JPS62136226A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPS62136226A
JPS62136226A JP27546385A JP27546385A JPS62136226A JP S62136226 A JPS62136226 A JP S62136226A JP 27546385 A JP27546385 A JP 27546385A JP 27546385 A JP27546385 A JP 27546385A JP S62136226 A JPS62136226 A JP S62136226A
Authority
JP
Japan
Prior art keywords
membrane
schiff base
gas
oxygen
porous polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27546385A
Other languages
Japanese (ja)
Inventor
Chiyoji Kanzawa
神沢 千代志
Masaharu Matsuda
正治 松田
Fujio Mizukami
富士夫 水上
Shuichi Niwa
修一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27546385A priority Critical patent/JPS62136226A/en
Publication of JPS62136226A publication Critical patent/JPS62136226A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a membrane suitable as a gas separation membrane simple to prepare, excellent in stability and separability and capable of adsorbing and desorbing gas at room temp., by supporting a Schiff base metal complex by a porous polymer support membrane. CONSTITUTION:For example, an org. or inorg. porous membrane having pores with a pore size of 20Angstrom -0.1mum and a thickness of 10-300mum is used as a porous polymer support membrane. A Schiff base metal complex is supported by said porous polymer support membrane by coating or impregnation. A support amount may be within range of about 0.01-5mg/cm<2>. A Schiff base ligand has a structure formed from alpha-diketone, beta-diketone, salicylaldehyde or substituted salicylaldehyde and amine, diamine or triamine by dehydro- condensation. As a core metal, a low valency transition metal such as Co, Fe, Cu, Ni, Mn, Cr or Zn is used. This membrane can be suitably used in the concn. of oxygen.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス分離膜に関し、より詳細には酸素、−酸化
炭素、または窒素酸化物ガス等の選択的分離、空気から
の酸素または窒素ガスの選択的分離等に使用しうるガス
分離膜に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a gas separation membrane, and more particularly to a gas separation membrane for selectively separating oxygen, carbon oxide, or nitrogen oxide gases, and for separating oxygen or nitrogen gas from air. This invention relates to a gas separation membrane that can be used for selective separation, etc.

〔従来技術〕[Prior art]

ガスの分離技術としては、深冷法が最も一般的で、代表
的には空気からの酸素または窒素の深冷分離を挙げるこ
とができる。
As a gas separation technique, the cryogenic method is the most common, and a typical example is cryogenic separation of oxygen or nitrogen from air.

しかしながら、深冷法はエネルギー多消費型であるたの
で、今後は省エネルギー的な方法、例えばガスの選択的
吸着や透過を利用する方法に転換して行(ものと考えら
れている。
However, since the deep cooling method consumes a lot of energy, it is thought that energy-saving methods, such as methods that utilize selective adsorption or permeation of gases, will be used in the future.

一方、シッフ塩基金属錯体がある種のガス類、特に酸素
を吸収することは古くから知られており、この性質を酸
素吸収剤、酸素貯蔵剤、あるいはガス分離剤に利用する
試みもいくつかなされている。
On the other hand, it has been known for a long time that Schiff base metal complexes absorb certain gases, especially oxygen, and several attempts have been made to utilize this property as oxygen absorbers, oxygen storage agents, or gas separation agents. ing.

例えば、シッフ塩基コバルト錯体錯体を含む金属錯体を
溶液にして薄膜にしみこませて酸素のキャリアーとして
の機能をもたせ、いわゆる液膜として使用する方法(特
開昭59−12707)がある。
For example, there is a method in which a metal complex containing a Schiff base cobalt complex is made into a solution and impregnated into a thin film to function as an oxygen carrier and used as a so-called liquid film (Japanese Patent Laid-Open No. 59-12707).

しかしながら、液膜では膜中の溶媒が気体の透過にとも
なって徐々に揮発するので、膜としての寿命が低下する
欠点がある。
However, in a liquid film, the solvent in the film gradually evaporates as gas permeates therethrough, so there is a drawback that the life of the film is shortened.

また、シッフ塩基金属錯体は、複核錯体に変化し、ガス
吸収能の劣化を起しやすいことや、ガスの吸着には低温
が必要であり、一方、ガスの脱着には加熱や高度の真空
が必要である等、操作が煩雑な問題点があった。
In addition, Schiff base metal complexes change into dinuclear complexes, which easily causes deterioration of gas absorption ability, and gas adsorption requires low temperatures, while gas desorption requires heating and high vacuum. There was a problem that the operation was complicated.

かかる欠点の解決法として、シッフ塩基金属錯体に、あ
る種の官能基を導入し、共重合によつて高分子化する方
法(特開昭54−38287)が提案されている。
As a solution to this drawback, a method has been proposed in which a certain type of functional group is introduced into a Schiff base metal complex and the complex is made into a polymer by copolymerization (Japanese Patent Laid-Open No. 54-38287).

しかし、この方法では高分子化した場合、活性部位が不
活性部分で包み込まれて、ガス吸着速度やガス吸着率が
低下する欠点がある。
However, this method has the disadvantage that when polymerized, the active sites are surrounded by inert parts, resulting in a decrease in gas adsorption rate and gas adsorption rate.

そこで実用的なガス吸着剤や分離剤を得るために、薄膜
化することが考えられるが、耐久性のある均質な薄膜は
現在に至るまで得られていない。
Therefore, in order to obtain practical gas adsorbents and separation agents, it has been considered to make thin films, but a durable and homogeneous thin film has not been obtained to date.

従って、シッフ塩基金属錯体を実用的なガス吸着剤、貯
蔵剤、あるいはガス分離剤として利用することは、現在
では極めて困難な状況にあると云える。
Therefore, it can be said that it is currently extremely difficult to utilize Schiff base metal complexes as practical gas adsorbents, storage agents, or gas separation agents.

ところで、現在、実用に供されているガス分離膜はシリ
コーンゴム透過膜のみであると云っても過言ではない。
By the way, it is no exaggeration to say that silicone rubber permeable membranes are the only gas separation membranes currently in practical use.

この透過膜は、酸素/窒素の分離係数が2〜2.5と小
さいが、酸S透過係数が1×10〜1×−? 10cJ−cm/ cA ・sec  ・c+++II
gと大きな値をとるために使用されている。
This permeable membrane has a small oxygen/nitrogen separation coefficient of 2 to 2.5, but an acid S permeation coefficient of 1 x 10 to 1 x -? 10cJ-cm/cA ・sec ・c+++II
It is used to take large values of g.

ここで透過係数の単位に注意すべきである。Attention should be paid to the unit of transmission coefficient here.

すなわち、上記値は膜厚1cm当りに換算した透過係数
であるから、実際のガス透過量は膜厚を薄くするほど多
くなる。
That is, since the above value is a permeability coefficient calculated per 1 cm of film thickness, the actual amount of gas permeation increases as the film thickness becomes thinner.

例えば膜厚が1μmの場合の酸素の透過量は現在では、
できるだけ薄くて欠陥のない膜をつくるための努力が続
けられている。
For example, the amount of oxygen permeation when the film thickness is 1 μm is currently:
Efforts continue to make films as thin and defect-free as possible.

シリコーンゴム系以外にも多(の膜素材について検討さ
れており、酸素/窒素の分離係数(Poよ/ PIJL
)  の大きい膜も幾つかは作られているが、殆どの場
合に酸素の透過係数が極端に低い欠点がある。
In addition to silicone rubber, many other membrane materials are being considered, including oxygen/nitrogen separation coefficients (Poyo/PIJL).
Although some membranes with large ) have been made, most have the drawback of extremely low oxygen permeability coefficients.

最近、シリコーンゴム系に匹敵する、ポリフェニルクロ
ロアセチレンや、3級アミノ基を有するポリマーを用い
る膜が作られているが、分離係数や膜の安定性等の点で
未だ十分とは云えない。
Recently, membranes using polyphenylchloroacetylene or polymers having tertiary amino groups, which are comparable to silicone rubber systems, have been produced, but they are still not satisfactory in terms of separation coefficient, membrane stability, etc.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点を解消すべくなされたものであ
り、酸素/窒素の分離係数、酸素透過係数が大きく、製
造が容易であり、かつ安定性が優れ、実用性に富むガス
分離膜を提供することを目的とするものである。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and provides a gas separation membrane that has a large oxygen/nitrogen separation coefficient and oxygen permeability coefficient, is easy to manufacture, has excellent stability, and is highly practical. The purpose is to provide

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明のガス分離膜は、多孔性高分
子支持膜にシッフ塩基金属錯体が担持されていることを
特徴とするものである。
The gas separation membrane of the present invention that achieves the above object is characterized in that a Schiff base metal complex is supported on a porous polymer support membrane.

本発明における多孔性高分子支持膜は、孔径が通常では
20人〜0.1 μm、好ましくは30〜100人の細
孔を有する股であれば、有機質多孔性膜、無機質多孔性
膜を問わず、はとんどすべての高分子膜を支持膜として
使用することができ、好ましくはポリスルホン膜、ポリ
プロピレン膜、ポリアクリロニトリル膜、ポリカーボネ
ート膜、ポリアミド膜、ポリ塩化ビニル膜等の有機質多
孔性膜を挙げることができる。
The porous polymer support membrane in the present invention can be an organic porous membrane or an inorganic porous membrane, as long as it has pores of usually 20 to 0.1 µm, preferably 30 to 100 pores. Almost any polymeric membrane can be used as the support membrane, preferably organic porous membranes such as polysulfone membrane, polypropylene membrane, polyacrylonitrile membrane, polycarbonate membrane, polyamide membrane, polyvinyl chloride membrane, etc. can be mentioned.

また、かかる膜の厚さは、一般にはlOμm〜300 
amであり、好ましくは30um −150amである
Further, the thickness of such a film is generally 10 μm to 300 μm.
am, preferably 30 um - 150 am.

かかる多孔性高分子支持膜は、上記の高分子素材を溶媒
に熔かした後、ガラス板上等に流延し、これをある種の
溶媒、多くの場合、水または水溶液中で凝固させる相転
換法、あるいは溶融した高分子を膜にひいた後、延伸さ
せる方法、均質の高分子に中性子線等を用いて孔をあけ
る方法などによって製造される。
Such porous polymer supported membranes are produced by melting the above-mentioned polymeric material in a solvent, casting it onto a glass plate, etc., and coagulating it in some kind of solvent, often water or an aqueous solution. It is manufactured by a conversion method, a method in which a molten polymer is spread into a membrane and then stretched, or a method in which holes are made in a homogeneous polymer using a neutron beam or the like.

また、本発明において使用されるシッフ塩基は、ジケト
ン、ケト酸エステル、ケトアミン、またはケトアルコー
ル等のケトン類と、アミン、ジアミンまたはトリアミン
等のアミン類との脱水縮合によって生じた構造を有する
シッフ塩基、好ましくはα−ジケトン、β−ジケトン、
サリチルアルデヒド、または置換サリチルアルデヒドと
アミン、ジアミンまたはトリアミンから脱水縮合によっ
て生じた構造のシッフ塩基である。
Further, the Schiff base used in the present invention is a Schiff base having a structure formed by dehydration condensation of a ketone such as a diketone, a keto acid ester, a ketoamine, or a ketoalcohol, and an amine such as an amine, a diamine, or a triamine. , preferably α-diketone, β-diketone,
It is a Schiff base with a structure formed by dehydration condensation from salicylaldehyde or substituted salicylaldehyde and an amine, diamine, or triamine.

かかるシッフ塩基は、常法に従いケトン類とアミン類を
溶媒存在下で反応させることによって容易に製造される
Such Schiff bases are easily produced by reacting ketones and amines in the presence of a solvent according to a conventional method.

本発明で使用されるケトンおよびアミンの例を下記に示
す。
Examples of ketones and amines used in the present invention are shown below.

ケトン類:サリチルアルデヒド、サリチルアルデヒドの
核置換体(置換基:メトキシ、エトキシ、プロポキシ、
ブトキシ、フェノキシ、ハロゲンおよびニトロ)、o−
ヒドロキシアセトフェノン、O−ヒドロキシアセトフェ
ノンの核置換体(置換基は前記同様)、o−ヒドロキシ
プロピオフェノン、O−ヒドロキシプロピオフェノンの
核置換体(置換基は前記同様)、O−ヒドロキシベンゾ
フェノン、0−ヒドロキシベンゾフェノンの核置換体(
置換基は前記同様)、ジアセチル、アセチルアセトン、
ベンゾイルアセトン、ベンゾイルアセトンの核置換体(
置換基は前記同様)、トリフロロアセチルアセトン、ヘ
キサフロロアセチルアセトン、トリフロロアセチルアセ
トアルデヒド等。
Ketones: salicylaldehyde, nuclear substituted products of salicylaldehyde (substituents: methoxy, ethoxy, propoxy,
butoxy, phenoxy, halogen and nitro), o-
Hydroxyacetophenone, a nuclear substituted product of O-hydroxyacetophenone (the substituents are the same as above), o-hydroxypropiophenone, a nuclear substituted product of O-hydroxypropiophenone (the substituents are the same as above), O-hydroxybenzophenone, 0 -Nuclear substituted product of hydroxybenzophenone (
Substituents are the same as above), diacetyl, acetylacetone,
Benzoylacetone, nuclear substituted product of benzoylacetone (
The substituents are the same as above), trifluoroacetylacetone, hexafluoroacetylacetone, trifluoroacetylacetaldehyde, etc.

アミン類:エチレンジアミン、1.2−プロパンジアミ
ン、1.3−プロパンジアミン、1.2−シクロヘキサ
ンジアミン、O−フェニレンジアン、O−フェニレンジ
アミンの核置換体(置換基は前記同様)、アンモニア、
ブチルアミン、ジエチレントリアミン(ビスアミノエチ
レアミン)、ジプロピレントリアミン(ビスアミノプロ
ピルアミン)、プロピルアミン、エチルアミン、メチル
アミン、ヒドロキシルアミン等。
Amines: ethylenediamine, 1.2-propanediamine, 1.3-propanediamine, 1.2-cyclohexanediamine, O-phenylene diamine, nuclear substituted product of O-phenylene diamine (substituents are the same as above), ammonia,
Butylamine, diethylenetriamine (bisaminoethyleamine), dipropylenetriamine (bisaminopropylamine), propylamine, ethylamine, methylamine, hydroxylamine, etc.

また、本発明において、シッフ塩基金属錯体の中心金属
は、通常ではコバルト、鉄、銅、ニッケル、マンガン、
クロムおよび亜鉛からなる群から選ばれた低原子価の遷
移金属であり、好ましくはコバルトおよび鉄である。
In addition, in the present invention, the central metal of the Schiff base metal complex is usually cobalt, iron, copper, nickel, manganese,
A low valence transition metal selected from the group consisting of chromium and zinc, preferably cobalt and iron.

かかる金属錯体は、金属塩とシッフ塩基を溶解状態で混
合することによって製造されるので、用いる金属塩は可
溶性であることが必須である。
Since such a metal complex is produced by mixing a metal salt and a Schiff base in solution, it is essential that the metal salt used is soluble.

このため、金属塩の対陰イオンおよび溶媒は特に限定さ
れないが、金属塩を可溶性とするように選択する必要が
ある。
For this reason, the counteranion and solvent of the metal salt are not particularly limited, but must be selected so as to make the metal salt soluble.

具体的には、金属塩として有機カルボン酸塩、硝酸塩、
塩化物、臭化物、ジケトン錯体等が、また溶媒としては
メタノールやエタノールをはじめとする低級アルコール
類、ジエチルエーテル、テトラヒドロフラン、ジオキサ
ンなどの低級エーテル類、クロロホルム、ジクロルメタ
ン、ブロモホルム、クロルベンゼンナトの低級ハロゲン
含有炭化水素類、アセトニトリル、プロピオニトリル、
ベンゾニトリル、などの低級ニトリル、およびジメチル
ホルムアミド、ジメチルアセトアミドなどの低級酸アミ
ド類が通常使用される。
Specifically, metal salts include organic carboxylates, nitrates,
Chlorides, bromides, diketone complexes, etc., and solvents include lower alcohols such as methanol and ethanol, lower ethers such as diethyl ether, tetrahydrofuran, and dioxane, and lower halogens such as chloroform, dichloromethane, bromoform, and chlorobenzenate. Hydrocarbons, acetonitrile, propionitrile,
Lower nitriles such as benzonitrile, and lower acid amides such as dimethylformamide and dimethylacetamide are commonly used.

もしも金属塩やシッフ塩基が完全に溶解せず、不溶物が
ある場合には、例えば濾紙またはミクロフィルターを用
いて清澄なシッフ塩基金属錯体溶液を分離、使用するこ
とが好ましい。
If the metal salt or Schiff base is not completely dissolved and there are insoluble substances, it is preferable to separate and use a clear Schiff base metal complex solution using, for example, a filter paper or a microfilter.

なお、錯体化学の分野では、しばしばシッフ塩基錯体の
形成を速やかにするために、シッフ塩基に対して1〜2
当量のアルカリ、例えば水酸化ナトリウムや水酸化カリ
ウム溶液が添加されるが、本発明でも状況に応じて、か
かるアルカリを添加して錯体形成を促進することができ
る。
In the field of complex chemistry, in order to speed up the formation of Schiff base complexes, 1 to 2
An equivalent amount of alkali, such as sodium hydroxide or potassium hydroxide solution, is added, and the present invention may also optionally include the addition of such an alkali to promote complex formation.

次に本発明においては、ガス分離膜は上述した多孔性高
分子支持膜にシッフ塩基金属錯体が担持され、複合膜が
製造される。
Next, in the present invention, the gas separation membrane has a Schiff base metal complex supported on the above-mentioned porous polymer support membrane to produce a composite membrane.

担持方法としては、多孔性高分子支持膜にシッフ塩基金
属錯体溶液を塗布したり、多孔性高分子支持膜をシッフ
塩基溶液に含浸する方法が採用される。
As a supporting method, a method of applying a Schiff base metal complex solution to a porous polymer support membrane or a method of impregnating a porous polymer support membrane with a Schiff base solution is adopted.

かかる塗布、含浸法は特に限定されるものではなく、通
常一般に行われている方法が採用されるが、シッフ塩基
金属錯体に支持膜を強固に担持させるために、少量のホ
ルマリンを支持膜に塗布したり、含浸溶液に混入するこ
ともできる。
Such coating and impregnation methods are not particularly limited, and commonly used methods are usually adopted, but in order to firmly support the support film on the Schiff base metal complex, a small amount of formalin may be applied to the support film. It can also be mixed into the impregnating solution.

また、塗布を均質にするために、一般に行われているよ
うにスピンナー等を使用しても良い。
Further, in order to make the coating uniform, a spinner or the like may be used as is commonly used.

或いは、シッフ塩基のみを溶解した溶液を支持膜に塗布
するか、この溶液に支持膜を含浸させた後に、この支持
膜を金属塩の溶液に含浸して、膜上のシッフ塩基を金属
錯体に変換する方法や、ポリマーをドープした溶液中に
シッフ塩基金属錯体を均一に分散熔解させ、得られた熔
液から薄膜を引く方法によっても本発明のガス分離膜を
製造することができる。
Alternatively, a solution in which only the Schiff base is dissolved is applied to the support membrane, or the support membrane is impregnated with this solution, and then the support membrane is impregnated with a solution of a metal salt to transform the Schiff base on the membrane into a metal complex. The gas separation membrane of the present invention can also be produced by a method in which a Schiff base metal complex is uniformly dispersed and melted in a solution doped with a polymer, and a thin film is drawn from the resulting melt.

また、塗布を均質にするために、一般に行われているよ
うにスピンナー等を使用しても良い。
Further, in order to make the coating uniform, a spinner or the like may be used as is commonly used.

支持膜に担持されるシッフ塩基全屈錯体量は通常では0
.01〜5mg/cjの範囲であり、好ましくは0.2
〜’1mg/aAである。
The amount of Schiff base total bending complex supported on the support membrane is usually 0.
.. 01 to 5 mg/cj, preferably 0.2
~'1 mg/aA.

塗布または浸漬の後では、膜の乾燥が行われるが、乾燥
条件は特に限定されるものではなく、通常の乾燥方法を
適宜採用することができる。
After coating or dipping, the film is dried, but the drying conditions are not particularly limited, and any conventional drying method can be used as appropriate.

例えば、50〜100℃で加熱乾燥、減圧下の乾燥、ま
たは減圧下の加熱乾燥が挙げられる。
Examples include heating drying at 50 to 100°C, drying under reduced pressure, or heating drying under reduced pressure.

特に減圧下の加熱乾燥では、しばしば支持膜の孔径が変
化し、より効果的な複合膜を得ることができる。
In particular, heating drying under reduced pressure often changes the pore size of the support membrane, making it possible to obtain a more effective composite membrane.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明のガス分離膜は、多孔性高分
子膜にシッフ塩基が担持されているので、製造が簡単で
あり、しかも安定性、分離係数に優れ、室温において吸
着、脱着が可能な膜が提供される。
As described above, the gas separation membrane of the present invention has a Schiff base supported on a porous polymer membrane, so it is easy to manufacture, has excellent stability and separation coefficient, and has excellent adsorption and desorption at room temperature. A possible membrane is provided.

従って本発明の膜は、ガス分離用として好適に使用する
ことができる。
Therefore, the membrane of the present invention can be suitably used for gas separation.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 下記に示す式のシッフ塩基〔ビス(3−メトキシサリチ
リデン)エチレンジアミン、以下、3−MeO−sal
enと略記する1 67mgを10n/!のエタノール
に熔解し、この溶液に、13mgの酢酸コバルトを溶解
したエタノール溶液10nlを加えて混合し、シッフ塩
基コバルト錯体溶液Co(3−MeO−salen)を
會周製した。
Example 1 Schiff base of the formula shown below [bis(3-methoxysalicylidene)ethylenediamine, hereinafter referred to as 3-MeO-sal
Abbreviated as en 1 67mg 10n/! To this solution, 10 nl of an ethanol solution in which 13 mg of cobalt acetate was dissolved was added and mixed to prepare a Schiff base cobalt complex solution Co (3-MeO-salen).

この錯体溶液をポリスルホン膜(米国、ミリポア社製、
商品名PTGC)上に塗布し、10分放置した後に、膜
上の余剰液を回転円板を用いて振り切った。
This complex solution was applied to a polysulfone membrane (manufactured by Millipore, USA,
(trade name: PTGC), and after being left for 10 minutes, excess liquid on the film was shaken off using a rotating disk.

更に再度、Co(3−MeO−salen)を塗布し、
スピンナーで余剰液を振り切った。
Furthermore, Co (3-MeO-salen) was applied again,
The excess liquid was shaken off using a spinner.

この股を恒温乾燥器中に入れて50℃で1時間乾燥した
This crotch was placed in a constant temperature dryer and dried at 50° C. for 1 hour.

乾燥器から取り出した膜を常温まで空冷した後、ガス分
離膜として使用した。
The membrane taken out from the dryer was air-cooled to room temperature and then used as a gas separation membrane.

なお膜面上の錯体塗布量は0.51mg/ calであ
った。
The amount of complex applied on the membrane surface was 0.51 mg/cal.

この膜の気体透過性能を測定したところ、窒素ガスにつ
いては、1.40 X 10cd/ cnl−cmHg
−sであり、酸素ガスについては、4.20 x IM
/ ad・cmHg−sで、分離件数は3.0であり、
この膜で酸素富化空気の製造が可能であることが判明し
た。
When the gas permeation performance of this membrane was measured, it was found to be 1.40 x 10 cd/cnl-cmHg for nitrogen gas.
-s and for oxygen gas, 4.20 x IM
/ ad・cmHg-s, the number of isolated cases is 3.0,
It was found that it is possible to produce oxygen-enriched air with this membrane.

実施例2 下記式に示すシッフ塩基〔ビス(ベンゾイルアセトン)
−〇−フェニレンジイミン、以下、bzacophと略
記する) 200mgを10m/のエタノールに溶解し
、この溶液に、60mgの酢酸コバルトを溶解したエタ
ノール溶液10mAを加えて混合し、シッフ塩基コバル
ト錯体を調製した。
Example 2 Schiff base [bis(benzoylacetone)] shown in the following formula
-〇-phenylenediimine (hereinafter abbreviated as bzacoph) 200mg was dissolved in 10mA of ethanol, and 10mA of an ethanol solution in which 60mg of cobalt acetate was dissolved was added to this solution and mixed to prepare a Schiff base cobalt complex. did.

この溶液をポリスルホン膜上に塗布し、10分間放置し
た後に、スピンナーで余剰液を振り切り、更に上記錯体
溶液を塗布し、10分間放置した後に余剰液を振り切っ
た。
This solution was applied onto the polysulfone membrane, left to stand for 10 minutes, and then the excess liquid was shaken off using a spinner.The above complex solution was further applied, and after left to stand for 10 minutes, the excess liquid was shaken off.

この膜を乾燥器に入れて50℃で1時間加熱し、乾燥器
から取り出した膜を空冷後に試料に供した。
This membrane was placed in a dryer and heated at 50° C. for 1 hour, and the membrane taken out from the dryer was air-cooled and then used as a sample.

膜面上のコバルト錯体量は、1.53mg/ cII!
であった。
The amount of cobalt complex on the membrane surface is 1.53mg/cII!
Met.

この膜の気体透過性能を測定したところ、窒素ガスにつ
いては、3.5 X l0CIII/ c+a−cmH
g−sであり、酸素ガスについては、10.5X10c
J/ ant・cmHg−sで、分離係数は3.0であ
った。
When the gas permeation performance of this membrane was measured, it was found to be 3.5 X l0CIII/c+a-cmH for nitrogen gas.
g-s, and for oxygen gas, 10.5X10c
J/ant·cmHg-s, and the separation factor was 3.0.

空気を操作圧3Kg/cnlでこの膜を通過させたとこ
ろ、酸素濃度30.4%、窒素濃度69.6%の酸素富
化空気を得た。
When air was passed through this membrane at an operating pressure of 3 kg/cnl, oxygen-enriched air with an oxygen concentration of 30.4% and a nitrogen concentration of 69.6% was obtained.

実施例3 実施例2と同様な方法で開裂したCo−bzacoph
緋体溶液をポリスルホン膜上に塗布し、1時間放置した
後に膜上の余剰液をスピンナーで振り切った。
Example 3 Co-bzacoph cleaved in the same manner as Example 2
The scarlet solution was applied onto the polysulfone membrane, and after being left for one hour, the excess liquid on the membrane was shaken off with a spinner.

この膜を乾燥器に入れ、55℃で2時間加熱した。乾燥
器から取り出した膜は、空冷後、試料として用いた。
This membrane was placed in a dryer and heated at 55°C for 2 hours. The membrane taken out from the dryer was air-cooled and then used as a sample.

膜面上のコバルト錯体量は1.88n+g/−であった
The amount of cobalt complex on the membrane surface was 1.88n+g/-.

この膜の気体透過性能を測定したところ、窒素ガスにつ
いては1.2 X 10cj/ cd−cm)Ig ・
s 。
When the gas permeation performance of this membrane was measured, it was found to be 1.2 x 10cj/cd-cm)Ig for nitrogen gas.
s.

酸素ガスについては4.7×10−/cIa−CIII
IIg−3であり、分離係数は3.92であった。
4.7×10-/cIa-CIII for oxygen gas
IIg-3, and the separation coefficient was 3.92.

Claims (1)

【特許請求の範囲】[Claims] 多孔性高分子支持膜にシツフ塩基金属錯体が担持されて
いることを特徴とするガス分離膜。
A gas separation membrane characterized in that a Schiff base metal complex is supported on a porous polymer support membrane.
JP27546385A 1985-12-07 1985-12-07 Gas separation membrane Pending JPS62136226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27546385A JPS62136226A (en) 1985-12-07 1985-12-07 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27546385A JPS62136226A (en) 1985-12-07 1985-12-07 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPS62136226A true JPS62136226A (en) 1987-06-19

Family

ID=17555884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27546385A Pending JPS62136226A (en) 1985-12-07 1985-12-07 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS62136226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393789A (en) * 1986-10-08 1988-04-25 Agency Of Ind Science & Technol Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound
EP0369713A2 (en) * 1988-11-14 1990-05-23 Bend Research, Inc. Oxygen-complexing ultrathin films by interfacial polymerization
CN102507698A (en) * 2011-09-23 2012-06-20 广东省微生物研究所 Novel sensor for synchronously detecting copper ions and lead ions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172305A (en) * 1984-02-20 1985-09-05 Nok Corp Compound semipermeable membrane and its preparation
JPS60202713A (en) * 1984-02-28 1985-10-14 バスフ アクチェン ゲゼルシャフト Membrane from organic polymer containing crystalline carriercompound and manufacture thereof
JPS6233526A (en) * 1985-08-02 1987-02-13 Matsushita Electric Ind Co Ltd Gas permeable membrane
JPS62110730A (en) * 1985-11-08 1987-05-21 Matsushita Electric Ind Co Ltd Permselective compound film for gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172305A (en) * 1984-02-20 1985-09-05 Nok Corp Compound semipermeable membrane and its preparation
JPS60202713A (en) * 1984-02-28 1985-10-14 バスフ アクチェン ゲゼルシャフト Membrane from organic polymer containing crystalline carriercompound and manufacture thereof
JPS6233526A (en) * 1985-08-02 1987-02-13 Matsushita Electric Ind Co Ltd Gas permeable membrane
JPS62110730A (en) * 1985-11-08 1987-05-21 Matsushita Electric Ind Co Ltd Permselective compound film for gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393789A (en) * 1986-10-08 1988-04-25 Agency Of Ind Science & Technol Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound
EP0369713A2 (en) * 1988-11-14 1990-05-23 Bend Research, Inc. Oxygen-complexing ultrathin films by interfacial polymerization
EP0369713A3 (en) * 1988-11-14 1990-09-19 Bend Research, Inc. Oxygen-complexing ultrathin films by interfacial polymerization
CN102507698A (en) * 2011-09-23 2012-06-20 广东省微生物研究所 Novel sensor for synchronously detecting copper ions and lead ions

Similar Documents

Publication Publication Date Title
CN109603565B (en) Method for synthesizing metal organic framework composite membrane by auxiliary deposition of catechol compound
CA1263572A (en) Sulfonated polysulfone composite semipermeable membranes and process for producing the same
CA1316311C (en) Anisotropic membranes for gas separation
US20030015466A1 (en) Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes
CA2088485A1 (en) Membranes having selective permeability
JPH0667462B2 (en) Composite membrane
KR102068656B1 (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby
CN108976431B (en) Paper-like gradient microfiber composite metal organic framework material and preparation method and application thereof
JPS62136226A (en) Gas separation membrane
US4985053A (en) Gas separation membrane
JPS621438A (en) Asymmetric or complex polyquinoxaline base film capable of being used for gas permeation, particularly, gas mixture fractionation, and mainly dehydration and deoxidizing of gas, particularly, gassy hydrocarbon
EP0044872A1 (en) Process for selectively separating water-soluble valuable materials from an aqueous solution containing same
CN109575305B (en) Preparation method of Co-MOF gas-sensitive nano material, product and application thereof
EP0475053B1 (en) Oxygen-separating porous membranes
JPH02290230A (en) Composite polymer membrane for separating gas mixture and manufacture thereof
CN112237850A (en) Membrane and preparation method and application thereof
KR20190129495A (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis deposited 1D nano material and thin film nanocomposite membrane prepared thereby
EP4101521A1 (en) Separation membrane and metal organic structure
JPH0761432B2 (en) Method for producing highly functional asymmetric membrane
JPH04341329A (en) Oxygen permeable polymer film
KR102043348B1 (en) Gas separation membrane comprising thin layer containing metal-organic polyhedra and preparation method thereof
JPS59216603A (en) Composite membrane for separating gas
JPS6233526A (en) Gas permeable membrane
JPS586206A (en) Production of plyimide semipermeable membrane
CN117815906B (en) MAF-6 in-situ growth nanofiltration membrane and preparation method and application thereof