合を有する化合物を含む樹脂層が最外層ではなく、追加樹脂層などの別の層がシロキサン結合を有する化合物を含む樹脂層よりも外側にあった場合、ESCAによるエッチングを用いシロキサン結合を有する化合物を含む樹脂層の表面を出す条件を算出し、同条件でエッチングを行ったサンプルを第三成分の陽電子寿命および第三成分の相対強度の計測に用いる。
(Measurement of the positron lifetime of the third component and the relative intensity of the third component)
A 1.5 cm × 1.5 cm square test piece was cut out from the gas separation membrane of Example 3001, attached to a commercially available Si wafer, vacuum degassed at room temperature (25 ° C.), and then subjected to positron annihilation lifetime under the following conditions. Was measured. Under the following conditions, the positron lifetime of the third component and the relative intensity of the third component are uniquely determined.
Figure JPOXMLDOC01-appb-T000052
The obtained data was analyzed for the third component based on the nonlinear least square program POSITRONFIT, and the positron lifetime τ3 (ns) of the third component and the relative intensity I3 of the third component were calculated for the beam intensities of 1 keV and 3 keV, respectively. (P. Kirkegaard, M. Eldrup, OE Mogensen, N. J. Pedersen, Computer Physics Communications, 23, 307 (1981)). The results obtained are listed in the table below.
If the resin layer containing a compound having a siloxane bond is not the outermost layer and another layer such as an additional resin layer is outside the resin layer containing a compound having a siloxane bond, the siloxane bond is etched using ESCA. The conditions for projecting the surface of the resin layer containing the compound having the above are calculated, and the sample etched under the same conditions is used for measurement of the positron lifetime of the third component and the relative intensity of the third component.
[実施例3002~3007]
 実施例3001において、シロキサン結合を有する化合物を含む樹脂層前駆体のプラズマ処理の投入電力を25Wから下記表に記載のとおりにそれぞれ変更した以外は実施例3001と同様にして実施例3002~3007のガス分離膜を得た。
[Examples 3002 to 3007]
In Example 3001, the input power of the plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W as shown in the following table, respectively. A gas separation membrane was obtained.
[実施例3008、3009]
 実施例3007において、シロキサン結合を有する化合物を含む樹脂層前駆体材料をPDMSからそれぞれPolydiphenyl siloxane、Poly[methyl(3,3,3-trifluoropropyl)siloxane]にそれぞれ変更した以外は実施例3007と同様にして実施例3008、3009のガス分離膜を得た。
 Polydiphenyl siloxaneはSigma Aldrich社製の商品名482153として入手できるものを用い、Poly[methyl(3,3,3-trifluoropropyl)siloxane](略称PMTFPS)はSigma Aldrich社製の商品名481645として入手できるものを用いる。
[Examples 3008 and 3009]
Example 3007 is the same as Example 3007 except that the resin layer precursor material containing a compound having a siloxane bond is changed from PDMS to Polydiphenyl siloxane and Poly [methyl (3,3,3-trifluoropropyl) siloxane], respectively. Thus, gas separation membranes of Examples 3008 and 3009 were obtained.
Polyphenyl siloxane is available under the trade name 482153 manufactured by Sigma Aldrich, and Poly [methyl (3,3-trifluoropropyl) siloxane] (abbreviated as PMTFPS) is available under the trade name 48 available from Sigma Aldrich 45. Use.
[実施例3010]
 実施例3004において、酸素原子浸透処理を行った後、シロキサン結合を有する化合物を含む樹脂層の上にさらに重合性の放射線硬化性組成物をスピンコートし、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行ってから乾燥させた。このようにして、厚み1μmの2層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
 2層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した多孔質支持体をデスクトップ真空プラズマ装置(YOUTEC社製)に入れ、キャリアガス条件を酸素流量50cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を100Wとし、処理時間20秒で2回目の酸素原子浸透処理であるプラズマ処理を行った。
 得られたガス分離膜を実施例3010のガス分離膜とした。
[Example 3010]
In Example 3004, after oxygen atom permeation treatment, a polymerizable radiation curable composition was further spin-coated on a resin layer containing a compound having a siloxane bond, and the UV intensity was 24 kW / m 2 and the treatment time was 10 UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under UV treatment conditions for 2 seconds, and then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a second layer having a thickness of 1 μm was formed.
A porous support formed with a resin layer precursor containing a compound having a siloxane bond in the second layer is placed in a desktop vacuum plasma apparatus (manufactured by YOUTEC), and the carrier gas conditions are oxygen flow rate 50 cm 3 (STP) / min, argon The plasma treatment, which is the second oxygen atom infiltration treatment, was performed at a flow rate of 100 cm 3 (STP) / min, a degree of vacuum of 30 Pa, an input power of 100 W, and a treatment time of 20 seconds.
The obtained gas separation membrane was used as the gas separation membrane of Example 3010.
[実施例3011]
 実施例3010において、2回目の酸素原子浸透処理を2層目のシロキサン結合を有する化合物を含む樹脂層前駆体に対して行った後、2層目のシロキサン結合を有する化合物を含む樹脂層の上にさらに重合性の放射線硬化性組成物をスピンコートし、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行ってから乾燥させた。このようにして、厚み1μmの3層目のシロキサン結合を有する化合物を含む樹脂層前駆体を形成した。
 3層目のシロキサン結合を有する化合物前駆体を含む樹脂層を形成した多孔質支持体をデスクトップ真空プラズマ装置(YOUTEC社製)に入れ、キャリアガス条件を酸素流量50cm(STP)/min、アルゴン流量100cm(STP)/minとし、真空度30Pa、投入電力を100Wとし、処理時間20秒で3回目の酸素原子浸透処理であるプラズマ処理を行った。
 得られたガス分離膜を実施例3011のガス分離膜とした。
[Example 3011]
In Example 3010, after the second oxygen atom permeation treatment was performed on the resin layer precursor containing a compound having a siloxane bond in the second layer, the resin layer containing a compound having a siloxane bond in the second layer was applied. Further, a polymerizable radiation-curable composition was spin-coated, and UV treatment (Fusion UV System, Light Hammer 10, D-bulb) was performed under a UV treatment condition of a UV intensity of 24 kW / m 2 and a treatment time of 10 seconds. And then dried. In this way, a resin layer precursor containing a compound having a siloxane bond as a third layer having a thickness of 1 μm was formed.
Put porous support to form a resin layer containing a compound precursor having a siloxane bond the third layer to the desktop vacuum plasma apparatus (YOUTEC Corp.), the oxygen flow rate 50 cm 3 of carrier gas conditions (STP) / min, argon The flow rate was 100 cm 3 (STP) / min, the degree of vacuum was 30 Pa, the input power was 100 W, and the plasma treatment, which is the third oxygen atom infiltration treatment, was performed in a treatment time of 20 seconds.
The obtained gas separation membrane was used as the gas separation membrane of Example 3011.
[比較例3001]
 実施例3001において、シロキサン結合を有する化合物を含む樹脂層前駆体のプラズマ処理の投入電力を25Wから10Wに変更した以外は実施例3001と同様にして、比較例3001のガス分離膜を得た。
[Comparative Example 3001]
In Example 3001, a gas separation membrane of Comparative Example 3001 was obtained in the same manner as in Example 3001, except that the input power for plasma treatment of the resin layer precursor containing a compound having a siloxane bond was changed from 25 W to 10 W.
[比較例3002]
 実施例3001において、キャリアガス条件を酸素流量50cm(STP)/minから0cm(STP)/minに変更した以外は実施例3001と同様にして、比較例3002のガス分離膜を得た。
[Comparative Example 3002]
A gas separation membrane of Comparative Example 3002 was obtained in the same manner as in Example 3001, except that the carrier gas condition was changed from 50 cm 3 (STP) / min to 0 cm 3 (STP) / min in Example 3001.
[比較例3003]
 Journal of Membrane Science 99 (1995) 139-147に記載されている手法に基づき、Ar雰囲気下において、5Wで120秒間ポリジメチルシロキサン膜を処理し、複合膜を作製した。得られた複合膜を、比較例3003のガス分離膜とし、実施例3001と同様にして評価を行った。高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が40℃となるように調整してガス分離性能を評価した。二酸化炭素(CO)、メタン(CH)の体積比が13:87の混合ガスをガス供給側の全圧力が6MPa(COの分圧:0.78MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定しようと試みたところ、圧力を保持することが出来なかった。
[Comparative Example 3003]
Based on the technique described in Journal of Membrane Science 99 (1995) 139-147, a polydimethylsiloxane film was treated with 5 W for 120 seconds under an Ar atmosphere to produce a composite film. The obtained composite membrane was used as a gas separation membrane of Comparative Example 3003 and evaluated in the same manner as in Example 3001. Using a stainless steel cell made of SUS316 (manufactured by DENISSEN) having high-pressure resistance, the cell temperature was adjusted to 40 ° C., and the gas separation performance was evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 13:87 is adjusted so that the total pressure on the gas supply side is 6 MPa (CO 2 partial pressure: 0.78 MPa), and CO 2 When an attempt was made to measure the gas permeability of each of 2 and CH 4 by TCD detection type gas chromatography, the pressure could not be maintained.
[比較例3004]
 Journal of Membrane Science 440(2013) 1-8に記載されている手法に基づき、ポリジメチルシロキサン膜を大気圧プラズマ処理し、複合膜を作製した。得られた複合膜を、比較例3004のガス分離膜とし、実施例3001と同様にして評価を行った。高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が40℃となるように調整してガス分離性能を評価した。二酸化炭素(CO)、メタン(CH)の体積比が13:87の混合ガスをガス供給側の全圧力が6MPa(COの分圧:0.78MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定しようと試みたところ、圧力を保持することが出来なかった。
[Comparative Example 3004]
Based on the method described in Journal of Membrane Science 440 (2013) 1-8, the polydimethylsiloxane film was subjected to atmospheric pressure plasma treatment to produce a composite film. The obtained composite membrane was used as a gas separation membrane of Comparative Example 3004 and evaluated in the same manner as in Example 3001. Using a stainless steel cell made of SUS316 (manufactured by DENISSEN) having high-pressure resistance, the cell temperature was adjusted to 40 ° C., and the gas separation performance was evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 13:87 is adjusted so that the total pressure on the gas supply side is 6 MPa (CO 2 partial pressure: 0.78 MPa), and CO 2 When an attempt was made to measure the gas permeability of each of 2 and CH 4 by TCD detection type gas chromatography, the pressure could not be maintained.
[比較例3005]
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、厚みは約180μm)上にプラズマCVD(ヘキサメチルジシロキサン、500W、YOUTECH溶液気化CVD装置)を用いてシリカ膜を30nm蒸着した。得られた複合膜を、比較例3005のガス分離膜とし、実施例3001と同様にして評価を行った。
[Comparative Example 3005]
PAN (Polyacrylonitrile) porous membrane (Polyacrylonitrile porous membrane exists on the nonwoven fabric, including the nonwoven fabric, thickness is about 180 μm) Using plasma CVD (hexamethyldisiloxane, 500 W, YOUTUCH solution vaporization CVD device) A silica film was deposited to 30 nm. The obtained composite membrane was used as a gas separation membrane of Comparative Example 3005 and evaluated in the same manner as in Example 3001.
[実施例3012]
<追加樹脂層の作製>
(ポリマー(P-101)の合成)
 下記反応スキームでポリマー(P-101)を合成した。
[Example 3012]
<Preparation of additional resin layer>
(Synthesis of polymer (P-101))
A polymer (P-101) was synthesized according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
ポリマー(P-101)の合成:
 1Lの三口フラスコにN-メチルピロリドン123ml、6FDA(東京化成株式会社製、製品番号:H0771)54.97g(0.124mol)を加えて40℃で溶解させ、窒素気流下で攪拌しているところに、2,3,5,6-テトラメチルフェニレンジアミン(東京化成株式会社製、製品番号:T1457)4.098g(0.0248mol)、3,5-ジアミノ安息香酸15.138g(0.0992mol)のN-メチルピロリドン84.0ml溶液を30分かけて系内を40℃に保ちつつ滴下した。反応液を40℃で2.5時間攪拌した後、ピリジン(和光純薬株式会社製)2.94g(0.037mol)、無水酢酸(和光純薬株式会社製)31.58g(0.31mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、反応液にアセトン676.6mLを加え、希釈した。5Lステンレス容器にメタノール1.15L、アセトン230mLを加えて攪拌しているところに、反応液のアセトン希釈液を滴下した。得られたポリマー結晶を吸引ろ過し、60℃で送風乾燥させて50.5gのポリマー(P-101)を得た。なお、このポリマー(P-101)は、前掲の例示ポリイミド化合物P-100においてX:Y=20:80としたものである。下記表中、ポリマー(P-101)のことを、PIと省略して記載した。
Synthesis of polymer (P-101):
N-methylpyrrolidone 123 ml, 6FDA (manufactured by Tokyo Chemical Industry Co., Ltd., product number: H0771) 54.97 g (0.124 mol) was added to a 1 L three-necked flask and dissolved at 40 ° C. and stirred under a nitrogen stream. 2,3,5,6-tetramethylphenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1457) 4.098 g (0.0248 mol), 3,5-diaminobenzoic acid 15.138 g (0.0992 mol) Of N-methylpyrrolidone in an amount of 84.0 ml was added dropwise over 30 minutes while maintaining the system at 40 ° C. After stirring the reaction solution at 40 ° C. for 2.5 hours, 2.94 g (0.037 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.), 31.58 g (0.31 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) Each was added and further stirred at 80 ° C. for 3 hours. Thereafter, 676.6 mL of acetone was added to the reaction solution for dilution. The acetone dilution liquid of the reaction liquid was dripped at the place which added methanol 1.15L and acetone 230mL to the 5L stainless steel container and stirred. The obtained polymer crystals were suction filtered and blown dry at 60 ° C. to obtain 50.5 g of polymer (P-101). This polymer (P-101) is the same as the above-described exemplified polyimide compound P-100 with X: Y = 20: 80. In the table below, polymer (P-101) is abbreviated as PI.
(追加樹脂層の形成)
 30ml褐色バイアル瓶に、ポリマー(P-101)を1.4g、メチルエチルケトン8.6gを混合して25℃で30分攪拌した。その後、攪拌した溶液を実施例3005と同様にシロキサン結合を有する化合物を含む樹脂層のプラズマ処理面上にスピンコートし、厚み150nmの追加樹脂層を形成し、ガス分離膜を得た。
 得られた分離膜を、実施例3012のガス分離膜とした。
(Formation of additional resin layer)
In a 30 ml brown vial, 1.4 g of polymer (P-101) and 8.6 g of methyl ethyl ketone were mixed and stirred at 25 ° C. for 30 minutes. Thereafter, the stirred solution was spin-coated on the plasma-treated surface of the resin layer containing a compound having a siloxane bond in the same manner as in Example 3005 to form an additional resin layer having a thickness of 150 nm, thereby obtaining a gas separation membrane.
The obtained separation membrane was used as the gas separation membrane of Example 3012.
[実施例3013]
 シロキサン結合を有する化合物を含む樹脂層を実施例3006と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例3012と同様の方法で追加樹脂層を形成し、実施例3013のガス分離膜を得た。
[Example 3013]
An additional resin layer is formed in the same manner as in Example 3012 except that a resin layer containing a compound having a siloxane bond, which is obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 3006, is used. A gas separation membrane of Example 3013 was obtained.
[実施例3014]
 シロキサン結合を有する化合物を含む樹脂層を実施例3007と同様の条件でプラズマ処理したシロキサン結合を有する化合物を含む樹脂層を用いた以外は実施例3012と同様の方法で追加樹脂層を形成し、実施例3014のガス分離膜を得た。
[Example 3014]
An additional resin layer is formed in the same manner as in Example 3012 except that a resin layer containing a compound having a siloxane bond, which is obtained by subjecting a resin layer containing a compound having a siloxane bond to plasma treatment under the same conditions as in Example 3007, is used. A gas separation membrane of Example 3014 was obtained.
[実施例3015~3017]
 シロキサン結合を有する化合物を含む樹脂層の厚みを下記表に記載のとおりに変更した以外は実施例3005と同様の条件でプラズマ処理した以外は実施例3005と同様の方法でガス分離膜を得た。得られたガス分離膜を実施例3015~3017のガス分離膜とした。
[Examples 3015 to 3017]
A gas separation membrane was obtained in the same manner as in Example 3005 except that the thickness of the resin layer containing a compound having a siloxane bond was changed as described in the following table, except that plasma treatment was performed under the same conditions as in Example 3005. . The obtained gas separation membrane was used as the gas separation membrane of Examples 3015 to 3017.
[評価]
<ガス分離膜のガス分離性能の評価>
 得られた薄層複合膜である各実施例および比較例のガス分離膜において、高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用い、セルの温度が40℃となるように調整して評価した。二酸化炭素(CO)、メタン(CH)の体積比が13:87の混合ガスをガス供給側の全圧力が6MPa(COの分圧:0.78MPa)となるように調整し、CO、CHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各実施例および比較例のガス分離膜のガス分離選択性は、この膜のCHの透過係数PCH4に対するCOの透過係数PCO2の割合(PCO2/PCH4)として計算した。各実施例および比較例のガス分離膜のCO透過性は、この膜のCOの透過度QCO2(単位:GPU)とした。
 なお、ガス透過性の単位は、圧力差あたりの透過流束(透過率、透過度、Permeanceとも言う)を表すGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕または透過係数を表すbarrer(バーラー)単位〔1barrer=1×10-10cm(STP)・cm/cm・sec・cmHg〕で表す。本明細書中では、GPU単位の場合は記号Qを用いて表し、barrer単位の場合は記号Pを用いて表した。
 ガス透過性(COの透過度QCO2)が30GPU以上かつ、ガス分離選択性が50以上となる場合は評価をAAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上30GPU未満かつ、ガス分離選択性が30以上50未満となる場合は評価をAとし、
 ガス透過性(COの透過度QCO2)が10GPU以上かつガス分離選択性が30未満、もしくは、ガス透過性(COの透過度QCO2)が10GPU未満かつガス分離選択性が30以上となる場合は評価をBとし、
 ガス透過性(COの透過度QCO2)が10GPU未満かつ、ガス分離選択性が30未満となる場合、もしくは圧力がかからず(圧力を保持することが出来ず)試験が行えなかった場合は評価をCとした。
[Evaluation]
<Evaluation of gas separation performance of gas separation membrane>
In each of the gas separation membranes of the Examples and Comparative Examples, which are the obtained thin-layer composite membranes, a high-pressure-resistant SUS316 stainless cell (manufactured by DENISSEN) was used, and the cell temperature was adjusted to 40 ° C. evaluated. A mixed gas having a volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) of 13:87 is adjusted so that the total pressure on the gas supply side is 6 MPa (CO 2 partial pressure: 0.78 MPa), and CO 2 The gas permeability of each of 2 and CH 4 was measured by TCD detection type gas chromatography. The gas separation selectivity of the gas separation membrane of each Example and Comparative Example was calculated as the ratio of the CO 2 permeability coefficient P CO2 to the CH 4 permeability coefficient P CH4 of this membrane (P CO2 / P CH4 ). The CO 2 permeability of the gas separation membrane of each Example and Comparative Example was defined as the CO 2 permeability Q CO2 (unit: GPU) of this membrane.
The unit of gas permeability is a GPU (GPU) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 ) representing a permeation flux (also referred to as permeability, permeability, and Permeance) per pressure difference. · Sec · cmHg] or a barrer unit (1 barrer = 1 × 10 −10 cm 3 (STP) · cm / cm 2 · sec · cmHg) representing a transmission coefficient. In this specification, the unit of GPU is represented by the symbol Q, and the unit of barrer is represented by the symbol P.
When the gas permeability (CO 2 permeability Q CO2 ) is 30 GPU or more and the gas separation selectivity is 50 or more, the evaluation is AA,
When the gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and less than 30 GPU and the gas separation selectivity is 30 or more and less than 50, the evaluation is A,
The gas permeability (CO 2 permeability Q CO2 ) is 10 GPU or more and the gas separation selectivity is less than 30, or the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is 30 or more. If so, the evaluation is B,
When the gas permeability (CO 2 permeability Q CO2 ) is less than 10 GPU and the gas separation selectivity is less than 30, or the pressure is not applied (the pressure cannot be maintained) and the test cannot be performed. Was rated C.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 上記表11および表12より、シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が本発明で規定する範囲外である比較例3001~3005のガス分離膜に比較し、本発明のガス分離膜は高圧下におけるガス透過性(CO透過度)およびガス分離選択性の少なくとも一方が高いことが分かった。 From Table 11 and Table 12 above, the comparative example in which the positron lifetime τ3 of the third component when the positron is injected with the intensity of 1 keV from the surface of the resin layer containing the compound having a siloxane bond is outside the range defined in the present invention. Compared with gas separation membranes of 3001 to 3005, it was found that the gas separation membrane of the present invention has higher gas permeability (CO 2 permeability) and gas separation selectivity under high pressure.
[実施例3101~3117]
-モジュール化-
 実施例3001~3017で作製したガス分離膜を用いて、特開平5-168869号公報の[0012]~[0017]を参考に、スパイラル型モジュールを作製した。得られたガス分離膜モジュールを、実施例3101~3117のガス分離膜モジュールとした。
 作製した実施例3101~3117のガス分離膜モジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
 作製した実施例3101~3117のガス分離膜モジュールは、リーフ(リーフとはスパイラル型モジュールにおいて透過側の空間が中心管に接続されている、封筒状に折り曲げられたガス分離膜の部分のことを言う)の片面の中心の10cm×10cm内よりランダムに1cm×1cmを10点採取し、実施例3001の方法に従い、表面と深さ方向の元素比を算出すると、10点中9点以上で内蔵する分離膜の通りのものであることを確認した。またスパイラルモジュールは、内蔵するガス分離膜の性能のとおり、良好なものであることを確認した。
[Examples 3101 to 3117]
-modularization-
Using the gas separation membranes produced in Examples 3001 to 3017, spiral type modules were produced with reference to [0012] to [0017] of JP-A-5-168869. The obtained gas separation membrane module was used as the gas separation membrane module of Examples 3101 to 3117.
It was confirmed that the manufactured gas separation membrane modules of Examples 3101 to 3117 were good according to the performance of the built-in gas separation membrane.
The produced gas separation membrane modules of Examples 3101 to 3117 are leaves (the leaf is a portion of the gas separation membrane folded in an envelope shape in which the space on the transmission side is connected to the central tube in the spiral type module). 10 points of 1 cm × 1 cm are sampled randomly from within 10 cm × 10 cm of the center of one side, and the element ratio in the surface and depth direction is calculated according to the method of Example 3001. It was confirmed that it was as per the separation membrane. Moreover, it was confirmed that the spiral module was good according to the performance of the built-in gas separation membrane.
1  追加樹脂層
2  シロキサン結合を有する化合物を含む樹脂層前駆体
3  シロキサン結合を有する化合物を含む樹脂層
4  支持体(第2の態様では多孔質支持体A)
5  酸素原子浸透処理
6  シロキサン結合を有する化合物を含む樹脂層の表面
7  シロキサン結合を有する化合物を含む樹脂層の表面から(支持体(第2の態様では多孔質支持体A)方向へ)深さdにおけるシロキサン結合を有する化合物を含む樹脂層の面
10 ガス分離膜
11 酸素原子浸透処理工程を施されていないポリジメチルシロキサン膜
12 膜厚方向に均一に酸素原子が導入されたポリジメチルシロキサン膜
d  シロキサン結合を有する化合物を含む樹脂層の表面から(支持体(第2の態様では多孔質支持体A)方向へ)の深さ
DESCRIPTION OF SYMBOLS 1 Additional resin layer 2 Resin layer precursor containing the compound which has siloxane bond 3 Resin layer 4 which contains the compound which has siloxane bond 4 Support body (in the 2nd aspect, porous support body A)
5 Oxygen atom permeation treatment 6 Surface of resin layer containing compound having siloxane bond 7 Depth from surface of resin layer containing compound having siloxane bond (in the direction of support (porous support A in the second embodiment)) Surface 10 of resin layer containing compound having siloxane bond in d Gas separation membrane 11 Polydimethylsiloxane membrane 12 not subjected to oxygen atom permeation treatment step Polydimethylsiloxane membrane d in which oxygen atoms are uniformly introduced in the film thickness direction Depth from the surface of the resin layer containing the compound having a siloxane bond (in the direction of the support (porous support A in the second embodiment))

Claims (41)

  1.  下記条件1、3および4のいずれか1つを満たすガス分離膜;
    条件1:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
     前記シロキサン結合を有する化合物を含む樹脂層が下記式1および下記式2を満たすガス分離膜;
    式1 0.9≧A/B≧0.55
    式2 B≧1.7
    式1および式2中、Aは前記シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前記シロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前記シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す;
    条件3:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
     前記シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析におけるSi2+およびSi3+のピークの全Siのピークに対する割合の最小値Si0が1~40%であるガス分離膜;
    条件4:シロキサン結合を有する化合物を含む樹脂層を有するガス分離膜であって、
     前記シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3が3.40~4.20nsとなるガス分離膜。
    A gas separation membrane satisfying any one of the following conditions 1, 3 and 4;
    Condition 1: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
    A gas separation membrane in which the resin layer containing the compound having a siloxane bond satisfies the following formula 1 and the following formula 2;
    Formula 1 0.9 ≧ A / B ≧ 0.55
    Formula 2 B ≧ 1.7
    In Formula 1 and Formula 2, A is the number of oxygen atoms contained in the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. Represents an O / Si ratio that is a ratio, and B represents an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond;
    Condition 3: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
    A gas separation membrane having a minimum value Si0 of 1 to 40% of the ratio of the Si 2+ and Si 3+ peaks to the total Si peaks in the ESCA depth analysis of the resin layer containing a compound having a siloxane bond;
    Condition 4: a gas separation membrane having a resin layer containing a compound having a siloxane bond,
    A gas separation membrane in which a positron lifetime τ3 of a third component is 3.40 to 4.20 ns when positrons are injected from the surface of the resin layer containing a compound having a siloxane bond with an intensity of 1 keV.
  2.  前記条件1を満たす請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein the condition 1 is satisfied.
  3.  前記シロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有する請求項2に記載のガス分離膜;
    Figure JPOXMLDOC01-appb-C000001
     一般式(2)および一般式(3)中、R11は置換基を表し、*は一般式(2)または一般式(3)中の#との結合部位を表し、#は一般式(2)または一般式(3)中の*との結合部位を表す。
    The gas separation membrane according to claim 2, wherein the compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3);
    Figure JPOXMLDOC01-appb-C000001
    In General Formula (2) and General Formula (3), R 11 represents a substituent, * represents a bonding site with # in General Formula (2) or General Formula (3), and # represents General Formula (2 ) Or a binding site with * in the general formula (3).
  4.  前記シロキサン結合を有する化合物が、下記一般式(1)で表される繰り返し単位を有する請求項2または3に記載のガス分離膜;
    一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    一般式(1)中、Rはそれぞれ独立に水素原子、炭素数1以上のアルキル基、アリール基、アミノ基、エポキシ基、フッ化アルキル基、ビニル基、アルコキシ基またはカルボキシル基を表し、nは2以上の整数を表す。
    The gas separation membrane according to claim 2 or 3, wherein the compound having a siloxane bond has a repeating unit represented by the following general formula (1);
    General formula (1)
    Figure JPOXMLDOC01-appb-C000002
    In general formula (1), each R independently represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an aryl group, an amino group, an epoxy group, a fluorinated alkyl group, a vinyl group, an alkoxy group or a carboxyl group, and n is Represents an integer of 2 or more.
  5.  前記シロキサン結合を有する化合物を含む樹脂層の表面が、前記一般式(1)で表される繰り返し単位、及び、少なくとも前記一般式(2)で表される繰り返し単位または前記一般式(3)で表される繰り返し単位を有するシロキサン結合を有する化合物を含む請求項4に記載のガス分離膜。 The surface of the resin layer containing the compound having a siloxane bond is a repeating unit represented by the general formula (1) and at least a repeating unit represented by the general formula (2) or the general formula (3). The gas separation membrane of Claim 4 containing the compound which has a siloxane bond which has a repeating unit represented.
  6.  前記シロキサン結合を有する化合物を含む樹脂層の表面の、炭素原子の数のケイ素原子の数に対する比が1.6以下である請求項2~5のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 5, wherein the ratio of the number of carbon atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond is 1.6 or less.
  7.  Bが1.95以上である請求項2~6のいずれか一項に記載のガス分離膜;
     Bは前記シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数に対する比であるO/Si比を表す。
    The gas separation membrane according to any one of claims 2 to 6, wherein B is 1.95 or more;
    B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  8.  A/Bが0.6以上である請求項2~7のいずれか一項に記載のガス分離膜;
     Aは前記シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前記シロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前記シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数の比であるO/Si比を表す。
    The gas separation membrane according to any one of claims 2 to 7, wherein A / B is 0.6 or more;
    A is an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  9.  A/Bが0.65以上である請求項2~8のいずれか一項に記載のガス分離膜;
     Aは前記シロキサン結合を有する化合物を含む樹脂層の表面から10nmの深さにおける前記シロキサン結合を有する化合物を含む樹脂層に含まれる酸素原子の数のケイ素原子の数に対する比であるO/Si比を表し、Bは前記シロキサン結合を有する化合物を含む樹脂層の表面における酸素原子の数のケイ素原子の数の比であるO/Si比を表す。
    The gas separation membrane according to any one of claims 2 to 8, wherein A / B is 0.65 or more;
    A is an O / Si ratio that is a ratio of the number of oxygen atoms to the number of silicon atoms in the resin layer containing the compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing the compound having a siloxane bond. B represents an O / Si ratio which is a ratio of the number of oxygen atoms to the number of silicon atoms on the surface of the resin layer containing the compound having a siloxane bond.
  10.  ポリイミド化合物を含む層をさらに有する請求項2~9のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 9, further comprising a layer containing a polyimide compound.
  11.  前記ポリイミド化合物を含む層の厚みが0.03~0.3μmである請求項2~10のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 10, wherein the layer containing the polyimide compound has a thickness of 0.03 to 0.3 μm.
  12.  前記シロキサン結合を有する化合物を含む樹脂層の厚みが0.1~5μmである請求項2~11のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 11, wherein the resin layer containing the compound having a siloxane bond has a thickness of 0.1 to 5 µm.
  13.  前記シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含む請求項2~12のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 12, wherein the resin layer containing a compound having a siloxane bond contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  14.  さらに支持体を含む請求項2~13のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 13, further comprising a support.
  15.  前記ガス分離膜のゲル分率が45%以上である請求項2~14のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 2 to 14, wherein a gel fraction of the gas separation membrane is 45% or more.
  16. さらに多孔質支持体Aを有し、
     下記条件2を満たす請求項1に記載のガス分離膜;
    条件2:多孔質支持体Aと、
     前記多孔質支持体Aの上に位置するシロキサン結合を有する化合物を含む樹脂層とを有するガス分離膜であって、
     前記シロキサン結合を有する化合物が、少なくとも下記一般式(2)で表される繰り返し単位または下記一般式(3)で表される繰り返し単位を有し、
     前記シロキサン結合を有する化合物を含む樹脂層が、多孔質支持体B中に存在する領域GLiと前記多孔質支持体Bの上に存在する領域GLeとを含み、
     前記GLeの厚みが50~1000nmであり、
     前記GLiの厚みが20nm以上であり、かつ、前記GLeの厚みの10~350%であり、
     前記GLe表層20nm中の前記一般式(3)で表される繰り返し単位の含有率と、前記GLi表層20nm中の前記一般式(3)で表される繰り返し単位の含有率との差が30~90%であるガス分離膜;
    Figure JPOXMLDOC01-appb-C000003
    前記一般式(2)および前記一般式(3)中、R11は置換基を表し、*は前記一般式(2)または前記一般式(3)中の#との結合部位を表し、#は前記一般式(2)または前記一般式(3)中の*との結合部位を表す。
    Furthermore, it has a porous support A,
    The gas separation membrane according to claim 1, which satisfies the following condition 2:
    Condition 2: porous support A,
    A gas separation membrane having a resin layer containing a compound having a siloxane bond located on the porous support A,
    The compound having a siloxane bond has at least a repeating unit represented by the following general formula (2) or a repeating unit represented by the following general formula (3),
    The resin layer containing the compound having a siloxane bond includes a region GLi existing in the porous support B and a region GLe existing on the porous support B,
    The GLe has a thickness of 50 to 1000 nm;
    The thickness of the GLi is 20 nm or more, and 10 to 350% of the thickness of the GLe;
    The difference between the content of the repeating unit represented by the general formula (3) in the GLe surface layer 20 nm and the content of the repeating unit represented by the general formula (3) in the GLi surface layer 20 nm is 30 to 30%. 90% gas separation membrane;
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (2) and the general formula (3), R 11 represents a substituent, * represents a binding site with # in the general formula (2) or the general formula (3), and # is It represents a binding site with * in the general formula (2) or the general formula (3).
  17.  前記GLeの厚みが200~900nmである請求項16に記載のガス分離膜。 The gas separation membrane according to claim 16, wherein the thickness of the GLe is 200 to 900 nm.
  18.  前記GLiの厚みが前記GLeの厚みの20~90%である請求項16または17に記載のガス分離膜。 The gas separation membrane according to claim 16 or 17, wherein the thickness of the GLi is 20 to 90% of the thickness of the GLe.
  19.  前記条件3を満たす請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein the condition 3 is satisfied.
  20.  前記シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析における前記Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から10nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si10と、前記Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ1が50~90%である請求項19に記載のガス分離膜。 The Si 2+ and Si Si definitive from the position at a depth of 10nm with a minimum value Si 0 percentage relative to the peak of the total Si peak 3+ 2+ and Si 3+ in ESCA depth analysis of the resin layer containing a compound having a siloxane bond The gas separation according to claim 19, wherein the difference Δ1 between the ratio Si 10 of the peak of Si to the total Si and the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak is 50 to 90%. film.
  21.  前記シロキサン結合を有する化合物を含む樹脂層のESCA深さ解析における前記Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siを有する位置から20nmの深さにおけるSi2+およびSi3+のピークの全Siに対する割合Si20と、前記Si2+およびSi3+のピークの全Siのピークに対する割合の最小値Siとの差Δ2が55~90%である請求項19または20に記載のガス分離膜。 The Si 2+ and Si Si definitive from the position at a depth of 20nm with a minimum value Si 0 percentage relative to the peak of the total Si peak 3+ 2+ and Si 3+ in ESCA depth analysis of the resin layer containing a compound having a siloxane bond The difference Δ2 between the ratio Si 20 of the peak of Si to the total Si and the minimum value Si 0 of the ratio of the Si 2+ and Si 3+ peaks to the total Si peak is 55 to 90%. Gas separation membrane.
  22.  前記シロキサン結合を有する化合物を含む樹脂層の厚みが150~900nmである請求項19~21のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 19 to 21, wherein the resin layer containing the compound having a siloxane bond has a thickness of 150 to 900 nm.
  23.  さらに支持体を含む請求項19~22のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 19 to 22, further comprising a support.
  24.  前記条件4を満たす請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein the condition 4 is satisfied.
  25.  前記シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の相対強度I3が13~41%となる請求項24に記載のガス分離膜。 25. The gas separation membrane according to claim 24, wherein the relative intensity I3 of the third component when the positron is injected with the intensity of 1 keV from the surface of the resin layer containing the compound having a siloxane bond is 13 to 41%.
  26.  前記シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を1keVの強さで打ち込んだ場合の第三成分の陽電子寿命τ3をX、前記シロキサン結合を有する化合物を含む樹脂層の表面から陽電子を3keVで打ち込んだ場合の第三成分の陽電子寿命τ3をYとして、
    0.88≦X/Y≦0.99
    を満たす請求項24または25に記載のガス分離膜。
    The positron lifetime τ3 of the third component when a positron is injected at a strength of 1 keV from the surface of the resin layer containing the compound having a siloxane bond is X, and the positron is 3 keV from the surface of the resin layer containing the compound having a siloxane bond. When the positron lifetime τ3 of the third component is Y,
    0.88 ≦ X / Y ≦ 0.99
    The gas separation membrane according to claim 24 or 25, wherein:
  27.  ポリイミド化合物を含む層をさらに有する請求項24~26のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 24 to 26, further comprising a layer containing a polyimide compound.
  28.  前記ポリイミド化合物を含む層の厚みが0.03~0.3μmである請求項27に記載のガス分離膜。 The gas separation membrane according to claim 27, wherein the layer containing the polyimide compound has a thickness of 0.03 to 0.3 μm.
  29.  前記シロキサン結合を有する化合物を含む樹脂層の厚みが0.1~5μmである請求項24~28のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 24 to 28, wherein the resin layer containing the compound having a siloxane bond has a thickness of 0.1 to 5 µm.
  30.  前記シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含む請求項24~29のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 24 to 29, wherein the resin layer containing a compound having a siloxane bond contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  31.  さらに支持体を含む請求項24~30のいずれか一項に記載のガス分離膜。 The gas separation membrane according to any one of claims 24 to 30, further comprising a support.
  32.  請求項1~31のいずれか一項に記載のガス分離膜を有するガス分離膜モジュール。 A gas separation membrane module having the gas separation membrane according to any one of claims 1 to 31.
  33.  請求項32に記載のガス分離膜モジュールを有するガス分離装置。 A gas separation apparatus comprising the gas separation membrane module according to claim 32.
  34.  下記条件P1または下記条件P4を満たすガス分離膜の製造方法;
    条件P1:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
     前記酸素原子浸透処理工程が酸素流量10cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上のプラズマ処理である、ガス分離膜の製造方法;
    条件P4:シロキサン結合を有する化合物を含む樹脂層前駆体に対して酸素原子を浸透させる酸素原子浸透処理工程を含み、
     前記酸素原子浸透処理工程が酸素流量45cm(STP)/min以上のキャリアガスを用い、かつ、投入電力23W以上でアノードカップリングを用いたプラズマ処理である、ガス分離膜の製造方法。
    A method for producing a gas separation membrane satisfying the following condition P1 or the following condition P4;
    Condition P1: including an oxygen atom permeation treatment step of permeating oxygen atoms into a resin layer precursor containing a compound having a siloxane bond,
    A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 10 cm 3 (STP) / min or more and an input power of 23 W or more;
    Condition P4: including an oxygen atom infiltration treatment step for infiltrating oxygen atoms into the resin layer precursor containing a compound having a siloxane bond,
    A method for producing a gas separation membrane, wherein the oxygen atom permeation treatment step is a plasma treatment using a carrier gas having an oxygen flow rate of 45 cm 3 (STP) / min or more, and using anode coupling at an input power of 23 W or more.
  35.  前記条件P1を満たす請求項34に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 34, wherein the condition P1 is satisfied.
  36.  前記シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含む請求項35に記載のガス分離膜の製造方法。 36. The method for producing a gas separation membrane according to claim 35, wherein the resin layer containing a compound having a siloxane bond contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  37.  前記シロキサン結合を有する化合物を含む樹脂層が、支持体上に形成された請求項35または36に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 35 or 36, wherein a resin layer containing the compound having a siloxane bond is formed on a support.
  38.  請求項35~37のいずれか一項に記載のガス分離膜の製造方法で製造されたガス分離膜。 A gas separation membrane produced by the method for producing a gas separation membrane according to any one of claims 35 to 37.
  39.  前記条件P4を満たす請求項34に記載のガス分離膜の製造方法。 The method for manufacturing a gas separation membrane according to claim 34, wherein the condition P4 is satisfied.
  40.  前記シロキサン結合を有する化合物を含む樹脂層が、少なくともケイ素原子、酸素原子および炭素原子を含む繰り返し単位を有する化合物を含む請求項39に記載のガス分離膜の製造方法。 40. The method for producing a gas separation membrane according to claim 39, wherein the resin layer containing a compound having a siloxane bond contains a compound having a repeating unit containing at least a silicon atom, an oxygen atom and a carbon atom.
  41.  前記シロキサン結合を有する化合物を含む樹脂層が、支持体上に形成された請求項39または40に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 39 or 40, wherein the resin layer containing the compound having a siloxane bond is formed on a support.
PCT/JP2015/075187 2014-09-30 2015-09-04 Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator WO2016052075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/458,407 US10427111B2 (en) 2014-09-30 2017-03-14 Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
US16/441,762 US11071953B2 (en) 2014-09-30 2019-06-14 Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014201930 2014-09-30
JP2014-201930 2014-09-30
JP2015-038734 2015-02-27
JP2015038734 2015-02-27
JP2015146307A JP6316779B2 (en) 2014-09-30 2015-07-24 Gas separation membrane, gas separation membrane manufacturing method, gas separation membrane module, and gas separation device
JP2015146306A JP6316778B2 (en) 2014-09-30 2015-07-24 Gas separation membrane, gas separation membrane module and gas separation device
JP2015-146308 2015-07-24
JP2015146305A JP6276735B2 (en) 2014-09-30 2015-07-24 Gas separation membrane, gas separation membrane module and gas separation device
JP2015-146307 2015-07-24
JP2015-146305 2015-07-24
JP2015-146306 2015-07-24
JP2015146308A JP6316780B2 (en) 2014-09-30 2015-07-24 Gas separation membrane, gas separation membrane manufacturing method, gas separation membrane module, and gas separation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/458,407 Continuation US10427111B2 (en) 2014-09-30 2017-03-14 Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator

Publications (1)

Publication Number Publication Date
WO2016052075A1 true WO2016052075A1 (en) 2016-04-07

Family

ID=55630118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075187 WO2016052075A1 (en) 2014-09-30 2015-09-04 Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator

Country Status (2)

Country Link
MY (1) MY180782A (en)
WO (1) WO2016052075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154222A (en) * 1984-08-13 1986-03-18 モンサント コンパニー Composite separation membrane
JPH04305238A (en) * 1991-04-03 1992-10-28 Nissin Electric Co Ltd Production of gas permeable composite film
JP2010240622A (en) * 2009-04-09 2010-10-28 Noritake Co Ltd Gas separating material, and method for manufacturing the same
JP2013075264A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Gas separation membrane, manufacturing method for the same, and gas separation membrane module using the same
WO2015046141A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154222A (en) * 1984-08-13 1986-03-18 モンサント コンパニー Composite separation membrane
JPH04305238A (en) * 1991-04-03 1992-10-28 Nissin Electric Co Ltd Production of gas permeable composite film
JP2010240622A (en) * 2009-04-09 2010-10-28 Noritake Co Ltd Gas separating material, and method for manufacturing the same
JP2013075264A (en) * 2011-09-30 2013-04-25 Fujifilm Corp Gas separation membrane, manufacturing method for the same, and gas separation membrane module using the same
WO2015046141A1 (en) * 2013-09-27 2015-04-02 富士フイルム株式会社 Gas separation membrane, method for producing gas separation membrane, and gas separation membrane module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDETO MATSUYAMA ET AL.: "Effect of plasma treatment on C02 permeability and selectivity of poly(dimethylsiloxane) membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 99, no. 2, 1995, pages 139 - 147, XP000542431, DOI: doi:10.1016/0376-7388(94)00217-M *
JUNG-TSAI CHEN ET AL.: "Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high- performance gas separation membranes", JOURNAL OF MEMBRANE SCIENCE, vol. 440, no. 1, 2013, pages 1 - 8 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098887A1 (en) * 2015-12-10 2017-06-15 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device
JPWO2017098887A1 (en) * 2015-12-10 2018-09-13 富士フイルム株式会社 Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module, and gas separation device
US10843137B2 (en) 2015-12-10 2020-11-24 Fujifilm Corporation Method for producing protective-layer-covered gas separation membrane, protective-layer-covered gas separation membrane, gas separation membrane module, and gas separation apparatus

Also Published As

Publication number Publication date
MY180782A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US11071953B2 (en) Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
WO2017098887A1 (en) Method for producing gas separation membrane with protective layer, gas separation membrane with protective layer, gas separation membrane module and gas separation device
JP6037804B2 (en) Gas separation membrane
WO2015129786A1 (en) Gas separation membrane and gas separation membrane module
WO2015053102A1 (en) Gas separation membrane, and gas separation membrane module
JP6535747B2 (en) Method for producing gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
WO2017098802A1 (en) Gas separation membrane with protective layer, method for producing gas separation membrane with protective layer, gas separation membrane module and gas separation device
JPWO2017130604A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016052075A1 (en) Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separator
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
WO2017038284A1 (en) Gas separation composite membrane, gas separation module, gas separation device, gas separation method, and gas separation composite membrane production method
JPWO2016047351A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017122486A1 (en) Gas separation membrane, method for producing gas separation membrane, gas separation membrane module and gas separation device
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
US10507437B2 (en) Gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
JP2015062856A (en) Gas separation membrane, method for producing the same, and gas separation membrane module
WO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2019093309A (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847841

Country of ref document: EP

Kind code of ref document: A1