JPH075985B2 - Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field - Google Patents

Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field

Info

Publication number
JPH075985B2
JPH075985B2 JP63041837A JP4183788A JPH075985B2 JP H075985 B2 JPH075985 B2 JP H075985B2 JP 63041837 A JP63041837 A JP 63041837A JP 4183788 A JP4183788 A JP 4183788A JP H075985 B2 JPH075985 B2 JP H075985B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
flux density
iron loss
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63041837A
Other languages
Japanese (ja)
Other versions
JPH01219125A (en
Inventor
昭彦 西本
佳弘 細谷
邦和 冨田
俊明 占部
正治 実川
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP63041837A priority Critical patent/JPH075985B2/en
Publication of JPH01219125A publication Critical patent/JPH01219125A/en
Publication of JPH075985B2 publication Critical patent/JPH075985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄損特性及び低磁場での磁束密度の優れた無方
向性電磁鋼板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in a low magnetic field.

〔従来の技術及び解決すべき課題〕[Conventional technology and problems to be solved]

電磁鋼板の製造工程において、鋼板に歪が付与された場
合、格子欠陥或いは格子の歪による内部応力の蓄積によ
つて最終的な磁気特性、特に鉄損値が劣化することは一
般的な傾向として良く知られている。これは、格子欠陥
或いは内部応力によつて、磁化過程において磁壁移動が
阻害されるためである。
In the manufacturing process of electromagnetic steel sheets, when strain is applied to the steel sheet, it is a general tendency that the final magnetic properties, especially the iron loss value, deteriorate due to the accumulation of internal stress due to lattice defects or strain of the lattice. Well known. This is because lattice defects or internal stress hinders domain wall movement in the magnetization process.

しかし、bcc構造を有する鉄系の軟磁性材料(Si鋼板
等)においては、正の磁気歪特性を有するため、鋼板表
層部に引張りの残留応力を付与することによつて、表層
部の磁壁移動が容易になり、鉄損が低下するとともに、
残留応力の存在そのものによつて磁気特性も改善され
る。
However, iron-based soft magnetic materials with a bcc structure (Si steel plates, etc.) have positive magnetostriction characteristics, so by applying tensile residual stress to the steel plate surface layer, the domain wall movement of the surface layer part Becomes easier and the iron loss decreases,
The presence of residual stress itself also improves the magnetic properties.

このような歪の付与は、下地鋼板より低い熱膨張係数を
有する絶縁被膜をコーテイングして最終的な焼付け焼鈍
をすることによりなされるのが一般的で、方向性Si鋼板
においては鉄損低下のための有力な手段であり、また、
無方向性Si鋼板については、例えば特開昭56-55574号公
報、特開昭58-110679号公報等に開示されている。
Such strain is generally given by coating an insulating coating having a lower thermal expansion coefficient than that of the base steel sheet and finally bake-annealing the iron loss in the grain-oriented Si steel sheet. Is a powerful tool for
Non-oriented Si steel sheets are disclosed in, for example, JP-A-56-55574 and JP-A-58-110679.

このような技術に対し、再結晶焼鈍工程において鋼板に
引張り歪を付与するという方法が特開昭55-85630号公報
において提案されている。この技術は、焼鈍過程におい
て焼鈍温度によつて規定される下記範囲の伸び率(引張
り歪)を鋼帯に付与することを骨子としている。
In contrast to such a technique, JP-A-55-85630 proposes a method of imparting tensile strain to a steel sheet in a recrystallization annealing process. The main point of this technique is to give the steel strip an elongation (tensile strain) in the following range defined by the annealing temperature in the annealing process.

0.0035T−3.8≦logR≦−0.0035T−2.8 この提案によれば、鉄損改善のために最適な伸び率は高
温焼鈍程大きくなるというものである。しかし、本発明
者等の検討によれば、磁気特性を向上させるために焼鈍
過程において付与すべき引張り歪の最適条件は、焼鈍温
度には関係なく、しかも、上記提案では付与する歪量が
過剰であり、十分な磁気特性の改善が図れないことが判
つた。
0.0035T−3.8 ≦ logR ≦ −0.0035T−2.8 According to this proposal, the optimum elongation rate for improving iron loss increases as the high temperature annealing increases. However, according to the study by the present inventors, the optimum condition of the tensile strain to be applied in the annealing process in order to improve the magnetic properties is not related to the annealing temperature, and moreover, the amount of strain to be applied is excessive in the above proposal. It was found that the magnetic properties could not be sufficiently improved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明はこのような問題に鑑み、焼鈍過程において付与
すべき引張り歪の最適値は、焼鈍温度に関係なく常に一
定であり、しかも上記従来技術において規定される領域
よりも低い領域に存在すること、さらに、このような低
い領域の引張り歪を付与することにより鉄損特性の改善
だけでなく低磁場での磁束密度を効果的に改善できるこ
とを見出し、本発明を完成させたものである。
In view of such a problem, the present invention is such that the optimum value of the tensile strain to be applied in the annealing process is always constant regardless of the annealing temperature, and that it exists in a region lower than the region defined in the above-mentioned conventional technique. Further, they have found that not only the improvement of iron loss characteristics but also the magnetic flux density in a low magnetic field can be effectively improved by imparting such a tensile strain in a low region, and the present invention has been completed.

すなわち、本発明の特徴は以下の通りである。That is, the features of the present invention are as follows.

(1)1回または中間焼鈍をはさむ2回以上の冷間圧延
によって最終板厚としたSi含有量が1.0〜4.0wt%の鋼板
を最終焼鈍するに当り、鋼板のSi含有量に応じ、鋼板を
下記最高加熱温度T(℃)で焼鈍するとともに、 1.0wt%≦Si<1.5wt%の場合 800≦T≦950 1.5wt%≦Si<2.0wt%の場合 800≦T≦980 2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050 焼鈍中、ユニット張力の制御により鋼板に0.05〜0.15%
の伸び変形を付与することを特徴とする鉄損特性及び低
磁場での磁束密度の優れた無方向性電磁鋼板の製造方
法。
(1) Upon final annealing of a steel sheet having a Si content of 1.0 to 4.0 wt% as the final plate thickness by cold rolling once or twice or more with intermediate annealing, a steel sheet is produced according to the Si content of the steel sheet. Is annealed at the following maximum heating temperature T (° C), and when 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 1.5 wt% ≤ Si <2.0 wt% 800 ≤ T ≤ 980 2.0 wt% ≤ When Si ≤ 4.0 wt% 870 ≤ T ≤ 1050 0.05-0.15% on steel plate by controlling unit tension during annealing
A method for manufacturing a non-oriented electrical steel sheet having excellent iron loss characteristics and excellent magnetic flux density in a low magnetic field, which is characterized by imparting elongation deformation.

(2)1回または中間焼鈍をはさむ2回以上の冷間圧延
によって最終板厚としたSi含有量が1.0〜4.0wt%の鋼板
を最終焼鈍するに当り、鋼板のSi含有量に応じ、鋼板を
下記最高加熱温度T(℃)で焼鈍するとともに、ユニッ
ト張力σ(kg f/mm2)を最高加熱温度T(℃)との関係
で下記条件を満足するよう制御することにより鋼板に0.
05〜0.15%の伸び変形を付与することを特徴とする鉄損
得性及び低磁場での磁束密度の優れた無方向性電磁鋼板
の製造方法。
(2) In the final annealing of a steel sheet having a Si content of 1.0 to 4.0 wt% as the final plate thickness by cold rolling once or twice or more with intermediate annealing, according to the Si content of the steel sheet, the steel sheet Is annealed at the following maximum heating temperature T (° C) and the unit tension σ (kg f / mm 2 ) is controlled so as to satisfy the following conditions in relation to the maximum heating temperature T (° C).
A method for producing a non-oriented electrical steel sheet excellent in iron loss obtainability and magnetic flux density in a low magnetic field, which is characterized by imparting an elongation deformation of 05 to 0.15%.

1.0wt%≦Si<1.5wt%の場合 800≦T≦950 −0.0025T+2.38≦σ≦−0.0025T+2.58 但し、σ≧0.10 1.5wt%≦Si<2.0wt%の場合 800≦T≦980 −0.0034T+3.22≦σ≦−0.0034T+3.42 但し、σ≧0.10 2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050 −0.0017T+1.80≦σ≦−0.0017T+2.00 但し、σ≧0.10 以下、本発明の詳細をその限定理由とともに説明する。 When 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 -0.0025T + 2.38 ≤ σ ≤ -0.0025T + 2.58 However, when σ ≥ 0.10 1.5 wt% ≤ Si <2.0 wt% 800 ≤ T ≤ 980 −0.0034T + 3.22 ≦ σ ≦ −0.0034T + 3.42 where σ ≧ 0.10 2.0wt% ≦ Si ≦ 4.0wt% 870 ≦ T ≦ 1050 −0.0017T + 1.80 ≦ σ ≦ −0.0017T + 2.00 where σ ≧ 0.10 Hereinafter, the details of the present invention will be described together with the reasons for limitation.

本発明は、1回または中間焼鈍をはさむ2回以上の冷間
圧延によって最終板厚としたSi:1.0〜4.0wt%のSi鋼板
を最終焼鈍するに当り、鉄損得性及び低磁場での磁束密
度の改善を目的として、鋼板のSi含有量に応じ、鋼板を
下記最高加熱温度T(℃)で焼鈍するとともに、 1.0wt%≦Si<1.5wt%の場合 800≦T≦950 1.5wt%≦Si<2.0wt%の場合 800≦T≦980 2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050 焼鈍中、ユニット張力の制御により鋼板に0.05〜0.15%
の伸び変形を付与する。
In the present invention, in the final annealing of a Si steel plate having a final thickness of Si: 1.0 to 4.0 wt% by cold rolling once or twice or more with intermediate annealing, iron loss gain and magnetic flux in a low magnetic field are obtained. In order to improve the density, the steel sheet is annealed at the following maximum heating temperature T (° C) according to the Si content of the steel sheet, and when 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 1.5 wt% ≤ When Si <2.0wt% 800 ≤ T ≤ 980 2.0wt% ≤ Si ≤ 4.0wt% 870 ≤ T ≤ 1050 0.05 ~ 0.15% on steel plate by controlling unit tension during annealing
Give elongation deformation.

このような張力付与効果は、主として鋼板の長手方向に
対する磁気特性改善に対して顕著である。これは、bcc
構造を有する鉄系磁性材料における磁歪の悪影響が軽減
されること、及び微小な張力を付加することに伴う磁区
の細分化によって鉄損得性及び低磁場での磁束密度が改
善されることによるものと考えられ、その効果は、主と
して冷却時にキュリー点を経て常磁性から強磁性に変態
する過程で発揮されるものと考えられる。そして、本発
明者等は、この張力付与によって鉄損得性及び低磁場で
の磁束密度の改善が認められるのは、焼鈍温度に拘りな
く、略0.1±0.05%の伸び変形が付与された場合に限ら
れることを見い出した。
Such a tension imparting effect is prominent mainly for improving the magnetic properties in the longitudinal direction of the steel sheet. This is bcc
It is because the adverse effect of magnetostriction in the iron-based magnetic material having a structure is reduced, and the iron loss gain and the magnetic flux density in a low magnetic field are improved by the subdivision of the magnetic domain accompanying the addition of a minute tension. It is considered that the effect is mainly exhibited in the process of transforming from paramagnetic to ferromagnetic via the Curie point during cooling. And, the present inventors, the improvement of the iron loss obtainability and magnetic flux density in a low magnetic field is recognized by this tension application, regardless of the annealing temperature, when elongation deformation of about 0.1 ± 0.05% is applied. I found that I was limited.

第1図は最終焼鈍における鋼板の伸び変形が鉄損特性及
び低磁場での磁束密度(B3)に及ぼす影響を、Si含有量
の異なるSi鋼板(第1表中の鋼(2)、(3)、(5)
について調べたもので、Si含有量及び焼鈍温度に拘りな
く、伸び変形が0.1±0.05%の範囲において良好な磁気
特性改善効果が示されている。
Fig. 1 shows the effect of the elongation deformation of the steel sheet in the final annealing on the iron loss characteristics and the magnetic flux density (B 3 ) in a low magnetic field, as compared with the Si steel sheets with different Si contents (steel (2) in Table 1, ( 3), (5)
Demonstrating that, regardless of the Si content and the annealing temperature, a good effect of improving the magnetic properties is shown in the range of elongation deformation of 0.1 ± 0.05%.

ここで、伸び変形が0.05%未満では、歪付与による効果
が十分に期待できず、加えて張力が低く過ぎるため通板
上も問題を生じる。一方、0.15%を超えると、内部応力
及び格子欠陥が過度に導入されることによって、磁気特
性(鉄損特性及び低磁場での磁束密度)のレベル自体が
劣化する。このように本発明は、鋼板に比較的小さい伸
び変形を与えることによって鉄損特性及び低磁場での磁
束密度の改善を効果的に図ることができる。
Here, when the elongation deformation is less than 0.05%, the effect of imparting strain cannot be sufficiently expected, and in addition, the tension is too low, which causes a problem on the strip. On the other hand, if it exceeds 0.15%, the level itself of magnetic characteristics (iron loss characteristics and magnetic flux density in a low magnetic field) is deteriorated due to excessive introduction of internal stress and lattice defects. As described above, the present invention can effectively improve the iron loss characteristics and the magnetic flux density in a low magnetic field by imparting a relatively small elongation deformation to the steel sheet.

なお、焼鈍加熱温度の限定理由については後述する。The reason for limiting the annealing heating temperature will be described later.

本発明の実施には、低張力通板が可能な水平型連続焼鈍
ラインが主として用いられ、ライン内の張力付与によっ
て塑性変形が起こるのは最高加熱温度時である。そし
て、上記0.1±0.05%の伸び変形を得るためには鋼組成
と加熱温度に応じ張力を所定条件で付与する必要があ
る。
In the practice of the present invention, a horizontal type continuous annealing line capable of passing a low-strength steel sheet is mainly used, and it is at the maximum heating temperature that plastic deformation occurs due to application of tension in the line. Then, in order to obtain the elongation deformation of 0.1 ± 0.05%, it is necessary to apply tension under predetermined conditions according to the steel composition and heating temperature.

第2図は、水平型連続焼鈍炉内のユニット張力と鋼板の
鉄損特性及び低磁場での磁束密度(B3)との関係を、Si
含有量の異なるSi鋼板(第1表中の鋼(2)、(3)、
(5))について調べたもので、図中矢印の箇所が伸び
変形:略0.1%が得られる張力である。
Figure 2 shows the relationship between the unit tension in the horizontal continuous annealing furnace, the iron loss characteristics of the steel sheet, and the magnetic flux density (B 3 ) in a low magnetic field.
Si steel plates with different contents (steel (2), (3) in Table 1
(5)) was investigated, and the portion indicated by the arrow in the figure is the tensile deformation at which elongation deformation: approximately 0.1% is obtained.

第3図は、上記Si鋼板において適正な張力および加熱温
度の範囲を示したものである。これらの実験の結果か
ら、上記張力σは、Si含有量に応じ加熱温度の関数とし
て規定できること、及び加熱温度もSi含有量に応じ適正
な範囲があることが判った。
FIG. 3 shows the range of appropriate tension and heating temperature in the above Si steel sheet. From the results of these experiments, it was found that the tension σ can be defined as a function of heating temperature depending on the Si content, and that the heating temperature also has an appropriate range depending on the Si content.

すなわち、炉内ユニット張力σ(kg f/mm2)及び焼鈍加
熱温度は、次のように調整される必要がある。
That is, the in-furnace unit tension σ (kg f / mm 2 ) and the annealing heating temperature need to be adjusted as follows.

(1)1.0wt%≦Si<1.5wt%の場合 800≦T≦950 −0.0025T+2.38≦σ≦−0.0025T+2.58 但し、σ≧0.10 (2)1.5wt%≦Si<2.0wt%の場合 800≦T≦980 −0.0034T+3.22≦σ≦−0.0034T+3.42 但し、σ≧0.10 (3)2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050 −0.0017T+1.80≦σ≦−0.0017T+2.00 但し、σ≧0.10 上記張力範囲は、第2図等に基づき鉄損値が最低となり
且つ低磁場での磁束密度が最高となる張力を基準として
±0.1kg f/mm2の範囲をとったもので、これにより伸び
変形:0.05〜0.15%を確保することができる。なお、張
力σが0.10kg f/mm2未満では、張力の付与効果が全く期
待できない。
(1) 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 -0.0025T + 2.38 ≤ σ ≤ -0.0025T + 2.58 However, σ ≥ 0.10 (2) 1.5 wt% ≤ Si <2.0 wt% Case 800 ≦ T ≦ 980 −0.0034T + 3.22 ≦ σ ≦ −0.0034T + 3.42 However, σ ≧ 0.10 (3) When 2.0wt% ≦ Si ≦ 4.0wt% 870 ≦ T ≦ 1050 −0.0017T + 1.80 ≦ σ ≦ −0.0017T + 2.00 However, σ ≧ 0.10 The tension range is ± 0.1 kg f / mm 2 with reference to the tension where the iron loss value is the lowest and the magnetic flux density in the low magnetic field is the highest based on Fig. 2 etc. In this range, elongation deformation: 0.05 to 0.15% can be secured. If the tension σ is less than 0.10 kg f / mm 2 , the effect of imparting tension cannot be expected at all.

また、焼鈍加熱温度については、各Siレベルの下限温度
を下回ると、十分なフェライト粒成長が起こらず、磁気
特性のレベル自体が低くなる。一方、各Siレベルの上限
温度を上回ると、通板上の問題に加えて、フェライト粒
が過度に粗大化し、逆に鉄損の増大を招く。
Regarding the annealing heating temperature, when the temperature is lower than the lower limit temperature of each Si level, sufficient ferrite grain growth does not occur and the magnetic property level itself becomes low. On the other hand, when the upper limit temperature of each Si level is exceeded, in addition to the problem of strip passing, the ferrite grains become excessively coarse and, conversely, iron loss increases.

なお、本発明が対象とするSi鋼板は1.0〜4.0wt%のSiを
含有している。Siは、1.0wt%未満では固有抵抗の低下
により十分な低鉄損値が得られない。一方、4.0wt%を
超えると冷間加工性が著しく悪くなる。
The Si steel sheet targeted by the present invention contains 1.0 to 4.0 wt% of Si. If Si is less than 1.0 wt%, a sufficient low iron loss value cannot be obtained due to a decrease in resistivity. On the other hand, if it exceeds 4.0 wt%, the cold workability is significantly deteriorated.

〔実施例〕〔Example〕

第1表の組成の鋼の冷延鋼板を第2表の条件で最終焼鈍
し、無方向性電磁鋼板を得た。得られた鋼板の磁気特性
を第2表に合せて示す。
The cold-rolled steel sheet having the composition shown in Table 1 was finally annealed under the conditions shown in Table 2 to obtain a non-oriented electrical steel sheet. The magnetic properties of the obtained steel sheet are also shown in Table 2.

同表から判るように、本発明法により焼鈍中の鋼板に所
定の伸び変形を付与することにより、鉄損特性及び低磁
場での磁束密度が効果的に向上している。
As can be seen from the table, the iron loss characteristics and the magnetic flux density in a low magnetic field are effectively improved by imparting a predetermined elongation deformation to the steel sheet being annealed by the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は最終焼鈍時の鋼板の伸び変形量が鉄損及び磁束
密度B3に及ぼす影響を示したものである。第2図は最終
焼鈍時の焼鈍炉内ユニット張力と鉄損及び磁束密度B3
の関係を示したものである。第3図は最終焼鈍時におけ
る張力と加熱温度の適正範囲を示すものである。
Figure 1 is intended to extend the amount of deformation of the steel sheet during final annealing showed the effect on the iron loss and magnetic flux density B 3. Figure 2 shows the relationship between the annealing furnace unit tension and iron loss and magnetic flux density B 3 during final annealing. FIG. 3 shows an appropriate range of tension and heating temperature during final annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 占部 俊明 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 実川 正治 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 特開 昭58−120733(JP,A) 特開 昭59−96227(JP,A) 特開 昭55−85630(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshiaki Urabe 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) In-house Shoji Mitsukawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo (56) References JP 58-120733 (JP, A) JP 59-96227 (JP, A) JP 55-85630 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1回または中間焼鈍をはさむ2回以上の冷
間圧延によって最終板厚としたSi含有量が1.0〜4.0wt%
の鋼板を最終焼鈍するに当り、鋼板のSi含有量に応じ、
鋼板を下記最高加熱温度T(℃)で焼鈍するとともに、
焼鈍中、ユニット張力の制御により鋼板に0.05〜0.15%
の伸び変形を付与することを特徴とする鉄損特性及び低
磁場での磁束密度の優れた無方向性電磁鋼板の製造方
法。 1.0wt%≦Si<1.5wt%の場合 800≦T≦950 1.5wt%≦Si<2.0wt%の場合 800≦T≦980 2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050
1. A Si content of 1.0 to 4.0 wt% as a final plate thickness by cold rolling once or twice or more with intermediate annealing.
In the final annealing of the steel sheet of, according to the Si content of the steel sheet,
While annealing the steel sheet at the following maximum heating temperature T (° C),
During annealing, control the unit tension to 0.05 to 0.15% on the steel plate.
A method for manufacturing a non-oriented electrical steel sheet having excellent iron loss characteristics and excellent magnetic flux density in a low magnetic field, which is characterized by imparting elongation deformation. 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 1.5 wt% ≤ Si <2.0 wt% 800 ≤ T ≤ 980 2.0 wt% ≤ Si ≤ 4.0 wt% 870 ≤ T ≤ 1050
【請求項2】1回または中間焼鈍をはさむ2回以上の冷
間圧延によって最終板厚としたSi含有量が1.0〜4.0wt%
の鋼板を最終焼鈍するに当り、鋼板のSi含有量に応じ、
鋼板を下記最高加熱温度T(℃)で焼鈍するとともに、
ユニット張力σ(kg f/mm2)を最高加熱温度T(℃)と
の関係で下記条件を満足するよう制御することにより鋼
板に0.05〜0.15%の伸び変形を付与することを特徴とす
る鉄損特性及び低磁場での磁束密度の優れた無方向性電
磁鋼板の製造方法。 1.0wt%≦Si<1.5wt%の場合 800≦T≦950 −0.0025T+2.38≦σ≦−0.0025T+2.58 但し、σ≧0.10 1.5wt%≦Si<2.0wt%の場合 800≦T≦980 −0.0034T+3.22≦σ≦−0.0034T+3.42 但し、σ≧0.10 2.0wt%≦Si≦4.0wt%の場合 870≦T≦1050 −0.0017T+1.80≦σ≦−0.0017T+2.00 但し、σ≧0.10
2. A Si content of 1.0 to 4.0 wt% as a final plate thickness by cold rolling once or twice or more with intermediate annealing.
In the final annealing of the steel sheet of, according to the Si content of the steel sheet,
While annealing the steel sheet at the following maximum heating temperature T (° C),
Iron characterized by imparting elongation deformation of 0.05 to 0.15% to steel sheet by controlling unit tension σ (kg f / mm 2 ) so as to satisfy the following condition in relation to maximum heating temperature T (° C) A method for manufacturing a non-oriented electrical steel sheet having excellent loss characteristics and magnetic flux density in a low magnetic field. When 1.0 wt% ≤ Si <1.5 wt% 800 ≤ T ≤ 950 -0.0025T + 2.38 ≤ σ ≤ -0.0025T + 2.58 However, when σ ≥ 0.10 1.5 wt% ≤ Si <2.0 wt% 800 ≤ T ≤ 980 −0.0034T + 3.22 ≦ σ ≦ −0.0034T + 3.42 where σ ≧ 0.10 2.0wt% ≦ Si ≦ 4.0wt% 870 ≦ T ≦ 1050 −0.0017T + 1.80 ≦ σ ≦ −0.0017T + 2.00 where σ ≧ 0.10
JP63041837A 1988-02-26 1988-02-26 Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field Expired - Fee Related JPH075985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041837A JPH075985B2 (en) 1988-02-26 1988-02-26 Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041837A JPH075985B2 (en) 1988-02-26 1988-02-26 Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field

Publications (2)

Publication Number Publication Date
JPH01219125A JPH01219125A (en) 1989-09-01
JPH075985B2 true JPH075985B2 (en) 1995-01-25

Family

ID=12619372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041837A Expired - Fee Related JPH075985B2 (en) 1988-02-26 1988-02-26 Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field

Country Status (1)

Country Link
JP (1) JPH075985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036455A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202426A (en) * 1989-12-29 1991-09-04 Kobe Steel Ltd Method for continuously annealing non-oriented magnetic steel sheet
CN103290190A (en) * 2012-03-02 2013-09-11 宝山钢铁股份有限公司 Non-oriented silicon steel and manufacturing method thereof
WO2023282071A1 (en) * 2021-07-05 2023-01-12 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP7444275B2 (en) * 2021-07-05 2024-03-06 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581173B2 (en) * 1978-12-25 1983-01-10 川崎製鉄株式会社 Annealing method for non-oriented silicon steel strip
JPS58120733A (en) * 1982-01-09 1983-07-18 Nippon Steel Corp Continuous annealing method of electromagnetic steel plate
JPS5996227A (en) * 1982-11-24 1984-06-02 Kawasaki Steel Corp Continuous annealing installation for silicon steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036455A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor

Also Published As

Publication number Publication date
JPH01219125A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US4579608A (en) Grain-oriented silicon steel sheets having a very low iron loss and methods for producing the same
JP3481491B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2022542380A (en) Highly magnetically inductive oriented silicon steel and its manufacturing method
JP5526609B2 (en) Method for producing grain-oriented electrical steel sheet with good magnetic flux density
JPH075985B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent iron loss characteristics and magnetic flux density in low magnetic field
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0121851B2 (en)
JP3081118B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP5741308B2 (en) Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH11172382A (en) Silicon steel sheet excellent in magnetic property, and its production
JPH02232319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3338257B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees