KR102068656B1 - Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby - Google Patents

Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby Download PDF

Info

Publication number
KR102068656B1
KR102068656B1 KR1020180054226A KR20180054226A KR102068656B1 KR 102068656 B1 KR102068656 B1 KR 102068656B1 KR 1020180054226 A KR1020180054226 A KR 1020180054226A KR 20180054226 A KR20180054226 A KR 20180054226A KR 102068656 B1 KR102068656 B1 KR 102068656B1
Authority
KR
South Korea
Prior art keywords
nanomaterial
reverse osmosis
porous support
nanocomposite membrane
containing solution
Prior art date
Application number
KR1020180054226A
Other languages
Korean (ko)
Other versions
KR20190129494A (en
Inventor
박호범
이태훈
박인호
오지연
하광우
노선민
정재원
김상현
박미란
김주효
김선규
Original Assignee
한국수자원공사
현대건설 주식회사
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 현대건설 주식회사, 한양대학교 산학협력단 filed Critical 한국수자원공사
Priority to KR1020180054226A priority Critical patent/KR102068656B1/en
Publication of KR20190129494A publication Critical patent/KR20190129494A/en
Application granted granted Critical
Publication of KR102068656B1 publication Critical patent/KR102068656B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

본 발명은 나노물질층이 구비된 역삼투용 나노복합막의 제조방법 및 이에 따라 제조된 역삼투용 나노복합막에 관한 것으로 나노물질 함유 용액을 다공성 지지체 위에 증착시키는 단계; 상기 나노물질이 증착된 다공성 지지체를 다관능성 아민 함유 용액에 1차 침지시키는 단계; 및 상기 침지된 나노물질이 증착된 다공성 지지체를 다관능성 아실 할라이드 함유 용액에 2차 침지시켜 폴리아미드 선택층을 형성하는 단계;를 포함함으로써, 종래의 방법과 달리 용매 선택이 자유롭고 나노물질과 지지체간의 접착력이 우수하며 나노물질이 낭비되지 않을 뿐만 아니라 증착시간이 빠른 장점이 있다. The present invention relates to a method for preparing a reverse osmosis nanocomposite membrane equipped with a nanomaterial layer, and to preparing a reverse osmosis nanocomposite membrane according to the present invention, depositing a nanomaterial-containing solution on a porous support; Primary immersing the porous support on which the nanomaterial is deposited in a solution containing polyfunctional amine; And immersing the porous support on which the immersed nanomaterial is deposited in a polyfunctional acyl halide-containing solution to form a polyamide selection layer. Thus, unlike the conventional method, the solvent is free to select a solvent and between the nanomaterial and the support. Excellent adhesion, not only does not waste nanomaterials, but also has the advantage of fast deposition time.

Figure R1020180054226
Figure R1020180054226

Description

나노물질층이 구비된 역삼투용 나노복합막의 제조방법 및 이에 따라 제조된 역삼투용 나노복합막{Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby}Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared according to the present invention

본 발명은 종래의 방법과 달리 용매 선택이 자유롭고 나노물질과 지지체간의 접착력이 우수하며 나노물질이 낭비되지 않을 뿐만 아니라 증착시간이 빠른 역삼투용 나노복합막의 제조방법 및 이에 따라 제조된 역삼투용 나노복합막에 관한 것이다.Unlike the conventional method, the present invention provides a method for preparing a reverse osmosis nanocomposite membrane and a reverse osmosis nanocomposite membrane prepared according to the present invention, which are free from solvent selection, have excellent adhesion between nanomaterials and a support, and do not waste nanomaterials. It is about.

물에 용해되어 있는 저분자량 유기물, 2가 이상의 금속염 등은 나노 복합막을 사용하여 효과적으로 제거할 수 있다. 나노복합막은 역삼투 막으로부터 파생된 막으로서 분자량이 200 내지 1000인 유기물, 2가 이상의 금속염 및 저분자량 유기물을 제거하는 데 주로 사용되고 있으며, 투수량이 역삼투막에 비해 5 내지 10배 정도 크기 때문에, 수처리 비용과 설비비를 크게 절약할 수 있는 이점이 있다. Low molecular weight organic substances, divalent or more metal salts, and the like dissolved in water can be effectively removed using a nanocomposite membrane. Nanocomposite membranes are membranes derived from reverse osmosis membranes, which are mainly used to remove organic substances having a molecular weight of 200 to 1000, divalent or higher metal salts, and low molecular weight organic substances, and the water permeation rate is about 5 to 10 times larger than that of reverse osmosis membranes. There is an advantage that can greatly save the cost and equipment.

상기 나노복합막이 주로 사용되고 있는 분야로는 정수 시스템, 염색 폐수 속에 함유된 염료의 재활용, 경수(硬水)의 연수화(軟水化), 공업용수의 제조 등을 들 수 있다. The fields in which the nanocomposite membranes are mainly used include water purification systems, recycling of dyes contained in dyeing wastewater, softening soft water, and production of industrial water.

이러한 나노복합막의 용도를 확대하기 위해서는 다음과 같은 몇 가지 조건을 만족시켜야 한다. 즉, 투수성, 내구성, 내압축성이 뛰어나야 하고, pH와 온도 및 세균의 공격 및 염소와 같은 산화성 물질에 대한 내구성이 뛰어나야 한다. 대부분의 상업용 막들은 위의 조건을 대부분 만족시키지만, 가장 개선해야 할 점은 투수성 향상에 있다. 상기 투수성을 향상시키면 공정의 설비비, 운전비용 등이 절감되어 나노복합막의 사용이 보다 증대될 것이다.In order to expand the use of such nanocomposite membranes, several conditions must be satisfied. That is, it must be excellent in permeability, durability and compression resistance, and must be excellent in pH and temperature, bacterial attack and resistance to oxidizing substances such as chlorine. Most commercial membranes satisfy most of the above conditions, but the most important improvement is in improving permeability. Improving the permeability will reduce the process cost, operating cost, etc. of the process will increase the use of the nanocomposite membrane.

1930년대 최초의 역삼투를 이용한 탈염화 공정이 발표된 이후, 이 분야의 반투막 물질에 대한 많은 연구가 수행되었다. 그 중에서도 상업적 성공으로 주류를 이루게 된 것은 셀룰로오스계 비대칭막(Asymetric membrane)과 폴리아미드계 복합막(Composite membrane)이다. 역삼투막 초기에 개발된 셀룰로오스계막은 운전 가능한 pH 범위가 좁다는 점, 고온에서 변형된다는 점, 높은 압력을 사용하여 운전에 필요한 비용이 많이 든다는 점, 그리고 미생물에 취약하다는 점 등 여러 가지 단점으로 인해 근래에 들어서는 거의 사용되지 않는 추세이다.Since the introduction of the first reverse osmosis desalination process in the 1930s, much research has been carried out on semi-permeable membrane materials in this field. Among them, the main successes of commercial success are cellulose-based asymmetric membranes and polyamide-based composite membranes. Cellulose-based membranes developed in the early stages of reverse osmosis membranes have suffered from several shortcomings due to their narrow operating pH range, deformation at high temperatures, high operating costs using high pressure, and vulnerability to microorganisms. This is a rarely used trend.

현재 폴리아미드계 복합막은 낮은 투과량을 개선할 수 있고, 염 배제율이 우수하여 현재 수처리 분리막의 주종을 이루고 있다. 폴리아미드계 복합막의 제조에는 주로 피페라진과 m-페닐렌디아민과 같은 아민 모노머가 이용된다. 예를 들어 J.E.Cadotte의 US 제4,259,183호에는 피페라진과 트리메조일클로라이드/IPC를 반응시켜 복합막을 제조하는 방법을 개시하고 있으며, 상기 기술을 기초로 하여 첨가제 및 후처리를 통해 물성을 개선시킨 기술이 기타 특허문헌들에 개시되어 있다. 예를 들어 US 제4,765,897호, US 제4,812,270호, US 제4,824,574호에서는 무기강산 및 폐기물 개선장치(Rejection enhancer)로 후처리를 실시하는 기술이 개시되어 있고, US 제6,280,853호에서는 에폭사이드 물질로 막을 후처리 코팅하는 기술이 개시되어 있다. 또한 US 제4,769,148호, US 제4,859,384호에는 막 제조시 피페라진층에 양이온 습윤제를 첨가하여 유량 상승을 유도하는 기술이 개시되어 있다. 그러나, 피페라진을 이용하여 제조된 막은 염 배제율을 높이기 어려운 문제점이 있었다. 또 다른 방법으로 부직포 위에 폴리설폰층을 형성하여 미세 다공성 지지체를 형성한 후, 상기 미세 다공성 지지체를 m-페닐렌디아민 수용액에 침지시켜 m-페닐렌디아민층을 형성하고, 이를 다시 트리메조일클로라이드 유기용매에 침지 혹은 코팅시켜 m-페닐렌디아민과 트리메조일클로라이드를 접촉시켜 계면 중합시킴으로써 폴리아미드층을 형성하는 방법이 시도되었다. 상기 방법은 비극성 용액과 극성 용액을 접촉시킴으로써 계면에서만 중합이 진행되어 매우 두께가 얇은 폴리아미드층을 형성하는 것을 특징으로 한다.Currently, polyamide composite membranes can improve low permeation rate and have excellent salt rejection rate, and are currently predominant in water treatment separation membranes. An amine monomer such as piperazine and m-phenylenediamine is mainly used for producing the polyamide composite membrane. For example, US 4,259,183 to JECadotte discloses a method for preparing a composite membrane by reacting piperazine with trimezoyl chloride / IPC, and based on the above technique, improved physical properties through additives and post-treatment. It is disclosed in these other patent documents. For example, US Pat. No. 4,765,897, US Pat. No. 4,812,270, US Pat. No. 4,824,574 disclose post-treatment with inorganic acids and Rejection enhancers, while US Pat. No. 6,280,853 covers membranes with epoxide materials. Post-treatment coating techniques are disclosed. US 4,769,148 and US 4,859,384 also disclose techniques for inducing a flow rate increase by adding a cationic humectant to the piperazine layer during membrane preparation. However, membranes prepared using piperazine have a problem in that it is difficult to increase salt rejection. In another method, after forming a polysulfone layer on the nonwoven fabric to form a microporous support, the microporous support is immersed in an aqueous solution of m-phenylenediamine to form an m-phenylenediamine layer, which is then trimesoyl chloride. A method of forming a polyamide layer by interfacial polymerization by contacting m-phenylenediamine and trimezoyl chloride by immersion or coating in an organic solvent has been attempted. The method is characterized in that the polymerization proceeds only at the interface by contacting the nonpolar and polar solutions to form a very thin polyamide layer.

이와 같이 폴리아미드계 복합막은 투수성, 내구성, 내압축성이 뛰어난 장점이 있지만, 황산 등과 같은 위험물을 처리하는데 사용할 경우 저압 하에서 운전할 수 밖에 없어 투과량 및 염 배제율이 저하되는 문제점이 있다.As described above, the polyamide-based composite membrane has advantages of excellent water permeability, durability, and compression resistance. However, when used to treat dangerous substances such as sulfuric acid, the polyamide-based composite membrane has a problem in that the permeation rate and salt rejection rate are lowered because it can be operated under low pressure.

또한, 상기 폴리아미드계 복합막은 담지법으로 제조되는데, 상기 담지법으로 제조하면 제조과정에서 수계 용액의 제거와 함께 나노물질이 낭비되고 나노물질과 지지체간의 접착력을 높이기 위하여 긴 담지시간이 필요한 문제점이 있다.In addition, the polyamide-based composite membrane is manufactured by a supporting method. When the supporting method is used, the nanomaterial is wasted with the removal of the aqueous solution during the manufacturing process, and a long supporting time is required to increase the adhesion between the nanomaterial and the support. have.

따라서, 염 배제율의 저하없이 수투과도를 높일 수 있을 뿐만 아니라 공정시간이 짧고 나노물질과 지지체간의 우수한 접착력을 보이며 나노물질이 낭비되지 않는 나노복합막이 요구되고 있다.Accordingly, there is a demand for a nanocomposite membrane that can increase the water permeability without lowering the salt rejection rate, and also has a short process time, shows excellent adhesion between the nanomaterial and the support, and does not waste nanomaterial.

대한민국 등록특허 제10-0477583호Republic of Korea Patent No. 10-0477583 대한민국 등록특허 제10-1733264호Republic of Korea Patent No. 10-1733264

본 발명의 목적은 종래의 방법과 달리 용매 선택이 자유롭고 나노물질과 지지체간의 접착력이 우수하며 나노물질이 낭비되지 않을 뿐만 아니라 증착시간이 빠른 역삼투용 나노복합막의 제조방법을 제공하는데 있다.It is an object of the present invention to provide a method for preparing a nanocomposite membrane for reverse osmosis, which is free from solvent selection, has excellent adhesion between nanomaterials and supports, does not waste nanomaterials, and has a fast deposition time, unlike conventional methods.

또한, 본 발명의 다른 목적은 상기 제조방법에 따라 제조된 역삼투용 나노복합막을 제공하는데 있다.In addition, another object of the present invention to provide a nanocomposite membrane for reverse osmosis prepared according to the above method.

또한, 본 발명의 또 다른 목적은 상기 역삼투용 나노복합막을 포함하는 역삼투 모듈을 제공하는데 있다.In addition, another object of the present invention to provide a reverse osmosis module including the reverse osmosis nanocomposite membrane.

상기한 목적을 달성하기 위한 본 발명의 역삼투용 나노복합막을 제조하는 방법은 나노물질 함유 용액을 다공성 지지체 위에 증착시켜 나노물질 증착층을 형성시키는 단계; 상기 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아민 함유 용액에 1차 침지시키는 단계; 및 상기 침지된 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아실 할라이드 함유 용액에 2차 침지시켜 폴리아미드 선택층을 형성시키는 단계;를 포함할 수 있다.Method for producing a nanocomposite membrane for reverse osmosis of the present invention for achieving the above object comprises the steps of depositing a nanomaterial containing solution on a porous support to form a nanomaterial deposition layer; Primary immersing the porous support on which the nanomaterial deposition layer is formed in a solution containing polyfunctional amine; And immersing the porous support on which the immersed nanomaterial deposition layer is formed in a polyfunctional acyl halide-containing solution to form a polyamide selection layer.

상기 나노물질의 농도는 0.01 내지 0.1 중량%일 수 있다.The concentration of the nanomaterial may be 0.01 to 0.1% by weight.

상기 나노물질 함유 용액이 다공성 지지체 위에 증착되는 방법은 스프레이 분사, 스핀코팅, 롤코팅 또는 에어 나이프 방식을 이용하며, 바람직하게는 스프레이 분사 방식을 이용할 수 있다.The nanomaterial-containing solution is deposited on the porous support using spray spray, spin coating, roll coating, or air knife method, preferably spray spray method.

상기 스프레이에서 분사되는 나노물질 함유 용액의 유량은 0.5 내지 3 ml/min일 수 있다.The flow rate of the nanomaterial-containing solution sprayed from the spray may be 0.5 to 3 ml / min.

상기 나노물질 함유 용액에서 나노물질이 분산된 용매는 지지체를 용해하지 않는 조건 하에서 선택할 수 있으며, 물, 에탄올, 메탄올, 아세톤, 디메틸포름알데히드(DMF), 디메틸설폭사이드(DMSO), N-메틸피롤리돈(NMP), 피리딘 및 테트라하이드로퓨란(THF)으로 이루어진 군에서 선택된 1종 이상일 수 있다.The solvent in which the nanomaterial is dispersed in the nanomaterial-containing solution may be selected under conditions in which the support is not dissolved, and water, ethanol, methanol, acetone, dimethylformaldehyde (DMF), dimethyl sulfoxide (DMSO), and N-methylpi It may be at least one member selected from the group consisting of rolidone (NMP), pyridine and tetrahydrofuran (THF).

상기 다공성 지지체와 스프레이 노즐의 거리는 2 내지 5 cm일 수 있다.The distance between the porous support and the spray nozzle may be 2 to 5 cm.

상기 나노물질 함유 용액의 분사 속도는 100 내지 500 mm/s일 수 있다.The injection speed of the nanomaterial-containing solution may be 100 to 500 mm / s.

상기 나노물질 함유 용액이 다공성 지지체의 일면에 증착되는 시간은 9 X 14 cm2를 기준으로 10 내지 60초일 수 있다.The time that the nanomaterial-containing solution is deposited on one surface of the porous support may be 10 to 60 seconds based on 9 X 14 cm 2 .

상기 나노물질은 탄소나노튜브, 산화그래핀, 금속유기골격체 및 제올라이트로 이루어진 군에서 선택된 1종 이상일 수 있다.The nanomaterial may be at least one selected from the group consisting of carbon nanotubes, graphene oxide, metal organic frameworks, and zeolites.

상기 다공성 지지체는 부직포 상에 고분자 재료의 코팅층이 형성된 것이고, 상기 고분자 재료는 폴리설폰, 폴리에테르설폰, 폴리이미드, 폴리에틸렌, 폴리프로필렌, 폴리아마이드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 폴리비닐리덴 플로라이드로 이루어진 군에서 선택된 1종일 수 있다.The porous support is a coating layer of a polymeric material formed on a nonwoven fabric, the polymeric material is polysulfone, polyethersulfone, polyimide, polyethylene, polypropylene, polyamide, polyetherimide, polyacrylonitrile, polymethylmethacryl It may be one selected from the group consisting of latex and polyvinylidene fluoride.

상기 다관능성 아민은 m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민 및 3-클로로-1,4-페닐렌 디아민으로 이루어진 군에서 선택된 1종 이상일 수 있다.The polyfunctional amine is m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine And 3-chloro-1,4-phenylene diamine may be one or more selected from the group consisting of.

상기 다관능성 아실 할라이드는 트리메조일클로라이드, 이소프탈로일클로라이 및 테레프탈로일클로라이드로 이루어진 군에서 선택된 1종 이상일 수 있다.The multifunctional acyl halide may be at least one member selected from the group consisting of trimezoyl chloride, isophthaloylchlororai and terephthaloyl chloride.

또한, 상기한 다른 목적을 달성하기 위한 본 발명의 역삼투용 나노복합막은 상기 역삼투용 나노복합막을 제조하는 방법에 따라 제조될 수 있다.In addition, the reverse osmosis nanocomposite membrane of the present invention for achieving the above another object may be prepared according to the method for producing the reverse osmosis nanocomposite membrane.

또한, 상기한 또 다른 목적을 달성하기 위한 본 발명의 역삼투 모듈은 상기 역삼투용 나노복합막을 포함할 수 있다.In addition, the reverse osmosis module of the present invention for achieving another object described above may include the reverse osmosis nanocomposite membrane.

본 발명의 역삼투용 나노복합막은 종래의 방법과 달리 용매 선택이 자유롭고 나노물질과 지지체간의 접착력이 우수하며 나노물질을 절약할 수 있을 뿐만 아니라 증착시간이 빠른 장점이 있다. Unlike the conventional method, the nanocomposite membrane for reverse osmosis of the present invention is free from solvent selection, has excellent adhesive strength between the nanomaterial and the support, and can save nanomaterials and has a fast deposition time.

또한, 본 발명의 역삼투용 나노복합막은 순수 폴리아마이드 기반의 나노복합막보다 높은 수투과도와 유지된 염 배제율을 보였으며, 특히 종래 담지법으로 나노물질을 코팅한 나노복합막에 비하여 나노물질의 양을 현저히 줄일 수 있다. In addition, the reverse osmosis nanocomposite membrane of the present invention showed a higher water permeability and retained salt rejection rate than the pure polyamide-based nanocomposite membrane, and especially compared to the nanocomposite membrane coated with the nanomaterial by conventional supporting method. The amount can be significantly reduced.

이러한 역삼투용 나노복합막은 역삼투 모듈, 수처리 모듈, 해수담수화 모듈, 기체분리 모듈 등에 이용될 수 있다. Such a reverse osmosis nanocomposite membrane can be used in reverse osmosis module, water treatment module, seawater desalination module, gas separation module.

도 1은 종래 폴리아미드 기반의 역삼투용 복합막의 수투과도와 염 배제율 간의 상관관계를 나타낸 그래프이다.
도 2는 종래 다공성 지지체 상에 나노물질을 코팅한 나노복합막을 제조하는 공정을 나타낸 흐름도이다.
도 3은 본 발명의 스프레이 코팅 조건에 따른 증착 불량 및 균일한 증착을 나타낸 SEM 사진이다.
도 4a는 ZIF-8 나노입자를 TEM으로 촬영한 사진이며, 도 4b는 ZIF-8 나노입자를 XRD로 분석한 그래프이다.
도 5는 본 발명의 실시예 및 비교예 1에 따라 역삼투용 나노복합막을 제조하는 공정을 도시한 흐름도이다.
도 6은 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체를 SEM으로 촬영한 사진이다.
도 7은 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체를 3D AFM으로 촬영한 사진이다.
도 8a는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 접촉각을 측정한 그래프이며, 도 8b는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 표면적 변화(SAD)를 측정한 그래프이고, 도 8c는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 고체-액체 계면에너지(-△Gsl)을 측정한 그래프이다.
도 9는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 제조된 역삼투용 나노복합막의 표면을 SEM으로 촬영한 사진이다.
1 is a graph showing the correlation between the water permeability and the salt rejection rate of the conventional polyamide-based reverse osmosis composite membrane.
2 is a flowchart illustrating a process of preparing a nanocomposite membrane coated with a nanomaterial on a conventional porous support.
3 is a SEM photograph showing poor deposition and uniform deposition according to the spray coating conditions of the present invention.
4A is a photograph taken by TEM of ZIF-8 nanoparticles, and FIG. 4B is a graph of XRD analysis of ZIF-8 nanoparticles.
5 is a flowchart illustrating a process of manufacturing a nanocomposite membrane for reverse osmosis according to Examples and Comparative Example 1 of the present invention.
6 is a SEM photograph of a porous support on which nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention.
7 is a photograph taken by 3D AFM of a porous support on which nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention.
Figure 8a is a graph measuring the contact angle of the porous support on which the nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention, Figure 8b is a nano in accordance with Examples 1 to 6 and Comparative Example 1 of the present invention The surface area change (SAD) of the porous support on which the material is deposited is measured and FIG. 8C shows solid-liquid interfacial energy (−) of the porous support on which the nanomaterial is deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention. ΔGsl) is measured.
9 is a SEM photograph of the surface of the reverse osmosis nanocomposite membrane prepared according to Examples 1 to 6 and Comparative Example 1 of the present invention.

종래 폴리아미드 기반의 역삼투용 복합막은 다공성 지지체 상에 폴리아미드가 코팅된 복합막으로서, 도 1에 도시된 바와 같이 수투과도가 높을수록 염 배제율이 낮아지므로 역삼투막의 성능 향상에 한계가 있었다.Conventional polyamide-based reverse osmosis composite membranes are polyamide-coated composite membranes on porous supports. As shown in FIG. 1, the higher the water permeability, the lower the salt rejection rate, thereby limiting the performance of the reverse osmosis membrane.

상기 폴리아미드 기반의 역삼투용 복합막의 문제점을 개선하기 위하여 도 2에 도시된 바와 같이, 다공성 지지체 상에 담지법으로 나노물질을 코팅한 나노복합막이 개발되었다. 상기 담지법을 이용한 나노복합막은 나노물질과 다관능성 아민 함유 용액이 혼합된 혼합물에 다공성 지지체를 침지시켜 다공성 지지체 상에 나노물질을 코팅시킨 후 과다 용액을 제거한 다음 상기 다공성 지지체 표면에 잔존하는 수분을 제거하여 다관능성 아실 할라이드 함유 용액에 침지시킴으로써 상기 코팅된 나노물질 상에 폴리아미드 선택층을 형성한다(본 명세서의 비교예 1에 해당). 그러나 이러한 담지법을 이용하기 위해서는 다공성 지지체-나노물질의 결합을 위해 용매로 물을 사용해야 하며, 이에 따라 나노물질을 분산시키는 용매로 물이 한정되기 때문에 물에 분산되지 않는 나노물질을 사용하는 경우에는 심한 응집이 발생하여 나노복합막의 성능을 저하시킨다. 또한, 다공성 지지체-나노물질이 접착되기 위해서 나노물질과 다관능성 아민 함유 용액이 혼합된 혼합물에 다공성 지지체를 긴 시간 담지시켜야 하며, 수계 용액(물)의 제거와 함께 나노물질이 낭비되는 문제가 있다.In order to improve the problem of the polyamide-based reverse osmosis composite membrane, as shown in FIG. 2, a nanocomposite membrane coated with a nanomaterial by a supporting method on a porous support has been developed. In the nanocomposite membrane using the supporting method, the porous support is immersed in a mixture of nanomaterials and a polyfunctional amine-containing solution to coat the nanomaterial on the porous support, remove excess solution, and then remove the remaining water on the surface of the porous support. Removed and immersed in a polyfunctional acyl halide containing solution to form a polyamide selective layer on the coated nanomaterial (corresponding to Comparative Example 1 herein). However, in order to use such a supporting method, water must be used as a solvent for the bonding of the porous support-nano material. Accordingly, when using a nano material that is not dispersed in water, since water is limited as a solvent for dispersing the nano material. Severe agglomeration occurs, reducing the performance of the nanocomposite membrane. In addition, in order to bond the porous support-nano material, the porous support should be immersed in the mixture of the nano material and the polyfunctional amine containing solution for a long time, and there is a problem that the nano material is wasted with the removal of the aqueous solution (water). .

본 발명은 상기 종래의 방법과 달리 용매 선택이 자유롭고 나노물질을 절약할 수 있을 뿐만 아니라 증착시간이 빠르면서 나노물질과 지지체간의 접착력이 우수한 역삼투용 나노복합막의 제조방법 및 이에 따라 제조된 역삼투용 나노복합막에 관한 것이다.
The present invention, unlike the conventional method, can freely select solvents and save nanomaterials, as well as a method for preparing a reverse osmosis nanocomposite membrane having excellent adhesion between the nanomaterials and the support while the deposition time is fast, and the reverse osmosis nanomanufactured accordingly It relates to a composite membrane.

이하, 본 발명을 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 역삼투용 나노복합막을 제조하는 방법은 (A) 나노물질 함유 용액을 다공성 지지체 위에 증착시켜 나노물질 증착층을 형성시키는 단계; (B) 상기 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아민 함유 용액에 1차 침지시키는 단계; 및 (C) 상기 침지된 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아실 할라이드 함유 용액에 2차 침지시켜 폴리아미드 선택층을 형성시키는 단계;를 포함한다.Method for producing a nanocomposite membrane for reverse osmosis of the present invention comprises the steps of (A) depositing a nanomaterial-containing solution on a porous support to form a nanomaterial deposition layer; (B) first immersing the porous support on which the nanomaterial deposition layer is formed in a solution containing polyfunctional amine; And (C) secondary immersing the porous support on which the immersed nanomaterial deposition layer is formed in a polyfunctional acyl halide-containing solution to form a polyamide selective layer.

먼저, 상기 (A)단계에서는 나노물질 함유 용액을 다공성 지지체 위에 증착시켜 나노물질 증착층을 형성한다.First, in step (A), a nanomaterial-containing solution is deposited on a porous support to form a nanomaterial deposition layer.

상기 나노물질은 1D, 2D, 3D 등 구조에 한정되지 않으며, 구체적으로 탄소나노튜브, 산화그래핀, 금속유기골격체 및 제올라이트로 이루어진 군에서 선택된 1종 이상을 사용하는 것이 바람직하다.The nanomaterial is not limited to 1D, 2D, 3D, and the like, and specifically, at least one selected from the group consisting of carbon nanotubes, graphene oxide, metal organic frameworks, and zeolites is preferably used.

상기 나노물질의 농도는 0.01 내지 0.1 중량%, 바람직하게는 0.025 내지 0.05 중량%이다. 나노물질의 농도가 상기 하한치 미만인 경우에는 염 배제율이 저하되지는 않지만 수투과도가 우수하지 못할 수 있으며, 상기 상한치 초과인 경우에는 나노물질의 응집 및 결함이 발생하여 수투과도는 우수하지만 염 배제율이 저하될 수 있고, 복합막에 발생한 결함에 의하여 나노물질의 용출이 발생할 수 있다.The concentration of the nanomaterial is 0.01 to 0.1% by weight, preferably 0.025 to 0.05% by weight. When the concentration of the nanomaterial is less than the lower limit, the salt rejection rate does not decrease, but the water permeability may not be excellent. When the concentration of the nanomaterial is higher than the upper limit, aggregation and defects of the nanomaterial occur, so that the water rejection rate is excellent. This may be reduced, and elution of the nanomaterial may occur due to a defect generated in the composite film.

또한, 상기 나노물질 함유 용액을 증착시키는 방법은 담지법을 제외한 방식이라면 특별히 한정되지 않지만, 바람직하게는 스프레이 분사, 스핀코팅, 롤코팅 또는 에어 나이프 방식을 들 수 있으며, 더욱 바람직하게는 스프레이 분사 방식을 들 수 있다.In addition, the method of depositing the nanomaterial-containing solution is not particularly limited as long as it is a method other than the supporting method, but preferably spray spray, spin coating, roll coating or air knife method, and more preferably spray spray method Can be mentioned.

상기 나노물질 함유 용액을 증착시키는 방법 중에서 스프레이로 분사시키는 방법을 예로 들어 설명하면 다음과 같다.The method of spraying with a spray among the methods for depositing the nanomaterial-containing solution is described as follows.

상기 나노물질 증착층의 상면에 형성되는 폴리아미드 선택층이 구조 변화없이 코팅되고 미량의 나노물질을 사용하더라도 염 배제율의 저하없이 수투과도를 높이기 위해서는 스프레이에서 분사되는 나노물질 함유 용액의 유량, 다공성 지지체와 스프레이 노즐의 거리, 나노물질 함유 용액의 분사 속도가 중요하다. 예컨대 도 3에 도시된 바와 같이, 상기 스프레이에서 분사되는 나노물질 함유 용액의 유량, 다공성 지지체와 스프레이 노즐의 거리, 나노물질 함유 용액의 분사 속도 조건 중에서 하나 이상이 본 발명의 범위를 벗어나면 발생하는 문제점 중 하나로 증착(코팅)불량이 발생할 수 있으며, 상기 조건을 만족하는 경우에는 균일한 나노물질 증착층을 얻을 수 있다.The polyamide selective layer formed on the upper surface of the nanomaterial deposition layer is coated without structural change, and even if a small amount of nanomaterial is used, the flow rate and porosity of the nanomaterial-containing solution sprayed from the spray to increase the water permeability without lowering the salt rejection rate The distance between the support and the spray nozzle and the spray rate of the nanomaterial-containing solution are important. For example, as shown in FIG. 3, when one or more of the flow rate of the nanomaterial-containing solution sprayed from the spray, the distance between the porous support and the spray nozzle, and the spray rate condition of the nanomaterial-containing solution are outside the scope of the present invention, As one of the problems, poor deposition (coating) may occur, and if the above conditions are satisfied, a uniform nanomaterial deposition layer may be obtained.

상기 스프레이에서 분사되는 나노물질 함유 용액의 유량은 0.5 내지 3 ml/min, 바람직하게는 0.8 내지 1.5 ml/min이다. 유량이 상기 하한치 미만인 경우에는 증착시간이 많이 소요되어 단일 공정으로 원하는 양의 나노물질을 증착하기가 어렵고, 상기 상한치 초과인 경우에는 높은 유량에 의하여 나노물질의 응집이 발생하여 복합막에 결함을 야기할 수 있다.The flow rate of the nanomaterial-containing solution sprayed in the spray is 0.5 to 3 ml / min, preferably 0.8 to 1.5 ml / min. If the flow rate is less than the lower limit, it takes a long time to deposit, so that it is difficult to deposit the desired amount of nanomaterials in a single process. If the flow rate is higher than the upper limit, aggregation of the nanomaterials occurs due to a high flow rate, causing defects in the composite film. can do.

또한, 상기 다공성 지지체와 스프레이 노즐의 거리는 2 내지 5 cm, 바람직하게는 3 내지 4 cm이다. 다공성 지지체와 스프레이 노즐의 거리가 상기 하한치 미만인 경우에는 나노물질이 균일하게 코팅되지 않고 국소적으로 증착되어 결함을 야기할 수 있고, 상기 상한치 초과인 경우에는 스프레이 된 용액에 지지체에 증착되지 못하고 손실되는 나노물질의 함량이 많아질 수 있다. In addition, the distance between the porous support and the spray nozzle is 2 to 5 cm, preferably 3 to 4 cm. If the distance between the porous support and the spray nozzle is less than the lower limit, the nanomaterial may not be uniformly coated but deposited locally to cause defects. If the upper limit is exceeded, the sprayed solution may not be deposited on the support and may be lost. The content of nanomaterials can be high.

또한, 상기 나노물질 함유 용액의 분사 속도는 100 내지 500 mm/s, 바람직하게는 200 내지 300 mm/s이다. 분사 속도가 상기 하한치 미만인 경우에는 증착시간이 많이 소요되고 나노물질-다공성 지지체간의 접착력이 저하될 수 있으며, 상기 상한치 초과인 경우에는 나노물질-다공성 지지체간의 접착력이 저하되고 이후 형성되는 폴리아미드 선택층의 변형이 발생할 수 있다.In addition, the injection speed of the nanomaterial-containing solution is 100 to 500 mm / s, preferably 200 to 300 mm / s. If the spraying speed is less than the lower limit, the deposition time takes a lot, and the adhesion between the nanomaterial and the porous support may be lowered. If the spraying speed is higher than the upper limit, the adhesion between the nanomaterial and the porous support is lowered and a polyamide selective layer is formed thereafter. Deformation of may occur.

이와 같은 조건에 따라 나노물질 함유 용액을 다공성 지지체의 일면에 증착하면 상기 증착되는 시간은 9 X 14 cm2를 기준으로 10 내지 60초, 바람직하게는 40 내지 50초이다. 증착 시간이 상기 범위를 벗어나는 경우에는 스프레이에서 분사되는 나노물질 함유 용액의 유량, 다공성 지지체와 스프레이 노즐의 거리, 나노물질 함유 용액의 분사 속도 조건 중에서 하나 이상이 본 발명의 범위를 벗어난 것으로서, 본 발명의 효과가 저하될 수 있다.When the nanomaterial-containing solution is deposited on one surface of the porous support under such conditions, the deposition time is 10 to 60 seconds, preferably 40 to 50 seconds, based on 9 × 14 cm 2 . When the deposition time is outside the above range, at least one of the flow rate of the nanomaterial-containing solution sprayed from the spray, the distance between the porous support and the spray nozzle, and the spray rate of the nanomaterial-containing solution is beyond the scope of the present invention. The effect of may be lowered.

본 발명에서 사용한 상기 나노물질 함유 용액은 용매에 나노물질이 분산된 물질로서, 상기 용매는 지지체를 용해시키지 않고 나노물질이 분산될 수 있는 물질이라면 특별히 한정되지 않지만, 바람직하게는 물, 에탄올, 메탄올, 아세톤, 디메틸포름알데히드(DMF), 디메틸설폭사이드(DMSO), N-메틸피롤리돈(NMP), 피리딘 및 테트라하이드로퓨란(THF)으로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 구체적으로, 본 발명은 나노물질 함유 용액을 스프레이 분사 등의 방법으로 증착시키므로 종래와 달리 용매가 물로 한정되지 않는다. The nanomaterial-containing solution used in the present invention is a material in which nanomaterials are dispersed in a solvent, and the solvent is not particularly limited as long as the material can disperse the nanomaterial without dissolving the support, but preferably water, ethanol and methanol , Acetone, dimethylformaldehyde (DMF), dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), pyridine and tetrahydrofuran (THF). Specifically, since the present invention deposits the nanomaterial-containing solution by a method such as spray injection, the solvent is not limited to water unlike the conventional.

또한, 사용한 다공성 지지체는 부직포 상에 고분자 재료의 코팅층이 형성된 것이고, 상기 고분자 재료는 폴리설폰, 폴리에테르설폰, 폴리이미드, 폴리에틸렌, 폴리프로필렌, 폴리아마이드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 폴리비닐리덴 플로라이드로 이루어진 군에서 선택된 1종일 수 있다.In addition, the porous support used is a coating layer of a polymer material formed on a nonwoven fabric, the polymer material is polysulfone, polyethersulfone, polyimide, polyethylene, polypropylene, polyamide, polyetherimide, polyacrylonitrile, polymethyl It may be one selected from the group consisting of methacrylate and polyvinylidene fluoride.

다음으로, 상기 (B)단계에서는 상기 나노물질이 증착된 다공성 지지체를 다관능성 아민 함유 용액에 1차 침지시킨다.Next, in the step (B), the porous support on which the nanomaterial is deposited is first immersed in a polyfunctional amine-containing solution.

상기 다관능성 아민 함유 용액에서 다관능성 아민 화합물은 역삼투용 나노복합막에 이용될 수 있는 다관능성 아민 화합물이라면 특별히 한정되지 않지만, 바람직하게는 m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민 및 3-클로로-1,4-페닐렌 디아민으로 이루어진 군에서 선택된 1종 이상일 수 있다.The polyfunctional amine compound in the polyfunctional amine-containing solution is not particularly limited as long as it is a polyfunctional amine compound that can be used in the nanocomposite membrane for reverse osmosis, preferably m-phenylenediamine, p-phenylenediamine, 1,3 At least one selected from the group consisting of 6-benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine and 3-chloro-1,4-phenylenediamine Can be.

상기 다공성 지지체의 나노물질 증착층 상면에 다관능성 아민 화합물을 포함하는 층을 형성하는 방법은 특별히 한정되지 않지만, 바람직하게는 분무, 도포, 침지, 적하 등을 들 수 있으며, 더욱 바람직하게는 침지를 들 수 있다. 나노물질 증착층 상면에 다관능성 아민 화합물을 포함하는 층을 형성 시 침지법을 사용하는 경우에는 30초 내지 5분 동안 침지시킨다. 침지시간이 상기 하한치 미만인 경우에는 다관능성 아민 화합물을 포함하는 층이 제대로 형성되지 않아 추후 폴리아미드 선택층이 형성되지 않는 부분이 발생할 수 있으며, 상기 상한치 초과인 경우에는 공정시간이 길어지고 나노물질의 손실이 발생할 수 있다.The method of forming the layer containing the polyfunctional amine compound on the upper surface of the nanomaterial deposition layer of the porous support is not particularly limited, but preferably spraying, coating, dipping, dropping, and the like, and more preferably dipping. Can be mentioned. When the immersion method is used to form a layer including the polyfunctional amine compound on the upper surface of the nanomaterial deposition layer, the immersion is performed for 30 seconds to 5 minutes. If the immersion time is less than the lower limit, the layer containing the polyfunctional amine compound may not be formed properly, so that a part of the polyamide selection layer may not be formed later. If the upper limit is exceeded, the process time is long and the Losses may occur.

또한, 상기 다관능성 아민 함유 용액에서 용매는 다관능성 아민 화합물이 용해될 수 있는 물질이라면 특별히 한정되지 않지만, 바람직하게는 물, 펜탄(pentane), 헥산(hexane) 및 헵탄(heptane)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. In addition, the solvent in the polyfunctional amine-containing solution is not particularly limited as long as it is a substance capable of dissolving the polyfunctional amine compound. Preferably, the solvent is selected from the group consisting of water, pentane, hexane, and heptane. It may be one or more selected.

이때, 상기 나노물질 증착층 상에 형성된 다관능성 아민 화합물을 포함하는 층은 필요에 따라 과잉의 다관능성 아민 화합물을 포함하는 용액을 제거하는 단계를 추가적으로 수행할 수 있다. 상기 나노물질 증착층 상에 형성된 다관능성 아민 화합물을 포함하는 층은 나노물질 증착층 상에 존재하는 용액이 지나치게 많은 경우에는 불균일하게 분포할 수 있는데, 용액이 불균일하게 분포하는 경우에는 이후의 계면 중합에 의해 불균일한 폴리아미드 선택층이 형성될 수 있다. 따라서, 상기 나노물질 증착층 상에 다관능성 아민 화합물을 포함하는 층을 형성한 후에 과잉의 용액을 제거하는 것이 바람직하다. 이때, 상기 나노물질은 증착층의 형태로 고정되어 있으므로 다관능성 아민 화합물을 제거 시 함께 제거되지 않는다.In this case, the layer including the multifunctional amine compound formed on the nanomaterial deposition layer may be additionally performed to remove the solution containing the excess polyfunctional amine compound as necessary. The layer including the multifunctional amine compound formed on the nanomaterial deposition layer may be unevenly distributed when there are too many solutions present on the nanomaterial deposition layer, and when the solution is unevenly distributed, subsequent interfacial polymerization By means of which a non-uniform polyamide selective layer can be formed. Therefore, it is preferable to remove excess solution after forming the layer including the multifunctional amine compound on the nanomaterial deposition layer. In this case, since the nanomaterial is fixed in the form of a deposition layer, the nanomaterial is not removed together when the polyfunctional amine compound is removed.

상기 과잉의 용액을 제거하는 방법은 특별히 한정되지는 않지만, 바람직하게는 스펀지, 에어나이프, 질소가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 수행될 수 있다.The method for removing the excess solution is not particularly limited, but may be preferably performed using a sponge, air knife, nitrogen gas blowing, air drying, or a compression roll.

다음으로, 상기 (C)단계에서는 상기 (B)단계에서 제조된 다공성 지지체를 다관능성 아실 할라이드 함유 용액에 2차 침지시켜 폴리아미드 선택층을 형성한다. Next, in step (C), the porous support prepared in step (B) is immersed in a polyfunctional acyl halide-containing solution for the second time to form a polyamide selective layer.

구체적으로, 표면에 코팅된 다관능성 아민 화합물과 다관능성 아실 할라이드 화합물이 반응하면서 계면 중합에 의해 폴리아미드를 생성하고, 다공성이 있는 나노물질에 흡착되어 박막이 형성된다. 만약 다공성이 있는 나노물질 대신 다공성이 없는 물질을 사용하는 경우에는 폴리아미드 선택층이 형성될 수 없다.Specifically, the polyfunctional amine compound coated on the surface and the polyfunctional acyl halide compound react to form polyamide by interfacial polymerization, and are adsorbed onto the porous nanomaterial to form a thin film. If a nonporous material is used instead of a porous nanomaterial, the polyamide selective layer cannot be formed.

상기 다관능성 아민 화합물을 포함하는 층과 다관능성 아실 할라이드 화합물을 반응시켜 폴리아미드 선택층을 형성하는 방법은 특별히 한정되지 않지만, 바람직하게는 분무, 도포, 침지, 적하 등을 들 수 있으며, 더욱 바람직하게는 침지를 들 수 있다. 폴리아미드 선택층을 형성 시 침지법을 사용하는 경우에는 30초 내지 5분 동안 침지시킨다. 침지시간이 상기 하한치 미만인 경우에는 폴리아미드 선택층이 형성되지 않는 부분이 발생할 수 있으며, 상기 상한치 초과인 경우에는 공정시간이 길어지고 폴리아미드 선택층의 변형이 발생할 수 있다.The method for forming the polyamide selective layer by reacting the layer containing the polyfunctional amine compound with the polyfunctional acyl halide compound is not particularly limited, but preferably spraying, coating, dipping, dropping, and the like are more preferable. Immersion is possible. When using the dipping method to form the polyamide selective layer, it is immersed for 30 seconds to 5 minutes. If the immersion time is less than the lower limit, a portion in which the polyamide select layer is not formed may occur. If the immersion time is exceeded, the process time may be longer and deformation of the polyamide select layer may occur.

상기 다관능성 아실 할라이드 함유 용액에서 다관능성 아실 할라이드 화합물은 역삼투용 나노복합막에 이용될 수 있는 다관능성 아실 할라이드 화합물이라면 특별히 한정되지 않지만, 바람직하게는 트리메조일클로라이드, 이소프탈로일클로라이 및 테레프탈로일클로라이드로 이루어진 군에서 선택된 1종 이상을 들 수 있다.The polyfunctional acyl halide compound in the polyfunctional acyl halide-containing solution is not particularly limited as long as it is a polyfunctional acyl halide compound that can be used in the reverse osmosis nanocomposite membrane. And at least one selected from the group consisting of royl chloride.

또한, 상기 다관능성 아실 할라이드 함유 용액에서 용매는 다관능성 아실 할라이드 화합물이 용해될 수 있는 물질이라면 특별히 한정되지 않지만, 바람직하게는 8 내지 15의 탄소수를 갖는 용매이며, 더욱 바람직하게는 옥탄(octane), 노난(nonane), 데칸(decane), 운데칸(undecane) 및 도데칸(dodecane)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. In addition, the solvent in the polyfunctional acyl halide-containing solution is not particularly limited as long as it is a substance capable of dissolving the polyfunctional acyl halide compound, but is preferably a solvent having 8 to 15 carbon atoms, and more preferably octane. It may be at least one selected from the group consisting of nonane, decane, decane, undecane and dodecane.

이와 같은 제조방법에 따라 역삼투용 나노복합막을 제조할 수 있으며, 상기 제조된 역삼투용 나노복합막은 역삼투 모듈, 수처리 모듈, 해수담수화 모듈, 기체분리 모듈 등에 이용될 수 있다.
The reverse osmosis nanocomposite membrane may be prepared according to the preparation method, and the prepared reverse osmosis nanocomposite membrane may be used for a reverse osmosis module, a water treatment module, a seawater desalination module, a gas separation module, and the like.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It is natural that such variations and modifications fall within the scope of the appended claims.

제조예 1. 나노물질_ZIF-8Preparation Example 1. Nanomaterial_ZIF-8

ZIF-8(zeolitic imidazole framework-8)은 금속유기골격체의 일종으로서 매우 높은 비표면적(~1,600 m2/g), 분자 수준의 기공크기(3.4 Å)를 갖는다. 상기 ZIF-8의 성공적인 합성은 TEM 이미지와 XRD 분석으로 확인하였다.ZIF-8 (zeolitic imidazole framework-8) is a metal-organic framework that has a very high specific surface area (~ 1,600 m 2 / g) and a molecular pore size (3.4 Å). Successful synthesis of the ZIF-8 was confirmed by TEM image and XRD analysis.

도 4a는 ZIF-8 나노입자를 TEM으로 촬영한 사진이며, 도 4b는 ZIF-8 나노입자를 XRD로 분석한 그래프이다.
4A is a photograph taken by TEM of ZIF-8 nanoparticles, and FIG. 4B is a graph of XRD analysis of ZIF-8 nanoparticles.

실시예 1 내지 6. Examples 1-6.

ZIF-8 나노입자 증착ZIF-8 Nanoparticle Deposition

ZIF-8 나노입자를 에탄올에 분산시킨 후 상기 분산액을 다공성 지지체(도레이, PSf 지지체) 위에 스프레이 코팅법으로 분사하여 ZIF-8 나노입자를 다공성 지지체에 고르게 증착시킨다. 이때 분산액에서 ZIF-8 나노입자의 농도는 각각 0.01 중량%(실시예 1), 0.025 중량%(실시예 2), 0.05 중량%(실시예 3), 0.1 중량%(실시예 4), 0.25 중량%(실시예 5), 0.5 중량%(실시예 6)으로 하였으며, 스프레이에서 분사되는 ZIF-8 나노입자 함유 용액의 유량은 1 ml/min, 다공성 지지체와 스프레이 노즐의 거리는 3 cm, ZIF-8 나노입자 함유 용액의 분사 속도는 300 mm/s으로 하였다. 스프레이 코팅 시 주요 변수들을 최적화하여 짧은 시간안에 50초) 126 cm2 의 지지체에 ZIF-8 나노입자를 균일하게 증착시켰다.After dispersing the ZIF-8 nanoparticles in ethanol, the dispersion is sprayed onto the porous support (Toray, PSf support) by spray coating to evenly deposit the ZIF-8 nanoparticles onto the porous support. At this time, the concentration of ZIF-8 nanoparticles in the dispersion was 0.01% by weight (Example 1), 0.025% by weight (Example 2), 0.05% by weight (Example 3), 0.1% by weight (Example 4), 0.25% by weight % (Example 5), 0.5% by weight (Example 6), the flow rate of the ZIF-8 nanoparticle-containing solution sprayed in the spray is 1 ml / min, the distance between the porous support and the spray nozzle is 3 cm, ZIF-8 The spraying speed of the nanoparticle-containing solution was 300 mm / s. The key parameters during spray coating were optimized to uniformly deposit ZIF-8 nanoparticles on a 126 cm 2 support in 50 seconds in a short time.

폴리아미드 선택층 형성Polyamide Selective Layer Formation

초순수에 MPD(m-phenylene diamine)를 용해시킨 MPD 용액에 상기 ZIF-8 나노입자가 증착된 다공성 지지체를 1분 동안 침지시킨 후 과다용액을 제거한 다음 상기 MPD 용액에 침지된 ZIF-8 나노입자가 증착된 다공성 지지체를 데탄(n-decane) 용매에 TMC(Trimesoyl chloride)를 용해시킨 TMC 용액에 1분 동안 침지시켜 ZIF-8 나노입자 위에 폴리아마이드 선택층을 형성시킴으로써 역삼투용 나노복합막을 제조하였다(도 5).
After immersing the porous support on which the ZIF-8 nanoparticles were deposited in an MPD solution in which MPD (m-phenylene diamine) was dissolved in ultrapure water for 1 minute, the excess solution was removed and the ZIF-8 nanoparticles immersed in the MPD solution The deposited porous support was immersed in a TMC solution in which TMC (Trimesoyl chloride) was dissolved in n-decane solvent for 1 minute to form a polyamide selective layer on ZIF-8 nanoparticles to prepare a nanocomposite membrane for reverse osmosis ( 5).

비교예 1.Comparative Example 1.

초순수에 MPD(m-phenylene diamine)를 용해시킨 MPD 용액과 ZIF-8 나노입자 0.2 중량%를 혼합한 혼합용액에 다공성 지지체(도레이, PSf 지지체)를 10분 동안 침지시킨 후 과다용액을 제거한 다음 ZIF-8 나노입자가 증착된 다공성 지지체를 데탄(n-decane) 용매에 TMC(Trimesoyl chloride)를 용해시킨 TMC 용액에 1분 동안 침지시켜 ZIF-8 나노입자 위에 폴리아마이드 선택층을 형성시킴으로써 역삼투용 나노복합막을 제조하였다(도 5).
After immersing the porous support (Toray, PSf support) for 10 minutes in a mixed solution containing MPD (m-phenylene diamine) dissolved in ultrapure water and 0.2% by weight of ZIF-8 nanoparticles, the excess solution was removed, and then ZIF The porous support on which -8 nanoparticles were deposited was immersed in a TMC solution in which TMC (Trimesoyl chloride) was dissolved in a n-decane solvent for 1 minute to form a polyamide selective layer on ZIF-8 nanoparticles. A composite membrane was prepared (FIG. 5).

<시험예><Test Example>

시험예 1. SEM 이미지 촬영_증착된 나노물질Test Example 1 SEM Image _Deposited Nanomaterial

도 6은 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체를 SEM으로 촬영한 사진이다.6 is a SEM photograph of a porous support on which nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention.

도 6에 도시된 바와 같이, 실시예 1 내지 6에 따라 스프레이 코팅법을 사용하여도 비교예 1의 담지법 수준의 균일한 나노물질 증착이 가능함을 확인하였다.
As shown in FIG. 6, even when spray coating was used according to Examples 1 to 6, it was confirmed that uniform nanomaterial deposition at the level of the supporting method of Comparative Example 1 was possible.

시험예 2. 3D AFM 이미지 촬영_증착된 나노물질Test Example 2 3D AFM Image Capture_Deposited Nanomaterial

도 7은 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체를 3D AFM으로 촬영한 사진이다. 7 is a photograph taken by 3D AFM of a porous support on which nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention.

도 7에 도시된 바와 같이, 실시예 1 내지 6에 따라 나노물질이 증착된 다공성 지지체는 나노물질의 함량이 증가할수록 표면거칠기가 높아지는 것을 확인하였다. 또한, 본 발명의 실시예 2 내지 4의 표면거칠기 정도가 비교예 1과 유사한 것을 확인하였다.
As shown in FIG. 7, it was confirmed that the surface roughness of the porous support on which the nanomaterials were deposited according to Examples 1 to 6 was increased as the content of the nanomaterial was increased. In addition, it was confirmed that the surface roughness of Examples 2 to 4 of the present invention is similar to Comparative Example 1.

시험예 3. 젖음성, 표면적 변화 측정_증착된 나노물질Test Example 3 Measurement of Wetting and Surface Area Change_Deposited Nanomaterials

도 8a는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 접촉각을 측정한 그래프이며, 도 8b는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 표면적 변화(SAD)를 측정한 그래프이고, 도 8c는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 나노물질이 증착된 다공성 지지체의 고체-액체 계면에너지(-△Gsl)을 측정한 그래프이다.Figure 8a is a graph measuring the contact angle of the porous support on which the nanomaterials are deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention, Figure 8b is a nano in accordance with Examples 1 to 6 and Comparative Example 1 of the present invention. The surface area change (SAD) of the porous support on which the material is deposited is measured and FIG. 8C shows solid-liquid interfacial energy (−) of the porous support on which the nanomaterial is deposited according to Examples 1 to 6 and Comparative Example 1 of the present invention. ΔGsl) is measured.

상기 접촉각과 표면적 변화를 측정한 값을 이용하여 고체-액체 계면에너지(-△Gsl)값을 측정할 수 있다.The solid-liquid interfacial energy (-ΔGsl) value may be measured using the measured values of the contact angle and the surface area change.

도 8a 내지 도 8c에 도시된 바와 같이, 실시예 1 내지 6에 따라 나노물질이 증착된 다공성 지지체는 나노물질의 함량이 증가할수록 고체-액체 계면에너지(-△Gsl)값이 감소하며, 이는 나노물질의 함량이 증가할수록 표면이 점점 소수성으로 변화하는 것을 의미한다.
As shown in FIGS. 8A to 8C, the porous support on which nanomaterials are deposited according to Examples 1 to 6 decreases the solid-liquid interfacial energy (-ΔGsl) value as the content of the nanomaterial increases. As the content of the material increases, it means that the surface becomes more hydrophobic.

시험예 4. SEM 이미지 촬영_나노복합막Test Example 4. SEM Image _ Nano Composite Membrane

도 9는 본 발명의 실시예 1 내지 6 및 비교예 1에 따라 제조된 역삼투용 나노복합막의 표면을 SEM으로 촬영한 사진이다.9 is a SEM photograph of the surface of the reverse osmosis nanocomposite membrane prepared according to Examples 1 to 6 and Comparative Example 1 of the present invention.

도 9에 도시된 바와 같이, 본 발명의 실시예 1 내지 4는 담지법을 사용한 비교예 1과 마찬가지로 폴리아미드층이 변형없이 균일하게 형성된 것을 확인하였다. 반면, 실시예 5 및 6은 폴리아미드층이 형성되는 과정에서 변형이 발생하였으며 이는 소수성 표면에 의한 것으로 판단된다.
As shown in FIG. 9, Examples 1 to 4 of the present invention confirmed that the polyamide layer was formed uniformly without deformation in the same manner as in Comparative Example 1 using the supporting method. On the other hand, in Examples 5 and 6, deformation occurred in the process of forming the polyamide layer, which is considered to be due to the hydrophobic surface.

시험예 5. 나노물질 농도에 따른 염 배제율 및 수투과도 측정Test Example 5 Measurement of Salt Exclusion Rate and Water Permeability According to Nanomaterial Concentration

염 배제율(염 제거율)과 수투과도는 25 ℃에서 2,000 ppm의 염화나트륨 수용액을 2 L/min의 유량으로 공급하면서 압력 15.5 bar에서 측정하였다. 막 평가에 사용한 분리막 셀 장치는 평판형 투과셀과 고압펌프, 저장조 및 냉각 장치를 구비하였으며, 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과면적은 32 cm2이다. 세척한 분리막을 투과셀에 설치한 다음, 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 그런 다음, 2,000 ppm의 염화나트륨 수용액으로 교체하여 압력과 투과유량이 정상 상태에 이를 때까지 1시간 정도 장비 운전을 실시한 후, 10분간 투과되는 물의 양을 측정하여 유량을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염 배제율을 계산하였다. 측정 결과를 하기 [표 1]에 나타내었다.The salt rejection rate (salt removal rate) and water permeability were measured at a pressure of 15.5 bar while feeding 2,000 ppm aqueous sodium chloride solution at 25 ° C. at a flow rate of 2 L / min. The membrane cell device used for the membrane evaluation was equipped with a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device. The structure of the flat plate permeation cell was 32-cm 2 in a cross-flow manner. After the washed separation membrane was installed in the permeation cell, sufficient preliminary operation was performed for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Subsequently, the instrument was operated for about 1 hour until the pressure and permeate flow reached a steady state by replacing with 2,000 ppm aqueous sodium chloride solution, and then the flow rate was calculated by measuring the amount of water permeated for 10 minutes, and the conductivity meter (Conductivity Meter) Salt exclusion rate was calculated by analyzing the salt concentration before and after permeation. The measurement results are shown in the following [Table 1].

대조군으로는 비교예 1과 동일하게 실시하되, 나노물질인 ZIF-8 나노입자를 사용하지 않고 제조한 역삼투용 나노복합막을 이용하였다.As a control, the same procedure as in Comparative Example 1 was performed, but the reverse osmosis nanocomposite membrane prepared without using the nanomaterial ZIF-8 nanoparticles was used.

구분division 스프레이 코팅시 ZIF-8의 농도(중량%)ZIF-8 concentration (% by weight) when spray coating 면적당 ZIF-8의 필요량(mg/m2)Required amount of ZIF-8 per area (mg / m 2 ) 수투과도
(LMH/bar)
(Lm-2h-1bar-1)
Water permeability
(LMH / bar)
(Lm -2 h -1 bar -1 )
NaCl 배제율
(%)
NaCl exclusion rate
(%)
대조군Control -- -- 2.862.86 96.5796.57 비교예 1Comparative Example 1 -- 31703170 3.733.73 97.5297.52 실시예 1Example 1 0.010.01 66 3.143.14 97.3597.35 실시예 2Example 2 0.0250.025 3030 3.503.50 97.3497.34 실시예 3Example 3 0.050.05 6060 3.723.72 97.8397.83 실시예 4Example 4 0.10.1 120120 3.293.29 97.0797.07 실시예 5Example 5 0.250.25 300300 3.813.81 83.6383.63 실시예 6Example 6 0.50.5 600600 4.914.91 57.6457.64

위 표 1에 나타낸 바와 같이, 본 발명의 실시예 1 내지 4에 따라 제조된 역삼투용 나노복합막은 염 배제율이 감소하지 않으면서 수투과도도 향상되는 것을 확인하였다.As shown in Table 1, the reverse osmosis nanocomposite membrane prepared according to Examples 1 to 4 of the present invention was confirmed that the water permeability is also improved without reducing the salt rejection rate.

반면, 실시예 5 및 6은 수투과도는 향상되지만 염 배제율이 감소되는 것을 확인하였다.On the other hand, Examples 5 and 6 confirmed that the water permeability is improved but the salt rejection rate is reduced.

또한, 본 발명의 실시예 1 내지 4의 역삼투용 나노복합막은 대조군의 역삼투용 나노복합막은 대비 30% 이상의 수투과도가 향상되는 것을 확인하였으며, 비교예 1의 역삼투용 나노복합막 대비 약 40배 이상 적은 양의 나노물질로 유사한 수투과도 및 염 배제율을 보이는 것을 확인하였다.In addition, it was confirmed that the reverse osmosis nanocomposite membranes of Examples 1 to 4 of the present invention have improved water permeability of 30% or more compared to the reverse osmosis nanocomposite membrane of the control group, and about 40 times or more than the reverse osmosis nanocomposite membrane of Comparative Example 1 It was confirmed that a small amount of nanomaterials showed similar water permeability and salt rejection rate.

Claims (15)

나노물질 함유 용액을 다공성 지지체 위에 스프레이 분사 방식을 이용하여 증착시켜 나노물질 증착층을 형성시키는 단계;
상기 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아민 함유 용액에 1차 침지시키는 단계; 및
상기 침지된 나노물질 증착층이 형성된 다공성 지지체를 다관능성 아실 할라이드 함유 용액에 2차 침지시켜 폴리아미드 선택층을 형성시키는 단계;를 포함하되,
상기 다공성 지지체는 부직포 상에 고분자 재료의 코팅층이 형성된 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.
Depositing a nanomaterial-containing solution on a porous support by spray spraying to form a nanomaterial deposition layer;
Primary immersing the porous support on which the nanomaterial deposition layer is formed in a solution containing polyfunctional amine; And
And immersing the porous support on which the immersed nanomaterial deposition layer is formed in a polyfunctional acyl halide-containing solution to form a polyamide selective layer.
The porous support is a method of manufacturing a nanocomposite membrane for reverse osmosis, characterized in that a coating layer of a polymer material is formed on a nonwoven fabric.
제1항에 있어서, 상기 나노물질의 농도는 0.01 내지 0.1 중량%인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method according to claim 1, wherein the concentration of the nanomaterial is 0.01 to 0.1% by weight. 삭제delete 삭제delete 제1항에 있어서, 상기 스프레이에서 분사되는 나노물질 함유 용액의 유량은 0.5 내지 3 ml/min인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the flow rate of the nanomaterial-containing solution sprayed from the spray is 0.5 to 3 ml / min. 제1항에 있어서, 상기 다공성 지지체와 스프레이 노즐의 거리는 2 내지 5 cm인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the distance between the porous support and the spray nozzle is 2 to 5 cm. 제1항에 있어서, 상기 나노물질 함유 용액의 분사 속도는 100 내지 500 mm/s인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the injection speed of the nanomaterial-containing solution is 100 to 500 mm / s. 제1항에 있어서, 상기 나노물질 함유 용액이 다공성 지지체의 일면에 증착되는 시간은 9 X 14 cm2를 기준으로 10 내지 60초인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법. The method of claim 1, wherein the time for depositing the nanomaterial-containing solution on one surface of the porous support is 10 to 60 seconds based on 9 × 14 cm 2 . 제1항에 있어서, 상기 나노물질은 탄소나노튜브, 산화그래핀, 금속유기골격체 및 제올라이트로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the nanomaterial is at least one selected from the group consisting of carbon nanotubes, graphene oxide, metal organic frameworks, and zeolites. 제1항에 있어서, 상기 나노물질 함유 용액에서 나노물질이 분산된 용매는 물, 에탄올, 메탄올, 아세톤, 디메틸포름알데히드(DMF), 디메틸설폭사이드(DMSO), N-메틸피롤리돈(NMP), 피리딘 및 테트라하이드로퓨란(THF)으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the solvent in which the nanomaterial is dispersed in the nanomaterial-containing solution is water, ethanol, methanol, acetone, dimethylformaldehyde (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP) , Pyridine and tetrahydrofuran (THF) method of producing a nanocomposite membrane for reverse osmosis, characterized in that at least one selected from the group consisting of. 제1항에 있어서, 상기 고분자 재료는 폴리설폰, 폴리에테르설폰, 폴리이미드, 폴리에틸렌, 폴리프로필렌, 폴리아마이드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 폴리비닐리덴 플로라이드로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the polymer material comprises polysulfone, polyethersulfone, polyimide, polyethylene, polypropylene, polyamide, polyetherimide, polyacrylonitrile, polymethylmethacrylate, and polyvinylidene fluoride. Method for producing a nanocomposite membrane for reverse osmosis, characterized in that one selected from the group. 제1항에 있어서, 상기 다관능성 아민은 m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민 및 3-클로로-1,4-페닐렌 디아민으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the multifunctional amine is m-phenylenediamine, p-phenylenediamine, 1,3,6-benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1 Method for producing a nanocomposite membrane for reverse osmosis, characterized in that at least one selected from the group consisting of, 3-phenylenediamine and 3-chloro-1,4-phenylene diamine. 제1항에 있어서, 상기 다관능성 아실 할라이드는 트리메조일클로라이드, 이소프탈로일클로라이 및 테레프탈로일클로라이드로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 역삼투용 나노복합막의 제조방법.The method of claim 1, wherein the polyfunctional acyl halide is at least one selected from the group consisting of trimezoyl chloride, isophthaloyl chlorlai, and terephthaloyl chloride. 제1항, 제2항, 제5항 내지 제13항 중 어느 한 항의 역삼투용 나노복합막을 제조하는 방법에 따라 제조된 역삼투용 나노복합막.The reverse osmosis nanocomposite membrane prepared according to the method for preparing the reverse osmosis nanocomposite membrane of any one of claims 1, 2, and 5 to 13. 제14항의 역삼투용 나노복합막을 포함하는 역삼투 모듈.

Reverse osmosis module comprising a nanocomposite membrane for reverse osmosis of claim 14.

KR1020180054226A 2018-05-11 2018-05-11 Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby KR102068656B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180054226A KR102068656B1 (en) 2018-05-11 2018-05-11 Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180054226A KR102068656B1 (en) 2018-05-11 2018-05-11 Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby

Publications (2)

Publication Number Publication Date
KR20190129494A KR20190129494A (en) 2019-11-20
KR102068656B1 true KR102068656B1 (en) 2020-01-22

Family

ID=68729519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180054226A KR102068656B1 (en) 2018-05-11 2018-05-11 Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby

Country Status (1)

Country Link
KR (1) KR102068656B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992039A (en) * 2020-09-02 2020-11-27 天津工业大学 Method for preparing high-performance nanofiltration membrane by constructing ZIF-8 intermediate layer
KR102233816B1 (en) * 2020-02-07 2021-04-01 부산대학교 산학협력단 Manufacturing method of polyamide nano compisite membrane using sulfur doped nano carbon material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111475B (en) * 2020-01-15 2022-03-22 南京工业大学 Preparation method of graphene oxide modified triptycenyl polyamide separation membrane
CN113880317B (en) * 2021-11-17 2022-04-01 青岛延晖环保科技有限公司 Biological desalination method in seawater desalination process
CN114177781B (en) * 2021-12-14 2024-01-23 湖南澳维科技股份有限公司 Preparation method of reverse osmosis composite membrane and obtained reverse osmosis composite membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477583B1 (en) 1998-09-03 2005-07-08 주식회사 새 한 High Flow Reverse Osmosis Polyamide Membrane Manufacturing Method
KR101972172B1 (en) * 2012-12-06 2019-04-24 도레이케미칼 주식회사 Polyamide composite membrane having high quality and manufacturing method thereof
WO2014204218A2 (en) 2013-06-18 2014-12-24 주식회사 엘지화학 Polyamide-based water-treatment separation membrane having excellent salt removal rate and permeation flux characteristics and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233816B1 (en) * 2020-02-07 2021-04-01 부산대학교 산학협력단 Manufacturing method of polyamide nano compisite membrane using sulfur doped nano carbon material
CN111992039A (en) * 2020-09-02 2020-11-27 天津工业大学 Method for preparing high-performance nanofiltration membrane by constructing ZIF-8 intermediate layer

Also Published As

Publication number Publication date
KR20190129494A (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR102068656B1 (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby
KR101907106B1 (en) Semi-permeable film and membrane including nanoporous material, and method of manufacturing the same
JP6295949B2 (en) Composite semipermeable membrane and method for producing the same
US20190070569A1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method of manufacturing composite semipermeable membrane
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
WO2013085343A1 (en) Reverse osmosis membrane comprising silver nanowire layer, and preparation method thereof
CN110545903B (en) Membrane permeability-enhanced thin film composite membranes with nano-sized bubbles, methods of making and uses thereof
WO2014133133A1 (en) Composite semipermeable membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
KR101972172B1 (en) Polyamide composite membrane having high quality and manufacturing method thereof
KR101971130B1 (en) Forward osmosis thin-film composite membrane with improved water flux comprising supporting interlayer consisting of polydopamine and graphene oxide and method for preparing thereof
Lee et al. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
KR102058631B1 (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis deposited 1D nano material and thin film nanocomposite membrane prepared thereby
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR101743808B1 (en) Manufacturing Method of Polyamide-Based Composite Membrane
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20120077997A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
Eghbalazar et al. Novel thin film nanocomposite forward osmosis membrane embedded with amine functionalized UiO-66 metal organic frameworks as an effective way to remove heavy metal Cr3+ ions
CN111001298A (en) Preparation method of modified reverse osmosis membrane
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
CN115245757B (en) Composite nanofiltration membrane and preparation method and application thereof
KR102288033B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant