JPH02237627A - Permselective membrane for gas - Google Patents

Permselective membrane for gas

Info

Publication number
JPH02237627A
JPH02237627A JP5684189A JP5684189A JPH02237627A JP H02237627 A JPH02237627 A JP H02237627A JP 5684189 A JP5684189 A JP 5684189A JP 5684189 A JP5684189 A JP 5684189A JP H02237627 A JPH02237627 A JP H02237627A
Authority
JP
Japan
Prior art keywords
polymer
thin film
group
permeable membrane
gas permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5684189A
Other languages
Japanese (ja)
Inventor
Yukihiro Saito
斉藤 幸廣
Katsunori Waratani
克則 藁谷
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5684189A priority Critical patent/JPH02237627A/en
Publication of JPH02237627A publication Critical patent/JPH02237627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a film having enough gas selectivity and gas permeability with little deterioration of characteristics by forming two kinds of thin films each comprising specific polymer expressed by specified formulae by spreading the polymers on water and then laminating the films on a porous supporting body. CONSTITUTION:The first polymer is expressed by formula I (wherein R1 represents a halogen atom or alkyl group with 1-3 carbons and R2 represents a phenyl group, alkyl or trialkylsilyl group with 1-6 carbons) and has excellent gas permeability. The second polymer is expressed by formula II (wherein X is a silethylene residual group or silphenylene residual group, R3 and R4 are alkyl or phenyl groups with 1-6 carbons) and has excellent gas permeability. Each of the polymers above-described is formed into a thin film by spreading the material on water. Then two films are laminated on the porous supporting body comprising aromatic polysulfone or polyethersulfone to constitute the three-layer structure in a manner that the second polymer thin film is on the first polymer thin film. Thereby, the obtd. membrane has enough selectivity and permeability for gas and shows little change in characteristics for a long time.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、混合気体から特定の気体を選択的に透過さ
せる気体分離濃縮用の選択性気体透過膜に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a selective gas permeable membrane for gas separation and concentration that selectively permeates a specific gas from a mixed gas.

従来の技術 近年、混合気体より特定の気体を高分子の膜を介して分
離濃縮する技術が実用化され始め、既に空気中よりの酸
素の濃縮、工業用水素分離濃縮および炭酸ガスの回収等
に用いられている。特に、空気中より酸素を濃縮するい
わゆる酸素富化膜は、その用途が広いために産業界に与
える影響が大きい。
Conventional technology In recent years, technology for separating and concentrating specific gases from mixed gases through polymeric membranes has begun to be put into practical use, and has already been used for the concentration of oxygen from the air, industrial hydrogen separation and concentration, and recovery of carbon dioxide gas. It is used. In particular, so-called oxygen enrichment membranes, which concentrate oxygen more than air, have a large impact on industry because of their wide range of uses.

発明が解決しようとする課題 しかしながら、現在実用化されている酸素富化膜で考え
ると、大気空気を処理するものとしては、ポリオルガノ
シロキサy系の膜が多く、同膜の材料固有の酸素透過速
度は、約0.1 cc/c+J−sec −atm程度
である。一方、ポリオルガノシロキサン系の膜の酸素/
窒素の分離比は2に達せず小さく、生成される酸素富化
空気中の酸素濃度も30%に達しない。
Problems to be Solved by the Invention However, when considering the oxygen-enriching membranes currently in practical use, most of them that treat atmospheric air are polyorganosiloxane-based membranes, and the oxygen The permeation rate is approximately 0.1 cc/c+J-sec-atm. On the other hand, the oxygen/
The nitrogen separation ratio is small, not reaching 2, and the oxygen concentration in the oxygen-enriched air produced does not reach 30%.

酸素富化膜のうち医療用に用いられるものは、酸素/窒
素の分離比が3〜4と高く、40%前後の酸素富化空気
が得られるのであるが、気体の処理量が少ない。例えば
,ポリオレフィン系の膜の材料固有の酸素透過速度は、
0.01〜0.001 cc/ctd−sec−atm
と極めて小さいのである。
Among oxygen-enriching membranes, those used for medical purposes have a high oxygen/nitrogen separation ratio of 3 to 4, and can obtain oxygen-enriched air of around 40%, but have a small throughput of gas. For example, the material-specific oxygen permeation rate of polyolefin membranes is
0.01~0.001 cc/ctd-sec-atm
It is extremely small.

さらに、ポリオルガノシロキサン系の膜よりも高気体透
過性の材料として、アセチレン系高分子である1−モノ
アルキルシリルプロピレン重合体膜材料がある(特開昭
69 − 1 54106号公報)。
Further, as a material having higher gas permeability than polyorganosiloxane membranes, there is a 1-monoalkylsilylpropylene polymer membrane material which is an acetylene polymer (Japanese Patent Application Laid-Open No. 154106/1986).

この膜材料は気体透過性が約1桁も高い。しかしながら
、1−モノアルキルシリルプロピレン重合体膜は、酸素
と窒素の分離性が悪く、比率が1.4程度しかない。し
かも、気体透過性も初期特性は上記のように優れている
が、経時劣化が激しい。
This membrane material has approximately an order of magnitude higher gas permeability. However, the 1-monoalkylsilylpropylene polymer membrane has poor oxygen and nitrogen separability, with a ratio of only about 1.4. Furthermore, although the initial properties of gas permeability are excellent as described above, they deteriorate significantly over time.

例えば、0.1μm程度の膜だと分オーダで特性が劣化
してゆくので、実用性に乏しく応用展開が困難である。
For example, if the film is about 0.1 .mu.m, its characteristics deteriorate over time, making it impractical and difficult to develop.

もちろん、1−モノアルキルシリルプロピレン重合体膜
の特性改善の試みもなされてはいるが、実用レベルに達
するようなものは無いのが現状である。
Of course, attempts have been made to improve the properties of 1-monoalkylsilylpropylene polymer membranes, but at present none has reached a practical level.

この発明は、上記事情に鑑み、十分な気体選択性と気体
透過性を兼ね備え、しかも、その経時劣化が少ない高性
能選択性気体透過膜を提供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a high-performance selective gas permeable membrane that has both sufficient gas selectivity and gas permeability, and is less likely to deteriorate over time.

課題を解決するための手段 前記課題を解決するため、請求項1〜4記載の発明は、
以下のような構成をとっている。
Means for Solving the Problems In order to solve the problems, the inventions according to claims 1 to 4 are as follows:
It has the following structure.

請求項1〜4記載の選択性気体透過膜は、下記一般式(
a)であらわされ気体透過性の優れた第1の高分子と、
下記一般式(b)であらわされ気体透過性の優れた第2
の高分子で構成するようにしている。
The selective gas permeable membrane according to claims 1 to 4 has the following general formula (
A first polymer represented by a) and having excellent gas permeability;
The second compound, which is represented by the following general formula (b) and has excellent gas permeability,
It is made of polymers.

(但し、R1は炭素数が1〜3のアルキル基またはハロ
ゲン原子を表し、R2はフェニル基,炭素数が1〜6の
アルキル基またはトリアルキルシリル基を表し、このト
リアルキルシリル基のアルキル基は炭素数が1〜6であ
る。1分子内のR1は同種でも異種でもよく、R2も同
様である。)R.. (但し、Xはシルエチレン残基またはシルフエニレン残
基を表し、R3,几4は炭素数が1〜6のアルキル基ま
たはフェニル基を表す。1分子内のXは同種でも異種で
もよ<R31R4も同様である。) 請求項2記載の選択性気体透過膜は、加えて、第1の高
分子と第2の高分子が別々に水面展開法により薄膜化さ
れていて、第1の高分子薄膜が多孔質支持体上に直接支
持され、その上に第20高分子薄膜が積層されている構
成となっている。
(However, R1 represents an alkyl group having 1 to 3 carbon atoms or a halogen atom, R2 represents a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a trialkylsilyl group, and the alkyl group of this trialkylsilyl group has 1 to 6 carbon atoms.R1 in one molecule may be the same or different, and the same applies to R2.)R. .. (However, X represents a silethylene residue or a silphenylene residue, and R3 and 几4 represent an alkyl group or a phenyl group having 1 to 6 carbon atoms. The same applies.) In the selective gas permeable membrane according to claim 2, in addition, the first polymer and the second polymer are separately formed into thin films by a water surface development method, and the first polymer thin film is directly supported on a porous support, and the 20th polymer thin film is laminated thereon.

請求項3記載の選択性気体透過膜は、加えて、多孔質支
持体が芳香族ボリスルホンまたはポリエーテルスルホン
で形成するようにしている。
In addition, in the selective gas permeable membrane according to claim 3, the porous support is made of aromatic boris sulfone or polyether sulfone.

請求項4記載の選択性気体透過膜は、加えて、第2の高
分子として、シロキサン含有率が80%以上であるとと
もに、その重量平均分子量が10000以上であるもの
を用いている。
In addition, the selective gas permeable membrane according to claim 4 uses a second polymer having a siloxane content of 80% or more and a weight average molecular weight of 10,000 or more.

作用 この発明の選択性気体透過膜は、前記第1、2の両高分
子、すなわちアセチレン系高分子とシリコーン変性ポリ
マーからなる複合膜であるため、気体透過性および気体
選択性が共に良く、しかも、その経時劣化が少ない。
Function: Since the selective gas permeable membrane of the present invention is a composite membrane consisting of both the first and second polymers, that is, an acetylene polymer and a silicone-modified polymer, it has good gas permeability and gas selectivity. , its deterioration over time is small.

気体透過性についてみると、例えば、この発明の膜の酸
素透過流量(Fo1)は、0.4 〜1. 2 cc/
一・sec−atmと、従来のポリオルガノシロキサン
系の膜の0. 1 cc/ad−see−atmに比べ
てかなり多い。
Regarding gas permeability, for example, the oxygen permeation flow rate (Fo1) of the membrane of the present invention is 0.4 to 1. 2 cc/
1.sec-atm and 0.0.sec-atm of conventional polyorganosiloxane membranes. This is considerably higher than 1 cc/ad-see-atm.

気体選択性についてみると、例えば、この発明の膜の酸
素と窒素の流量比:α= F 02/F N2は、2.
6〜3.0程度と、従来膜の流量比率の2に比べて、か
なり高くなっている。
Regarding gas selectivity, for example, the flow rate ratio of oxygen and nitrogen of the membrane of the present invention: α=F 02 /F N2 is 2.
The flow rate ratio is about 6 to 3.0, which is considerably higher than the flow rate ratio of 2 for conventional membranes.

つまり、この発明の膜を使えば、酸素の流量が増えると
同時に得られる酸素富化気体における酸素濃度も高くな
るのである。
In other words, by using the membrane of the present invention, the flow rate of oxygen increases and at the same time the oxygen concentration in the resulting oxygen-enriched gas increases.

そして、経時劣化が少なく信頼性の高い膜である点は以
下の通りである。
The film has the following characteristics and is highly reliable with little deterioration over time.

この発明の膜(例えば、第2図に示す選択性気体透過膜
)は、第1図の曲線(a)で示すように、600時間の
連続運転後においても、初期流量(100%)の96%
の流量を維持する。得られる酸素富化気体の酸素濃度も
殆ど変わりない。
As shown by curve (a) in FIG. 1, the membrane of the present invention (for example, the selective gas permeable membrane shown in FIG. 2) has a flow rate of 96% of the initial flow rate (100%) even after 600 hours of continuous operation. %
maintain the flow rate. The oxygen concentration of the obtained oxygen-enriched gas also remains almost unchanged.

これに対し、第3図に示す従来のアセチレン高分子膜だ
と、第1図の曲線(b)で示すように、600時間の連
続運転後においては、初期流量(100%)の10%程
度まで流量が低下してしまうのである。
In contrast, with the conventional acetylene polymer membrane shown in Figure 3, as shown by curve (b) in Figure 1, after 600 hours of continuous operation, the flow rate is approximately 10% of the initial flow rate (100%). The flow rate decreases to .

第1の高分子と、第2の高分子をそれぞれ水面展開法に
より薄膜化し、第2の高分子薄膜を第1の高分子膜を介
して多孔質支持体上に積層した3層構成は、作り易くて
所定の性能を発揮させ易い。
A three-layer structure in which a first polymer and a second polymer are each made into thin films by a water surface spreading method, and the second polymer thin film is laminated on a porous support via the first polymer film, It is easy to make and easy to exhibit the specified performance.

芳香族ポリスルホンまたはポリエーテルスルホンからな
る多孔質支持体は、気体透過性が良いので、膜を支持す
るのに好適である。
A porous support made of aromatic polysulfone or polyethersulfone has good gas permeability and is therefore suitable for supporting the membrane.

第2の高分子は、そのシロキサン含有率が80%以上で
あるとともにその重量平均分子量が10ooo以上であ
るものが適しており、特にシロキサン含有率が高い程、
気体透過性がよい。さらに、第2の高分子は水面上に展
開し膜形成できるものが作り易いため、好適である。
The second polymer is suitably one whose siloxane content is 80% or more and whose weight average molecular weight is 10ooo or more, and in particular, the higher the siloxane content, the more
Good gas permeability. Furthermore, the second polymer is suitable because it is easy to make a film that can be spread on the water surface and forms a film.

実施例 以下、この発明にかかる選択性気体透過膜の一実施例を
その製造の段階から説明する。
EXAMPLE Hereinafter, an example of the selective gas permeable membrane according to the present invention will be explained from the stage of its manufacture.

実施例1 気体透過性に優れる第1の高分子として、アセチレン系
高分子である重量平均分子量95万のポリ(1−(トリ
メチルシリル)−1−プロピン〕(以下、l’− FM
S P jと言う)を用いた。
Example 1 As a first polymer with excellent gas permeability, poly(1-(trimethylsilyl)-1-propyne) (hereinafter referred to as l'-FM) having a weight average molecular weight of 950,000, which is an acetylene polymer, was used as a first polymer with excellent gas permeability.
S P j) was used.

気体透過性に優れる第2の高分子として、シリコーン変
性ポリマーである重量平均分子量40万のポリジメチル
シロキサンーシルフェニレン共重合体(チノソ■製PS
O95)を用いた。この共重合体のシロキサン含有率は
元素分析の結果92%であった。
As a second polymer with excellent gas permeability, we used polydimethylsiloxane-silphenylene copolymer (PS manufactured by Chinoso Corporation), which is a silicone-modified polymer and has a weight average molecular weight of 400,000.
O95) was used. The siloxane content of this copolymer was found to be 92% by elemental analysis.

つぎに、上記PMSPを1wt%含む第1のベンゼン溶
液と、上記PSO95を3wt%含む第2のベンゼン溶
液をそれぞれ調整した。
Next, a first benzene solution containing 1 wt% of the above PMSP and a second benzene solution containing 3 wt% of the above PSO95 were prepared.

ついで、第1のベンゼン溶液を水面に滴下し、極薄の水
面展開膜を現出させPMSP薄膜(第1の高分子薄膜)
を得るとともに、第2のベンゼン溶液を水面に滴下し、
極薄の水面展開膜を現出させPSO95薄膜(第2の高
分子薄膜)を得た。
Next, the first benzene solution is dropped onto the water surface to reveal an ultra-thin water surface film to form a PMSP thin film (first polymer thin film).
At the same time, drop a second benzene solution onto the water surface,
An ultra-thin water surface spreading film was revealed to obtain a PSO95 thin film (second polymer thin film).

これら水面に展開現出させた両膜をポリエーテルスルホ
ン材からなる多孔質支持体(東洋クロス■製Kl−12
)表面に先ずPMSP薄膜を積層し、ついで、PSO9
5薄膜を積層して、第2図に示す選択性気体透過膜を完
成した。
Both membranes developed and exposed on the water surface were coated on a porous support made of polyethersulfone material (Kl-12 manufactured by Toyo Cross ■).
) First, a PMSP thin film is laminated on the surface, and then PSO9
Five thin films were laminated to complete the selective gas permeable membrane shown in FIG.

したがって、完成した選択性気体透過膜は、第2図にみ
るように、多孔質支持体1の上に第1の高分子膜(アセ
チレン高分子層)2、ついで、第2の高分子膜3が順に
積層された構成である。もちろん、両膜2、3は水面展
開法により形成された膜である。
Therefore, as shown in FIG. 2, the completed selective gas permeable membrane consists of a first polymer membrane (acetylene polymer layer) 2 on a porous support 1, and then a second polymer membrane 3. are stacked in order. Of course, both films 2 and 3 are films formed by the water surface development method.

つぎに、この膜を用い約250 cdのモジュールを作
製し、その膜特性を測定した。圧力差60cmHg、室
温下、大気(酸素濃度21%)を透過させた結果、2.
20 l/分の流量で32,3%の酸素濃度の酸素富化
空気が得られた。600時間連続運転した後も、流量は
2.11//分と殆ど変化なく、得られた酸素富化空気
における酸素濃度も略同じであった。
Next, a module of about 250 cd was fabricated using this membrane, and its membrane properties were measured. As a result of transmitting the atmosphere (oxygen concentration 21%) under a pressure difference of 60 cmHg and room temperature, 2.
Oxygen-enriched air with an oxygen concentration of 32.3% was obtained at a flow rate of 20 l/min. Even after continuous operation for 600 hours, the flow rate remained almost unchanged at 2.11/min, and the oxygen concentration in the obtained oxygen-enriched air was also approximately the same.

実施例2 第2の高分子として、ポリテトラメチルジシロキサンー
エチレン共重合体(チノソ■製PSO93)を用いた他
は実施例1と同様、選択性気体透過膜を得た後、モジー
−ル化して特性を調べた。なお、上記ポリテトラメチル
ジシロキサンーエチレン共重合体は、そのシロキサン含
有率が86%であり、重量平均分子量は1o万であった
Example 2 After obtaining a selective gas permeable membrane in the same manner as in Example 1 except that polytetramethyldisiloxane-ethylene copolymer (PSO93 manufactured by Chinoso Corporation) was used as the second polymer, the module was and investigated its characteristics. The polytetramethyldisiloxane-ethylene copolymer had a siloxane content of 86% and a weight average molecular weight of 10,000.

モジー−ルの初期特性は、流量が2.Ol/分、酸素富
化空気における酸素濃度が33.0%であった。600
時間連続運転後のモジー−ルの特性は、流量が1.92
 l/分と幾分低くなるだけであり、酸素富化空気にお
ける酸素濃度が略同じであった。
The initial characteristics of the module are that the flow rate is 2. The oxygen concentration in the oxygen-enriched air was 33.0%. 600
The characteristics of the module after continuous operation for hours are that the flow rate is 1.92.
The oxygen concentration in the oxygen-enriched air was approximately the same.

実施例3 第1の高分子として、ポリーt−プチルアセチレン(重
量平均分子量45万)を用いた他は実施例1と同様、選
択性気体透過膜を得た後、モジーール化し特性を調べた
Example 3 A selective gas permeable membrane was obtained in the same manner as in Example 1 except that poly t-butylacetylene (weight average molecular weight: 450,000) was used as the first polymer, and then it was made into a module and its properties were investigated.

モジー−ルの初期特性は、流量が1.1;l!/分、酸
素富化空気における酸素濃度が36.0%であった。5
00時間連続運転後のモジー−ルの特性は、流量が1.
ots ll分と幾分低くなるだけであり、酸素富化空
気における酸素濃度は略同じであった。
The initial characteristics of the module are that the flow rate is 1.1; l! /min, and the oxygen concentration in the oxygen-enriched air was 36.0%. 5
The characteristics of the module after continuous operation for 00 hours are that the flow rate is 1.
The oxygen concentration in the oxygen-enriched air was approximately the same.

この発明は上記実施例に限らない。第1の高分子が上記
例示以外のアセチレン系高分子であってもよいことはい
うまでもない。第2の高分子も、上記例示以外のシリコ
ン変性ポリマーであってもよいことはいうまでもない。
This invention is not limited to the above embodiments. It goes without saying that the first polymer may be an acetylene polymer other than those exemplified above. It goes without saying that the second polymer may also be a silicon-modified polymer other than those exemplified above.

上記実施例は、第1の高分子薄膜の上に第2の高分子薄
膜が積層された複合膜構成であったが、第1の高分子と
第2の高分子を混合(ブレンド)し製膜した複合膜構成
であってもよい。
The above example had a composite film structure in which the second polymer thin film was laminated on the first polymer thin film. A composite membrane structure may also be used.

さらに、選択性気体透過膜の表面に信頼性向上等のため
にオーバーコートを施すようにしてもよい。具体的には
、例えば、本発明者らにかかる特開昭59−20340
8号公報に開示されている膜表面の疏水化を施すように
するのである。
Furthermore, an overcoat may be applied to the surface of the selective gas permeable membrane to improve reliability. Specifically, for example, Japanese Patent Application Laid-Open No. 59-20340 filed by the present inventors
The membrane surface is made hydrophobic as disclosed in Japanese Patent No. 8.

多孔質支持体も、上記例示以外の材料で作られていても
よい。
The porous support may also be made of materials other than those exemplified above.

また、支持体が、非対称形状(非対称の膜構造)であれ
ばなお透過性が良くなる。
Furthermore, if the support has an asymmetrical shape (asymmetrical membrane structure), the permeability will be even better.

発明の効果 以上述べたように、請求項1〜3記載の発明は、第1、
第2高分子の複合膜で構成されているため、十分な気体
選択性と気体透過性の両方を兼ね備えるとともに、これ
らの優れた特性が長期に渡って維持される経時変化が極
めて少ない高性能選択性気体透過膜となっている。
Effects of the Invention As described above, the invention according to claims 1 to 3 has the first,
Since it is composed of a composite membrane of a second polymer, it has both sufficient gas selectivity and gas permeability, and is a high-performance selection that maintains these excellent properties over a long period of time with extremely little change over time. It is a gas permeable membrane.

請求項2記載の発明は、多孔質支持体、第1の高分子薄
膜、第2の高分子薄膜の3層構成であるため、製造し易
く所定の性能を発揮させ易い。
Since the invention according to claim 2 has a three-layer structure of the porous support, the first thin polymer film, and the second thin polymer film, it is easy to manufacture and exhibit a predetermined performance.

請求項3記載の発明は、多孔質支持体が芳香族ポリスル
ホンもしくはポリエーテルスルホンからなる優れた気体
透過性の支持体であるため、膜の優れた気体透過性を損
なわない3層構成の選択性気体透過膜となっている。
The invention as claimed in claim 3 provides the selectivity of the three-layer structure without impairing the excellent gas permeability of the membrane, since the porous support is an aromatic polysulfone or polyether sulfone support with excellent gas permeability. It is a gas permeable membrane.

請求項4記載の発明は、第2の高分子がシロキサン含有
率が80%以上であるとともに、その重量平均分子量が
1o000以上であるため、いっそう優れた気体透過性
を有する。
According to the fourth aspect of the invention, since the second polymer has a siloxane content of 80% or more and a weight average molecular weight of 10000 or more, it has even better gas permeability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる選択性気体透過膜の一例の流
量の経時変化と従来の選択性気体透過膜の流量の経時変
化をあらわす特性図、第2図は、本発明にかかる選択性
気体透過膜の一例の構成をあらわす概略断面図、第3図
は、従来の選択性気体透過膜の一例をあらわす概略断面
図である。 1・・・多孔質支持体、2・・・第1の高分子薄膜、3
・・・第2の高分子薄膜。
FIG. 1 is a characteristic diagram showing the change over time in the flow rate of an example of the selective gas permeable membrane according to the present invention and the change over time in the flow rate of a conventional selective gas permeable membrane. A schematic sectional view showing the structure of an example of a gas permeable membrane. FIG. 3 is a schematic sectional view showing an example of a conventional selective gas permeable membrane. 1... Porous support, 2... First polymer thin film, 3
...Second polymer thin film.

Claims (4)

【特許請求の範囲】[Claims] (1)下記一般式(a)であらわされ気体透過性の優れ
た第1の高分子と、下記一般式(b)であらわされ気体
透過性の優れた第2の高分子からなる選択性気体透過膜
。 ▲数式、化学式、表等があります▼(a) (但し、R_1は炭素数が1〜3のアルキル基またはハ
ロゲン原子を表し、R_2はフェニル基、炭素数が1〜
6のアルキル基またはトリアルキルシリル基を表し、こ
のトリアルキルシリル基のアルキル基は炭素数が1〜6
である。 1分子内のR_1は同種でも異種でもよく、R_2も同
様である。) ▲数式、化学式、表等があります▼(b) (但し、Xはシルエチレン残基またはシルフェニレン残
基を表し、R_3、R_4は炭素数が1〜6のアルキル
基またはフェニル基を表す。 1分子内のXは同種でも異種でもよくR_3、R_4も
同様である。)
(1) A selective gas consisting of a first polymer represented by the following general formula (a) with excellent gas permeability and a second polymer represented by the following general formula (b) with excellent gas permeability. Transparent membrane. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(a) (However, R_1 represents an alkyl group with 1 to 3 carbon atoms or a halogen atom, R_2 is a phenyl group, or a halogen atom with 1 to 3 carbon atoms.)
6 alkyl group or trialkylsilyl group, and the alkyl group of this trialkylsilyl group has 1 to 6 carbon atoms.
It is. R_1 within one molecule may be the same or different, and the same applies to R_2. ) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(b) (However, X represents a silethylene residue or a silphenylene residue, and R_3 and R_4 represent an alkyl group or a phenyl group having 1 to 6 carbon atoms. X in one molecule may be the same or different, and the same applies to R_3 and R_4.)
(2)第1の高分子と第2の高分子が別々に水面展開法
により薄膜化されていて、第1の高分子薄膜が多孔質支
持体上に直接支持され、その上に第2の高分子薄膜が積
層されている請求項1記載の選択性気体透過膜。
(2) The first polymer and the second polymer are separately formed into thin films by a water surface spreading method, and the first polymer thin film is directly supported on a porous support, and the second polymer is placed on top of the first polymer thin film. The selective gas permeable membrane according to claim 1, comprising laminated polymer thin films.
(3)多孔質支持体が芳香族ポリスルホンまたはポリエ
ーテルスルホンである請求項2記載の選択性気体透過膜
(3) The selective gas permeable membrane according to claim 2, wherein the porous support is aromatic polysulfone or polyethersulfone.
(4)第2の高分子は、シロキサン含有率が80%以上
であるとともに、その重量平均分子量が10000以上
である請求項1または請求項2記載の選択性気体透過膜
(4) The selective gas permeable membrane according to claim 1 or 2, wherein the second polymer has a siloxane content of 80% or more and a weight average molecular weight of 10,000 or more.
JP5684189A 1989-03-08 1989-03-08 Permselective membrane for gas Pending JPH02237627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5684189A JPH02237627A (en) 1989-03-08 1989-03-08 Permselective membrane for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5684189A JPH02237627A (en) 1989-03-08 1989-03-08 Permselective membrane for gas

Publications (1)

Publication Number Publication Date
JPH02237627A true JPH02237627A (en) 1990-09-20

Family

ID=13038628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5684189A Pending JPH02237627A (en) 1989-03-08 1989-03-08 Permselective membrane for gas

Country Status (1)

Country Link
JP (1) JPH02237627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140941A (en) * 2014-06-20 2016-12-07 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Semi-impervious closure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160140941A (en) * 2014-06-20 2016-12-07 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Semi-impervious closure device
JP2017515290A (en) * 2014-06-20 2017-06-08 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Translucent enclosure device

Similar Documents

Publication Publication Date Title
US9975092B2 (en) Gas separation membrane and gas separation membrane module
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
Yoshino et al. Olefin/paraffin separation performance of asymmetric hollow fiber membrane of 6FDA/BPDA–DDBT copolyimide
US4631075A (en) Composite membrane for gas separation
CA1294093C (en) Polyphosphazene fluid separation membranes
Li et al. Multilayer ultrathin‐film composite membranes for oxygen enrichment
JPS58223411A (en) Composite film for selective permeation of gas
Perego et al. Membranes for gas separation based on silylated polyphenylene oxide
US5176724A (en) Permselective composite membrane having improved gas permeability and selectivity
US5688307A (en) Separation of low-boiling gases using super-glassy membranes
JPH0413011B2 (en)
JPH02237627A (en) Permselective membrane for gas
JPH03262523A (en) Oxygen enriching composite membrane
JPS5855005A (en) Separating membrane for gas
JPH05237353A (en) Method for separating hydrogen from gas mixture by using semipermeable membrane mainly consisting of polycarbonate derived from tetrahalobisphenol
JPS6256775B2 (en)
EP0336999B1 (en) Reactive posttreatment for gas separation membranes
JPS63214319A (en) Composite membrane for separation
JPH0696107B2 (en) Selective gas permeable membrane
JPS5959210A (en) Gas permselective composite membrane
JPS61146321A (en) Permselective compound membrane for gas
JPH01123619A (en) Gas permselective composite membrane
JPH0440223A (en) Gas separation composite membrane
JP4883683B2 (en) Organopolysiloxane for gas separation membrane
JPH029430A (en) Gas separation membrane and composite gas separation membrane