JPH0759645B2 - Molded body manufacturing method - Google Patents

Molded body manufacturing method

Info

Publication number
JPH0759645B2
JPH0759645B2 JP1010267A JP1026789A JPH0759645B2 JP H0759645 B2 JPH0759645 B2 JP H0759645B2 JP 1010267 A JP1010267 A JP 1010267A JP 1026789 A JP1026789 A JP 1026789A JP H0759645 B2 JPH0759645 B2 JP H0759645B2
Authority
JP
Japan
Prior art keywords
resin
prepreg
carbon fiber
strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1010267A
Other languages
Japanese (ja)
Other versions
JPH01279932A (en
Inventor
史朗 浅田
郁朗 滝口
富士男 居谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1010267A priority Critical patent/JPH0759645B2/en
Publication of JPH01279932A publication Critical patent/JPH01279932A/en
Publication of JPH0759645B2 publication Critical patent/JPH0759645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一方向引揃え炭素繊維プリプレグを用いた新
規な成形体その製法方法に関する。
TECHNICAL FIELD The present invention relates to a novel molded article using a unidirectionally aligned carbon fiber prepreg and a method for producing the same.

〔従来の技術〕[Conventional technology]

配向した炭素繊維に熱硬化型樹脂を含浸せしめ一方向引
揃えプリプレグとした後、多層積層し硬化成形した炭素
繊維強化樹脂成形体は板バネやハニカム構造材料等の工
業材料、あるいは釣竿、ゴルフシヤフト等のスポーツレ
ジヤー用機材等に数多く利用されている。さらに最近で
は航空機、自動車、船舶などの部材としても利用されつ
つある。
A carbon fiber reinforced resin molded body, in which oriented carbon fibers are impregnated with a thermosetting resin to form a unidirectionally aligned prepreg, and then laminated and cured, is used for industrial materials such as leaf springs and honeycomb structure materials, or for fishing rods and golf shafts. It is widely used as equipment for sports cashiers. Furthermore, recently, it is being used as a member for aircrafts, automobiles, ships and the like.

使用される炭素繊維の性能も近年著しく向上し、ポリア
クリロニトリル系炭素繊維では既に600kg/mm2を越える
引張強度を有する高強度高伸度タイプのものや、300kg/
mm2以上の引張強度を有しかつ46〜50ton/mm2の引張弾性
率を有する高強度高弾性タイプのものなどが開発上市さ
れ、それらを強化繊維に使用して得られる成形体に対す
る要求性能も原料炭素繊維の性能向上を背景に増々高性
能化してきている。
The performance of the carbon fibers used has also improved significantly in recent years, with polyacrylonitrile-based carbon fibers of high strength and high elongation type already having a tensile strength of over 600 kg / mm 2 , and 300 kg / mm 2.
A high-strength, high-elasticity type with a tensile strength of mm 2 or more and a tensile elastic modulus of 46 to 50 ton / mm 2 has been developed and put on the market, and the required performance for molded products obtained by using them as reinforcing fibers The performance of the raw material carbon fiber is becoming higher and higher.

炭素繊維強化樹脂成形体の性能向上の第一歩は炭素繊維
とマトリツクス樹脂との界面接着強度の向上であつた。
この点に関しては多数の研究開発が過去十数年来精力的
に実施され電解酸化法や気相酸化法などにより現在では
かなり高いレベルで落着いて来ている。しかしながらこ
こ数年間を見るとこの技術の著しい進展は見られず、ま
た近い将来に層間剪断強度(ILSS)などの特性がさらに
大巾に改善されると言う見通しは少ない。
The first step in improving the performance of the carbon fiber reinforced resin molding was to improve the interfacial adhesion strength between the carbon fiber and the matrix resin.
With respect to this point, many researches and developments have been vigorously carried out for the past ten years or so, and at present, it has been settled down to a considerably high level by the electrolytic oxidation method and the gas phase oxidation method. However, no significant progress has been made in this technology over the past few years, and it is unlikely that properties such as interlaminar shear strength (ILSS) will be further improved in the near future.

又マトリックス樹脂の改質が炭素繊維強化樹脂成形体の
性能向上に寄与すると言うことも過去にはいくつか報告
(特開昭57−49612号公報等)されているが、硬化温度
が同程度の樹脂系では樹脂の改質による成形体自身の大
巾な性能向上はそれほど期待出来ない。ただ本発明者等
が経験上知り得た処では一般に硬化温度が高く、架橋密
度が高く剛性の高いマトリツクス樹脂の方がより高い層
間剪断強度と曲げ強度を示す。
It has also been reported in the past that the modification of the matrix resin contributes to the improvement of the performance of the carbon fiber reinforced resin molding (Japanese Patent Laid-Open No. 57-49612, etc.), but the curing temperature is similar. In resin systems, it is not so expected that the performance of the molded product itself will be greatly improved by modifying the resin. However, where the present inventors have learned from experience, generally, a matrix resin having a high curing temperature, a high crosslinking density and a high rigidity exhibits higher interlaminar shear strength and bending strength.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

いずれにせよ従来の技術では同程度の硬化温度グレード
のマトリツクス樹脂との組合せでは最近の炭素繊維自身
の著しい性能向上にもかかわらず、複合材料成形体の性
能向上につながらないのが現状である。とりわけ問題と
なるのは炭素繊維の引張強度の向上がそれぞれを強化繊
維とする成形体の曲げ強度の向上あるいは圧縮強度の向
上に貢献せず、マトリツクス樹脂が同じであればいくら
高強度の炭素繊維を用いてもある程度以上の曲げ強度の
向上あるいは圧縮強度の向上が認められないと言う事で
ある。
In any case, in the conventional technology, the combination with the matrix resin of the same curing temperature grade does not lead to the improvement of the performance of the composite material molded body despite the recent remarkable performance improvement of the carbon fiber itself. Especially, the problem is that the improvement of the tensile strength of carbon fiber does not contribute to the improvement of the bending strength or the compression strength of the molded product using the respective reinforcing fibers, and if the matrix resin is the same, how high the strength of carbon fiber is This means that even if the above is used, the bending strength or the compression strength is not improved to some extent.

第1図は引張強度の異なる炭素繊維4種についてビスフ
エノールA型エポキシ樹脂(硬化温度130℃タイプ)と
の組合せで作成された一方向配向繊維強化樹脂成形板の
三点曲げ強度と、それらに使用された炭素繊維ストラン
ド強度との関係を示したグラフである。なお三点曲げ試
験の測定条件は試片寸法 繊維軸方向長さ100mm×巾10m
m×厚さ2mm、スパン長=80mm、スパン厚さ比=40、ノー
ズ及びサポートアール=1/8inch、クロスヘツドスピー
ド5mm/min、測定環境は21℃50%RHである。又測定値は
繊維体積含有率60vol%換算値を用いた。
Fig. 1 shows the three-point bending strength of unidirectionally oriented fiber reinforced resin molded board prepared by combining four kinds of carbon fibers with different tensile strengths with bisphenol A type epoxy resin (curing temperature 130 ℃ type) It is the graph which showed the relationship with the used carbon fiber strand strength. The measurement conditions for the three-point bending test are the sample dimensions: fiber axis direction length 100 mm x width 10 m.
m × thickness 2mm, span length = 80mm, span thickness ratio = 40, nose and support radius = 1 / 8inch, crosshead speed 5mm / min, measurement environment is 21 ℃ 50% RH. The measured value was a fiber volume content of 60 vol%.

第1図から明らかな様にストランド強度の高い炭素強度
繊維の試片でも曲げ強度は約180kg/mm2程度でそれ以上
高い値を発現しない。
As is clear from FIG. 1, even a test piece of carbon strength fiber having high strand strength has a bending strength of about 180 kg / mm 2 and does not exhibit a higher value.

又、これらの測定後の破断試片を観察すると第1図中A
は引張り側からの破断を示しているが、ストランド強度
の高いB、C、Dはすべて圧縮側からの破断を示してい
る。このことは引張強度が強度の向上しても圧縮強度の
向上が伴つていないため曲げ破壊が圧縮破壊律速となる
ことを示している。この原因として圧縮の場合、繊維の
座屈や繊維とマトリツクス樹脂の接着強度、あるいはマ
トリツクス樹脂の弾性率など複雑な要因が作用し引張り
とは違つたメカニズムで破壊が発生するためであると考
えられる。
Also, when observing the fractured specimens after these measurements, A in FIG.
Shows the fracture from the tensile side, but B, C, and D, which have high strand strength, all show the fracture from the compression side. This indicates that even if the tensile strength is improved, the compression failure is not accompanied by the improvement of the compression strength, and therefore the bending failure is the compression failure rate limiting. It is considered that this is because in the case of compression, complicated factors such as buckling of fibers, adhesive strength between fibers and matrix resin, or elastic modulus of matrix resin act to cause fracture by a mechanism different from tension. .

このように曲げ強度の高いものが得られないと言うこと
は炭素繊維強化樹脂成形体を現実に使用しようとする場
合、板バネにしろ、釣竿にしろゴルフシヤフトにしろほ
とんどすべての利用形態が曲げ変形であり、曲げ破壊で
あることを考えると極めて重大な問題であると言える。
The fact that it is not possible to obtain a product with high bending strength in this way means that when actually using a carbon fiber reinforced resin molded product, almost all usage forms, whether it is a leaf spring, a fishing rod or a golf shaft, are used. It can be said that this is a very serious problem because it is deformation and bending failure.

一方、炭素繊維強化樹脂成形体を工業材料としてあるい
はスポーツレジヤー用機材に利用しようとする場合のも
うひとつの大きな問題点は高弾性あるいは高剛性の成形
体を得ようとすると、一般に極めて高価な高弾性タイプ
の炭素繊維を使用せねばならず、かつ概して高弾性にな
ればなるほど圧縮強度、曲げ強度が大きく低下してしま
うと言うことである。
On the other hand, another major problem in using the carbon fiber reinforced resin molded product as an industrial material or as an equipment for sports registrars is that when a molded product with high elasticity or high rigidity is obtained, it is generally extremely expensive. This means that the carbon fiber of high elasticity type must be used, and generally, the higher the elasticity becomes, the more the compressive strength and bending strength are greatly reduced.

発明者等はこのような炭素繊維強化樹脂成形体の曲げ強
度の向上と同時に弾性率の向上を計るため、成形体中の
炭素繊維含有率を一般に適応されている水準より大巾に
増加させると言う事を種々検討し本発明に至つた。
In order to improve the flexural strength and the elastic modulus of the carbon fiber reinforced resin molded body at the same time as the inventors, the carbon fiber content in the molded body is significantly increased from the generally applied level. Various investigations have been made to reach the present invention.

従来技術では成形体中の炭素繊維含有率を増加させよう
とする試みは ・ プリプレグなどの中間材段階で樹脂含有率を低くす
る ・ 成形時ブリーダークロスなどにより樹脂を吸い出す
か過大な圧力により絞り出す などにより一般に実施されてはいるが、工業材料、第31
巻第2号24〜28頁(昭和58年)等に報告されている様に
高繊維含有率の成形体では繊維体積含有率(以下Vfと略
す)が65〜67vol%以上で特に層間剪断強度が急激に低
下しそれに伴つて曲げ強度も層間破壊律速となつて大き
く低下した。そのためバラツキを考慮するとVf=65vol
%を越えるような炭素繊維強化樹脂成形体は物性的に危
険であるとされ、これより高いVf領域の成形体について
はほどんど検討がなされておらず、又その実用化の例も
ない。
In the prior art, attempts were made to increase the carbon fiber content in the molded body.-Lower the resin content in the intermediate material stage such as prepreg.-Suck out the resin with a bleeder cloth during molding, or squeeze out with excessive pressure. Generally implemented by Industrial Materials, No. 31
As reported in Volume No. 2, pp. 24 to 28 (1983), etc., in the case of a molded article having a high fiber content, the fiber volume content (hereinafter abbreviated as Vf) is 65 to 67 vol% or more, especially the interlaminar shear strength. Was sharply decreased, and along with that, the bending strength was also greatly decreased due to interlaminar fracture rate control. Therefore, considering variations, Vf = 65vol
%, Carbon fiber reinforced resin moldings are considered to be dangerous in terms of physical properties, and moldings with a Vf region higher than this have not been studied at all and there is no example of their practical application.

本発明者等は既存市販の一方向揃え炭素繊維プリプレグ
の樹脂重量含有率が最も低いもので約30wt%までで、樹
脂流れを抑えた成形では炭素繊維密度や樹脂密度にもよ
るが成形品のVfはせいぜい63〜64vol%にしかならず、
従来技術では樹脂のプリーダークロスによる吸い出し
や、加圧による絞り出しを行わない限りVfが65vol%以
上の成形体を得られないと言う点に着目し、この成形時
の樹脂移動が高Vf成形体中の繊維分布あるいは分散状態
を不均一にし層間剪断強度や曲げ強度を著しく低下させ
ていると言う事実を見い出した。
The inventors of the present invention have the lowest resin weight content of the existing commercially available unidirectionally aligned carbon fiber prepreg up to about 30 wt%, and in molding with suppressed resin flow it depends on the carbon fiber density and the resin density Vf should be at most 63-64vol%,
Focusing on the fact that in the conventional technology, a molded body with a Vf of 65 vol% or more cannot be obtained unless the resin is sucked out by a prepreader cloth or squeezed out by pressurization, the resin movement during molding is high Vf molded body. It has been found that the fiber distribution or dispersion state in the inside is made non-uniform and the interlaminar shear strength and bending strength are significantly reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、樹脂含有率が19〜27wt%である一方向引揃え
炭素繊維プリプレグを、樹脂流れによる樹脂含有率の低
下が2wt%以下、好ましくは1wt%以下となるように積層
成形して炭素繊維体積含有率が67〜75vol%の炭素繊維
強化硬化型樹脂の成形体とすることを特徴とする成形体
の製造方法を、上記問題点を解決する手段とするもので
ある。
The present invention is a unidirectionally aligned carbon fiber prepreg having a resin content of 19 to 27 wt% is laminated and molded so that the decrease in the resin content due to the resin flow is 2 wt% or less, preferably 1 wt% or less. A method for producing a molded body, which is characterized in that a molded body of a carbon fiber reinforced curable resin having a fiber volume content of 67 to 75 vol% is provided as means for solving the above problems.

本発明によつて充分な層間剪断強度とVfに見合う曲げ強
度、弾性率を有する炭素繊維強化熱硬化樹脂成形体を得
ることができる。本発明に使用されるプリプレグは無溶
剤型のホツトメルト含浸方式のもの好ましい。これは溶
剤希釈含浸方式のプリプレグでは残存揮発分により成形
体中にマイクロボイドが見られるためである。
According to the present invention, it is possible to obtain a carbon fiber reinforced thermosetting resin molded product having sufficient interlaminar shear strength, flexural strength commensurate with Vf, and elastic modulus. The prepreg used in the present invention is preferably a solvent-free hot melt impregnation type. This is because the prepreg of the solvent-diluted impregnation method has microvoids in the molded body due to residual volatile components.

又ホツトメルト含浸方式であつても、離型紙上に形成し
た樹脂フイルムを炭素繊維繊維束シートの上下面からあ
てがつて含浸する、いわゆるダブルフイルム方式より
も、片面のみに樹脂フイルムを形成した離型紙をあてが
つて含浸するシングルフイルム方式の方が好しい。
Even in the hot melt impregnation method, the release paper in which the resin film is formed only on one side is used, rather than the so-called double film method in which the resin film formed on the release paper is applied by impregnating it from the upper and lower surfaces of the carbon fiber fiber bundle sheet. The single film method of applying and impregnating is preferred.

ダブルフイルム方式では、本発明の如き樹脂含有率の低
いプリプレグを得ようとすると、プリプレグ目付にもよ
るが非常に薄い樹脂フイルムを精度よく離型紙上に形成
する必要がある。又例え樹脂フイルムが出来たとして
も、上下から樹脂含浸を行うためプリプレグの中央部に
未含浸部が多く残つて、成形後ボイドの原因となること
がある。
In the double film method, in order to obtain a prepreg having a low resin content as in the present invention, it is necessary to accurately form a very thin resin film on the release paper depending on the weight of the prepreg. Even if a resin film is formed, since resin impregnation is performed from above and below, a large amount of unimpregnated portion remains in the central portion of the prepreg, which may cause voids after molding.

しかしながら従来の無溶剤型のホツトメルト含浸方式の
プリプレグでは樹脂重量含有率が27wt%以下になると樹
脂含浸が極めて難しく又市販されているものもない。そ
こで本発明者等はこのような低樹脂含有率のプリプレグ
を得るために含浸樹脂の適性粘度レベルの検討を実施し
た。
However, in the conventional solvent-free hot melt impregnation type prepreg, it is extremely difficult to impregnate the resin when the resin weight content is 27 wt% or less, and there is no commercially available prepreg. Therefore, the present inventors have conducted studies on the appropriate viscosity level of the impregnated resin in order to obtain such a prepreg having a low resin content.

第2図はこの含浸検討に用いたプリプレグ製造装置の略
解図である。
FIG. 2 is a schematic diagram of the prepreg manufacturing apparatus used for this impregnation study.

第2図中1はクリール、2はコーム、3はフイードロー
ル、4,5は開繊用バー、6はエポキシ樹脂をコーテイン
グした離型紙、7は張力コントロール用ダンサーロー
ル、8はカバー用ポリオレフインフイルム、9は予熱及
び含浸用プレートヒーター、10,11,12は含浸用加熱ニツ
プロール、13はカバーフイルムの巻き取り装置、14はプ
リプレグの巻き取り装置である。
In FIG. 2, 1 is a creel, 2 is a comb, 3 is a feed roll, 4 and 5 are opening bars, 6 is a release paper coated with epoxy resin, 7 is a dancer roll for tension control, 8 is a polyolefin film for cover, Reference numeral 9 is a plate heater for preheating and impregnation, 10, 11 and 12 are heating nip rolls for impregnation, 13 is a winding device for a cover film, and 14 is a winding device for a prepreg.

この装置に繊維目付が100g/m2となるように炭素繊維ト
ウを準備し離型紙にコーテイングするエポキシ樹脂の粘
度を種々変えて含浸検討を実施した。その結果を第1表
に示す。なお樹脂粘度は便宜上90±0.2℃で回転粘度計
を用いて測定した場合の最低粘度を用いた。第1表で明
らかな様に樹脂重量含有率30wt%程度のプリプレグでは
含浸及びタツク性とも良好であつた樹脂粘度レベルでは
樹脂重量含有率が27wt%さらには19wt%と低くなるにつ
れて含浸が極めて難しくなる。しかしながら樹脂粘度レ
ベルを下げるにつれて、低い樹脂重量含有率のプリプレ
グでも含浸が可能となる。又樹脂重量含有率が30wt%の
プリプレグではタツクが強くなり過ぎて、作業性に問題
があつた低い粘度レベルの樹脂でも樹脂重量含有率が低
いプリプレグになるにつれてタツク性が小さくなり問題
とならなくなる。樹脂重量含有率が23wt%以下になる
と、低い粘度レベルの樹脂を用いた場合であつてもプリ
プレグの表層に樹脂層が形成されなくなるためタツクが
ほとんどなくなりドライタツク状態となつて積層時の接
着が難しくなるがアイロンなどで積層時に加温するか、
樹脂重量含有率が高くタツクのあるプリプレグとの組合
せで使用することが出来る。
The carbon fiber tow was prepared in this device so that the fiber areal weight was 100 g / m 2, and the impregnation study was carried out by changing the viscosity of the epoxy resin coated on the release paper. The results are shown in Table 1. For the sake of convenience, the resin viscosity used is the lowest viscosity measured at 90 ± 0.2 ° C. using a rotational viscometer. As is clear from Table 1, the prepreg having a resin weight content of about 30 wt% has good impregnation and tackiness. At the resin viscosity level, impregnation becomes extremely difficult as the resin weight content decreases to 27 wt% or even 19 wt%. Become. However, as the resin viscosity level is lowered, impregnation is possible even with low resin weight content prepregs. Also, with a prepreg having a resin weight content of 30 wt%, the tack becomes too strong, and even a resin with a low viscosity level that has a problem in workability becomes less problematic as the prepreg with a low resin weight content becomes less tacky. . If the resin weight content is 23 wt% or less, the resin layer will not be formed on the surface layer of the prepreg even when a resin with a low viscosity level is used, so that almost no tack exists and it becomes a dry tack state, making it difficult to bond during lamination. Will it be heated with an iron etc. when stacking,
It can be used in combination with a prepreg having a high resin weight content and tack.

又、このように樹脂重量含有率が低いプリレグでは、通
常のプリプレグ用離型紙ではプリプレグと離型紙との接
着力が不足し作業性が悪くなることがあるが、離型剤の
種類や処理方法を変えて離型性を重くした離型紙を用い
ることで解決出来る。
Further, in such a prepreg having a low resin weight content, the workability may be deteriorated due to the lack of the adhesive force between the prepreg and the release paper in a normal prepreg release paper. This can be solved by using a release paper with a different release property to make the release property heavy.

本発明者らが第4図に示した粘着テープの180゜引き剥
し法によつて離型紙の剥離性を評価した結果、本発明に
用いるプリプレグ用離型紙のプリプレグ担持面の剥離力
は300〜600g/25mm巾が適当であり、好ましくは350〜500
g/25mm巾である。
The present inventors evaluated the release property of the release paper by the 180 ° peeling method of the adhesive tape shown in FIG. 4, and as a result, the release force for the prepreg carrying surface of the release paper for prepreg used in the present invention was 300 to 600g / 25mm width is suitable, preferably 350-500
It is g / 25mm wide.

剥離力の測定環壊は21℃、50%RH、剥離力の測定に用い
た標準粘着テープは住友スリーエム(株)製Scotch片面
粘着テープ#250、引張試験機による引き剥し速度は50m
m/分、その他の測定条件はJIS Z 0237に準じて剥離力の
評価を行つた。
Peeling force measurement 21 ° C, 50% RH for crushing, standard adhesive tape used for measuring peeling force is Scotch single-sided adhesive tape # 250 manufactured by Sumitomo 3M Ltd., peeling speed by tensile tester is 50m
The peeling force was evaluated according to JIS Z 0237 for m / min and other measurement conditions.

同方法によつて測定した現在市販されているプリプレグ
用離型紙のプリプレグ担持面の剥離力は50〜250g/25mm
巾であつた。剥離力が600g/25mm巾を越えると剥離が重
くなり過ぎ、本発明による樹脂含有率のプリプレグであ
つても離型紙の引き剥し困難となる。
The peeling force of the prepreg-bearing surface of the release paper for prepreg currently on the market measured by the same method is 50 to 250 g / 25 mm.
It was heated in the width. When the peeling force exceeds 600 g / 25 mm width, the peeling becomes too heavy, and even the prepreg having the resin content according to the present invention makes it difficult to peel off the release paper.

しかしながら樹脂粘度が過度に低くなるとプリプレグの
繊維軸方向に対して直角(90゜)方向のプリプレグとし
ての強さがなくなり横方向へ裂けを生じやすくなつて作
業性が悪くなる。
However, if the resin viscosity becomes excessively low, the strength of the prepreg as a prepreg in a direction (90 °) perpendicular to the fiber axis direction is lost, and a tear tends to occur in the lateral direction, resulting in poor workability.

いずれにせよ適当な樹脂粘度を選択すれば、離型紙の離
型性の適正性化や、使用方法によつて樹脂重量含有率が
27wt%以下の低レジンコンテントなプリプレグでも実用
可能である。
In any case, if an appropriate resin viscosity is selected, the resin weight content will be improved depending on the release property of the release paper and the usage method.
It can also be used with prepregs with low resin content of 27 wt% or less.

本発明者等は第1表の如き検討を通じて適性粘度レベル
の樹脂を用いれば27wt%以下の樹脂重量含有率のプリプ
レグが製造可能であることを確認した後、それらの一方
向引揃え炭素繊維プリプレグを用いて約2mmの一方向積
層板を成形し、長さ(繊維軸方向)100mm×巾10mmの矩
形の試片を作成、三点曲げ試験及びシヨートビーム法に
よる層間剪断強度試験を実施した。層間剪断強度試験の
条件は、長さ(繊維軸方向)12mm×巾10mm×厚さ2mm、
スパン長10mm、スパン:厚さ比=5:1、ノーズ及びサポ
ートアール1/8inch、クロスヘツドスピード5mm/min、測
定環境は21℃,50%RHである。又、比較のために樹脂重
量含有率約29wt%及び約33wt%繊維目付100g/m2のプリ
プレグについても同様の試片を作成し測定に供した。な
お炭素繊維としては、いずれも引張強度360kg/mm2、引
張弾性率24ton/mm2グレードのものを用い、又エポキシ
樹脂としてはビスフエノールAジグリシジルエーテル型
エポキシをジアミノジフエニルスルホンで変成増粘させ
たものを主として、これに硬化触媒としてジクロロフエ
ニルジメチルウレアを又希釈剤としてビスフエノールA
あるいはビスフエノールFジグリシジルエーテル型エポ
キシ(n=0〜1)を用いた。樹脂粘度の調製は主成分
エポキシの変成の程度及び希釈剤添加量の調整により実
施した。
After confirming that prepregs having a resin weight content of 27 wt% or less can be produced by using a resin having an appropriate viscosity level through the examination as shown in Table 1, the unidirectionally aligned carbon fiber prepregs are prepared. Was used to form a unidirectional laminated plate of about 2 mm, a rectangular test piece having a length (fiber axis direction) of 100 mm and a width of 10 mm was prepared, and a three-point bending test and an interlaminar shear strength test by a short beam method were performed. The conditions of the interlaminar shear strength test are length (fiber axis direction) 12 mm × width 10 mm × thickness 2 mm,
Span length 10mm, span: thickness ratio = 5: 1, nose and support radius 1 / 8inch, crosshead speed 5mm / min, measurement environment is 21 ° C, 50% RH. For comparison, a similar sample was prepared for a prepreg with a resin weight content of about 29 wt% and a fiber weight per unit area of 100 g / m 2 and was subjected to measurement. The carbon fiber used is one with a tensile strength of 360 kg / mm 2 and a tensile modulus of 24 ton / mm 2 and the epoxy resin is a bisphenol A diglycidyl ether type epoxy modified with diaminodiphenyl sulfone. The main component of this was dichlorophenyldimethylurea as a curing catalyst, and bisphenol A as a diluent.
Alternatively, bisphenol F diglycidyl ether type epoxy (n = 0 to 1) was used. The resin viscosity was adjusted by adjusting the degree of modification of the main component epoxy and the amount of diluent added.

成形板の作成はコンプレシヨン金型成形によつた。樹脂
流れの調節はイ.ナイロンタフタとグラスフアイバーブ
リーダークロスを積層物の上下に重ねる、ロ.成形圧力
を変える、の2つの方法で実施した。
The molding plate was produced by compression molding. Resin flow adjustment is a. Lay nylon taffeta and glass fiber bleeder cloth on top and bottom of the laminate. The molding pressure was changed in two ways.

これらの三点曲げ試験及びシヨートビーム法層間剪断強
度試験の結果を第2表に示す。
Table 2 shows the results of the three-point bending test and the shear beam interlaminar shear strength test.

表から明らかな様に、67vol%、以上の高Vf領域におい
ても、成形時に樹脂流れを少なく抑えた試片においては
層間剪断強度の低下は少なく曲げ強度、曲げ弾性率とも
Vfに比例した増大傾向が認められる。一方プリプレグ樹
脂重量含有率約29wt%あるいは約33wt%のプリプレグで
多くの樹脂流れを起こさせ高Vfを達成させたものは層間
剪断強度が低下し曲げ強度も高Vfにもかかわらず高い値
とはならない。又、その時の樹脂流れの量が多ければ多
いほど層間剪断強度の低下が大きく曲げ強度も低い値を
示す。
As is clear from the table, even in the high Vf region of 67 vol% or higher, the interlaminar shear strength does not decrease much in the sample with the resin flow suppressed during molding, and both the bending strength and the bending elastic modulus are small.
There is an increasing tendency proportional to Vf. On the other hand, a prepreg with a resin prepreg content of about 29 wt% or about 33 wt% that causes a large amount of resin flow to achieve a high Vf has a low interlaminar shear strength and a high bending strength despite a high Vf. I won't. Further, the greater the amount of resin flow at that time, the greater the decrease in interlaminar shear strength and the lower bending strength.

第2表から樹脂重量含有率27wt%以下のプリプレグでは
コンプレツシヨン成形の場合、15kg/cm2程度の圧力では
樹脂流れによる樹脂重量含有率の低下は1wt%程度にと
どまり層間剪断強度の低下は少いが、さらに圧力を高く
して多くの樹脂流れを起こさせ、樹脂重量含有率の低下
が約2wt%越ると層間剪断強度のかなりの低下を生じ
る。一方、ブリーダークロスにより樹脂流れを起こさせ
たものでも同様に2〜3wt%を起えると層間剪断強度の
低下が著しい。この様な樹脂流れによる層間剪断強度の
低下は成形品でのVfが65vol%以下のものでは比較的小
さく問題とならなかつた。
From Table 2, in the case of complex molding with a prepreg with a resin weight content of 27 wt% or less, the decrease in the resin weight content due to the resin flow was only about 1 wt% and the decrease in the interlaminar shear strength at a pressure of about 15 kg / cm 2. At a low level, the pressure is further increased to cause a large amount of resin flow, and when the resin weight content reduction exceeds about 2 wt%, the interlaminar shear strength is considerably reduced. On the other hand, even in the case where the resin flow is caused by the bleeder cloth, similarly, when the amount of the resin is caused to be 2 to 3 wt%, the interlaminar shear strength is remarkably lowered. Such decrease in interlaminar shear strength due to resin flow was relatively small and did not pose a problem when Vf of the molded product was 65 vol% or less.

これは67vol%を越える様な高Vf領域の成形体では、成
形時に樹脂流れを多くさせる様な成形法を採用すると、
その樹脂流れが成形体全体に均一に起こらずコンプレツ
シヨン成形の場合は繊維軸方向の端部から、又ブリーダ
ークロスを使用する場合はクロスに接する表層から選択
的に樹脂の移動が起り、元々樹脂量が少いこともあつて
単繊維間の樹脂欠損、マイクロボイド等が集中的に発生
し層間剪断強度や曲げ強度あるいは圧縮強度等の特性を
低下させることによるものと考えられる。
This is because in the case of moldings in the high Vf region that exceed 67 vol%, if a molding method that increases the resin flow during molding is adopted,
The resin flow does not occur uniformly in the entire molded body, and in the case of the complex molding, the resin moves selectively from the end portion in the fiber axis direction, and when the bleeder cloth is used, the resin moves selectively from the surface layer in contact with the cloth. It is considered that this is due to the fact that the resin amount between the single fibers is small due to the small amount of resin, and microvoids and the like are concentratedly generated, and the properties such as the interlaminar shear strength, bending strength, and compressive strength are reduced.

第2表に示す実験結果あるいはその他の検討から成形体
の物性低下を来たさないための限度は樹脂重量含有率の
低下で約wt%以下より好ましくは1wt%以下である。
From the experimental results shown in Table 2 and other examinations, the limit for not lowering the physical properties of the molded article is a reduction of the resin content by weight of about wt% or less, preferably 1 wt% or less.

釣竿やゴルフシヤフトなどのテープラツピング法による
成形では一般に樹脂流れのコントロールが難しく、特に
成形時に多くの樹脂を流すと言うことは難しい。例えば
樹脂重量含有率30wt%のプリプレグを用いてVf=67vol
%以上に仕上げることはかなり困難である。たとえば成
形が出来たとしても樹脂流れを不均一に生じたものしか
得られず、層間剪断強度、曲げ強度の低下を来たす。本
発明による樹脂重量含有率19〜27wt%のプリプレグを用
いた成形では炭素繊維密度、樹脂密度にもよるが無理な
く67vol%、以上の高Vf成形体が得られ、Vf比例で高曲
げ強度、高曲げ弾性率が発現出来る。
In molding by a tape lapping method such as a fishing rod or a golf shaft, it is generally difficult to control the resin flow, and it is difficult to flow a large amount of resin during molding. For example, using a prepreg with a resin content of 30 wt%, Vf = 67vol
It is quite difficult to finish above%. For example, even if molding is possible, only resin flow that is non-uniformly produced can be obtained, resulting in a decrease in interlaminar shear strength and bending strength. In the molding using a prepreg having a resin weight content of 19 to 27 wt% according to the present invention, carbon fiber density, 67 vol% depending on the resin density, but a high Vf molded body of not less than 100 vol%, a high bending strength proportional to Vf, High flexural modulus can be developed.

またビスフエノールAジグリシジルエーテル型エポキシ
樹脂よりも硬化後の樹脂剛性が高いエポキシ樹脂を用い
れば、元々曲げ強度が高いことに加えて本発明のVfの効
果により更に高い強度が発現できる。
Further, when an epoxy resin having a higher resin rigidity after curing than the bisphenol A diglycidyl ether type epoxy resin is used, in addition to originally high bending strength, higher strength can be exhibited by the effect of Vf of the present invention.

しかしながら高Vfにも限度が認められる。たとえば樹脂
流れを低く抑えて成形した場合でもVfが約75vol%を越
えると層間剪断強度の著しい低下を来たし曲げ強度の低
下をまねく。したがつて樹脂重量含有率が約19%を下回
わる様プリプレグを用いた場合は樹脂流れをいかに抑え
ようとも得られた成形体のVfが75vol%を越えて好まし
くない。
However, there are limits to high Vf. For example, when Vf exceeds about 75 vol% even when molding is performed with the resin flow kept low, the interlaminar shear strength is remarkably reduced and the bending strength is reduced. Therefore, when the prepreg is used so that the resin content by weight is less than about 19%, the Vf of the obtained molded article is unfavorably higher than 75 vol% no matter how the resin flow is suppressed.

本発明の成形体のより好ましい炭素繊維体積含有率は69
〜73vol%である。
The more preferable carbon fiber volume content of the molded body of the present invention is 69
It is ~ 73vol%.

Vfがこのようにくうなり過ぎるとたとえ成形時の樹脂流
れを抑えても単繊維と単繊維がマイトリツクス樹脂を介
さず直接接触したり、マイクロボイドのつながつた所謂
ポイドの巣が多発する。
If Vf grows too much like this, even if the resin flow at the time of molding is suppressed, the single fibers come into direct contact without interposing the mitricex resin, or so-called voids of microvoids are frequently generated.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.

実施例1 第2図の如きプリプレグ製造装置を用いて高強度炭素繊
維(引張強度360kg/mm2、引張弾性率24ton/mm2)と130
℃゜硬化型エポキシ樹脂を剥離力400g/25mm巾の離型紙
上にコーテイングしたレジンフイルムとの組合せにより
樹脂重量含有率23.0wt%、繊維目付165g/m2のプリプレ
グを作成し、このプリプレグに横補強用として市販の極
薄の一方向引揃え炭素繊維プリプレグ(樹脂重量含有率
37.3wt%、繊維目付27g/m2、130℃硬化型エポキシ樹脂
マトリツクス)を直交に貼着した後、前者のプリプレグ
の繊維軸方向を長手方向とし、又後者のプリプレグを内
巻き方向として、10φの鉄製マンドレルに4周巻き付
け、ポリプロピレン製テープ(巾15mm)をテープ張力3k
g/15mmでラツピングし硬化炉に入れ130℃2時間の条件
で硬化して流さ600mmのパイプを成形した。成形時の樹
脂流れは横補強用プリプレグを含めて樹脂重量含有の低
下量として0.5wt%以内であつた。
Example 1 Using a prepreg manufacturing apparatus as shown in FIG. 2, high strength carbon fibers (tensile strength 360 kg / mm 2 , tensile elastic modulus 24 ton / mm 2 ) and 130
A prepreg with a resin weight content of 23.0 wt% and a fiber weight of 165 g / m 2 was created by combining the resin film with a release paper with a peeling force of 400 g / 25 mm width coated with a ℃ curing resin. Commercially available ultra-thin unidirectionally aligned carbon fiber prepreg for reinforcement (resin weight content
37.3 wt%, fiber basis weight 27 g / m 2 , 130 ° C. curable epoxy resin matrix) were applied orthogonally, then the fiber axis direction of the former prepreg was the longitudinal direction, and the latter prepreg was the inward winding direction, and 10φ Wrapped around the iron mandrel of 4 times and polypropylene tape (width 15mm) with tape tension 3k
It was lapped at g / 15 mm, placed in a curing furnace and cured at 130 ° C. for 2 hours to form a pipe having a flow of 600 mm. The resin flow at the time of molding was within 0.5 wt% as the reduction amount of the resin weight content including the lateral reinforcing prepreg.

又、比較のために市販の一方向引揃え炭素繊維プリプレ
グ(炭素繊維の引張強度360kg/mm2、引張弾性率24ton/m
m2、樹脂重量含有率30wt%、繊維目付150g/m2、130℃硬
化型エポキシ樹脂マトリツクス)に実施例と同様の極薄
プリプレグを貼着し、同様の方法で10φのマンドレルを
用いて長さ600mmのパイプを成形した。なおこのパイプ
の成形時の樹脂流れによる樹脂重量含有率の低下も0.5w
t%以内であつた。
For comparison, a commercially available unidirectionally aligned carbon fiber prepreg (carbon fiber tensile strength 360 kg / mm 2 , tensile elastic modulus 24 ton / m
m 2 , resin weight content 30 wt%, fiber basis weight 150 g / m 2 , 130 ° C. curable epoxy resin matrix) and the same ultra-thin prepreg as in the example was affixed. A 600 mm pipe was molded. The decrease in the resin weight content due to the resin flow during molding of this pipe was 0.5w.
It was within t%.

これ等パイプについて四点曲げ試験を行ない、曲げ強
度、曲げ弾性率の測定を実施した。その測定結果を第3
表に示す。又第3図にはこの測定に用いた測定治具の略
解図を示す。図中1は可動圧子、2は固定圧子、3はサ
ンプルCFRPパイプ、4は圧子部での応力集中を防ぐため
に装着した内径11.5mm、厚さ2mm、巾10mmの金属製リン
グを示す。測定条件は可動圧子スパン長500mm、固定圧
子スパン長150mm、クロスヘツドスピード5mm/min、測定
雰囲気は21℃50%RHで実施した。
Four-point bending tests were performed on these pipes, and bending strength and bending elastic modulus were measured. The measurement result is the third
Shown in the table. Further, FIG. 3 shows a schematic view of the measuring jig used for this measurement. In the figure, 1 is a movable indenter, 2 is a fixed indenter, 3 is a sample CFRP pipe, and 4 is a metal ring having an inner diameter of 11.5 mm, a thickness of 2 mm, and a width of 10 mm, which is mounted to prevent stress concentration in the indenter portion. The measurement conditions were a movable indenter span length of 500 mm, a fixed indenter span length of 150 mm, a crosshead speed of 5 mm / min, and a measurement atmosphere of 21 ° C. and 50% RH.

第3表から明らかな様に本発明の方法により成形したパ
イプは、市販のプリプレグを用いて行なう従来法の成形
で得られたパイプに比べ、ほぼ同じ重量、同じ肉厚にも
かかわらず曲げ強度、曲げ弾性率が約15%高いものが得
られる。
As is clear from Table 3, the pipe formed by the method of the present invention has almost the same weight and the same wall thickness as the pipe obtained by the conventional method of forming using a commercially available prepreg, though the bending strength is the same. , The flexural modulus is about 15% higher.

実施例2 実施例1と同様にして、高強度、高強度炭素繊維(引張
強度420kg/mm2、引張弾性率40ton/mm2、密度1.81g/c
m3)と130℃゜硬化型エポキシ樹脂との組合せにより樹
脂重量含有率25wt%、繊維目付152g/m2のプリプレグを
作成し、このプリプレグに横補強用として市販の極薄の
一方向引揃え炭素繊維プリプレグ(樹脂重量含有率37.3
wt%繊維目付27g/m2、130℃硬化型エポキシ樹脂マトリ
ツクス)を直交に貼着した後、前者のプリプレグの繊維
軸方向を長手方向として、後者のプリプレグを内巻き方
向として、10φの鉄製マンドレルに4周巻き付け、ポリ
プロピレン製テープ(巾15mm)をテープ張力3kg/15mmで
ラツピングし硬化炉に入れ130℃2時間の条件で硬化し
て流さ600mmのパイプを成形した。
Example 2 In the same manner as in Example 1, high-strength, high-strength carbon fiber (tensile strength 420 kg / mm 2 , tensile elastic modulus 40 ton / mm 2 , density 1.81 g / c)
m 3 ) and 130 ° C curing type epoxy resin were combined to make a prepreg with a resin weight content of 25 wt% and a fiber areal weight of 152 g / m 2 , and a commercially available ultra-thin unidirectionally aligned prepreg was prepared for lateral reinforcement. Carbon fiber prepreg (resin weight content 37.3
wt% fiber basis weight 27 g / m 2 , 130 ° C. curable epoxy resin matrix) are applied at right angles, then the former prepreg has the fiber axis as the longitudinal direction and the latter prepreg as the inward winding direction. A polypropylene tape (width: 15 mm) was wrapped around the tape at a tape tension of 3 kg / 15 mm, placed in a curing furnace, and cured at 130 ° C. for 2 hours to form a pipe having a flow of 600 mm.

成形時の樹脂流れは横補強用プリプレグを含めて樹脂重
量含有の低下量として0.5wt%以内であつた。又試験後
パイプの最外層をピールし酸分解法により樹脂重量含有
率を求めた所、いずれも低下量として1wt%以下であつ
た。
The resin flow at the time of molding was within 0.5 wt% as the reduction amount of the resin weight content including the lateral reinforcing prepreg. After the test, the outermost layer of the pipe was peeled off, and the resin weight content was determined by an acid decomposition method. In all cases, the reduction amount was 1 wt% or less.

又、比較として、引張弾性率46ton/mm2の超高弾性炭素
繊維を用いた市販の一方向気引揃えプリプレグ(炭素繊
維の引張強度330kg/mm2、炭繊維密度1.88g/cm3樹脂重量
含有率33wt%、繊維目付139g/m2、130℃硬化型エポキシ
樹脂マトリツクス)に同様の極薄プリプレグを貼着し、
同じ方法にて長さ600mmのパイプを成形した。
In addition, as a comparison, a commercially available unidirectional draw-aligned prepreg using super high modulus carbon fiber with a tensile modulus of 46 ton / mm 2 (carbon fiber tensile strength 330 kg / mm 2 , carbon fiber density 1.88 g / cm 3 resin weight The same ultra-thin prepreg was attached to a content of 33 wt%, fiber weight of 139 g / m 2 , 130 ° C curing type epoxy resin matrix,
A pipe having a length of 600 mm was formed by the same method.

これらパイプについて実施例1と同様の方法にて、四点
曲げ試験を行ない、測定結果を第4表に示した。
A four-point bending test was performed on these pipes in the same manner as in Example 1, and the measurement results are shown in Table 4.

又、この測定に用いた引張弾性率40ton/mm2の高弾性炭
素繊維を使つた樹脂重量含有率25wt%のプリプレグ及び
比較用として用いた市販の超高弾性炭素繊維プリプレグ
よりコンプレツシヨン金型成形で繊維軸方向長さ100m
m、巾10mm、厚さ2mmの試験片を作成し、スパン長80mm、
スパン:厚さ比40:1、ノーズ及サポートアール1/8inc
h、クロスヘツドスピード5mm/min、測定環境は21℃、50
%RHで3点曲げ試験を、又第2表の層間剪断強度(ILS
S)と同様の測定条件で、層間剪断強度試験を実施し、
その結果を第5表に示した。
Further, a prepreg with a resin weight content of 25 wt% using a high elastic carbon fiber having a tensile elastic modulus of 40 ton / mm 2 used for this measurement, and a commercially available ultra-high elastic carbon fiber prepreg used for comparison are used as a complex mold. 100m length in the fiber axial direction by molding
Create a test piece of m, width 10 mm, thickness 2 mm, span length 80 mm,
Span: Thickness ratio 40: 1, nose and support are 1/8 inc
h, cross head speed 5mm / min, measurement environment 21 ℃, 50
% RH, 3-point bending test, and Table 2 interlayer shear strength (ILS
Under the same measurement conditions as in (S), an interlaminar shear strength test was conducted.
The results are shown in Table 5.

なお第5表中Vfは、酸分解法により繊維重量含有率を求
め樹脂密度(1.25g/cm3)と炭素繊維密度を用いて、次
式により算出した。
Note that Vf in Table 5 was calculated by the following equation using the resin density (1.25 g / cm 3 ) and the carbon fiber density obtained by obtaining the fiber weight content by the acid decomposition method.

(ここでρR=樹脂密度、ρCF=炭素繊維密度、Wf=繊
維重量含有率%を示す) 第4表から明らかな様に重量、肉厚、曲げ弾性率が同じ
であつても本発明による例では比較例に比べて曲げ強度
が40%も高いパイプが得られる。これは同程度の曲げ弾
性率のパイプを得るに当り同じVfで見た場合の弾性率が
低くても元々曲げ強度が高く発現出来る炭酸繊維からな
るプリプレグを選択出来るため、Vf比例以上の曲げ強度
向上が計れるためである。このことは第5表に示した三
点曲げ試験の結果からも明らかである。この場合同じVf
(60vol%)換算値で約23%の曲げ強度の差であるが、V
f換算なしでは本発明の例は、比較例に比して、ほぼ同
じ弾性率で約40%高い曲げ強度の測定値が得られてい
る。
(Here, ρR = resin density, ρCF = carbon fiber density, Wf = fiber weight content%). As is clear from Table 4, even if the weight, wall thickness and flexural modulus are the same, an example according to the present invention Gives a pipe with a bending strength as high as 40% compared to the comparative example. This is because it is possible to select a prepreg made of carbonic fiber that can develop high bending strength even if the elasticity is low when viewed at the same Vf when obtaining pipes with similar bending elasticity. This is because it can be improved. This is also clear from the results of the three-point bending test shown in Table 5. Same Vf in this case
(60vol%) converted value is about 23% in bending strength difference, but V
Without the f conversion, in the example of the present invention, the measured value of the bending strength which is about 40% higher than that of the comparative example is obtained with substantially the same elastic modulus.

又、第4表において本発明によるパイプでは長手方向の
炭素繊維使用重量が比較例に比べ約10%と多くなるが、
焼成コストなどの関係から一般に市場価格として本発明
によるパイプに用いた引張弾性率40ton/mm2グレードの
炭素繊維は、比較例に使用した引張弾性率46ton/mm2
レードの炭素繊維に比べ大巾に安く、本発明によるパイ
プは比較例のパイプに比べ充分低コストで製造すること
が出来る。
Further, in Table 4, in the pipe according to the present invention, the weight of carbon fiber used in the longitudinal direction is about 10% higher than that of the comparative example.
The carbon fiber having a tensile elastic modulus of 40 ton / mm 2 grade used for the pipe according to the present invention is generally much more expensive than the carbon fiber having a tensile elastic modulus of 46 ton / mm 2 grade used in Comparative Example as a market price due to the firing cost and the like. Moreover, the pipe according to the present invention can be manufactured at a sufficiently low cost as compared with the pipe of the comparative example.

比較例1 実施例1において樹脂重量含有率30wt%、繊維目付165g
/m2のプリプレグを作成し、実施例1と同様に極薄の炭
素繊維プリプレグを直交に貼着し、10φの鉄製マンドレ
ルに4周巻き付け片面に離型剤を塗布したポリエステル
製テープ(15mm巾)を離型処理面がプリプレグ面に接す
る方向で、実施例1の倍のテープ張力、6kg/15mmでラツ
ピング後、硬化炉で130℃、2時間硬化成形し長さ600mm
のパイプを得た。なおパイプ成形時の樹脂流れは極薄プ
リプレグを含む全体の樹脂含有率の低下量として約6wt
%であつた。
Comparative Example 1 Resin weight content in Example 1 was 30 wt%, and fiber weight was 165 g.
/ m 2 prepreg was prepared, and ultra-thin carbon fiber prepreg was applied in the same manner as in Example 1, and it was wrapped around a 10φ iron mandrel for 4 turns and a release tape was applied to one side of the polyester tape (15 mm width ) In the direction in which the release treated surface is in contact with the prepreg surface, the tape tension is double that in Example 1, 6 kg / 15 mm is lapped, and then the molded product is cured and molded at 130 ° C. for 2 hours, and the length is 600 mm.
Got the pipe. Note that the resin flow during pipe molding is about 6 wt as a reduction in the total resin content including the ultra-thin prepreg.
It was in%.

このパイプについて実施例1と同様の方法で四点曲げ試
験を実施した。その結果を第6表に示す。
A four-point bending test was conducted on this pipe in the same manner as in Example 1. The results are shown in Table 6.

又、曲げ破壊後パイプの最外層(長手方向が繊維軸の
層)をカツターナイフでピールし樹脂重量含有率を測定
した所約19wt%であつた。すなわち最外層の樹脂流れに
よる樹脂重量含有率の低下量は11wt%と非常に大きく、
最外層でかなり集中的に樹脂流れが生じていることがわ
かつた。
After bending and breaking, the outermost layer of the pipe (the layer having the fiber axis in the longitudinal direction) was peeled with a cutter knife, and the resin weight content was measured to be about 19 wt%. That is, the amount of decrease in the resin weight content ratio due to the resin flow in the outermost layer is very large at 11 wt%,
It was found that the resin flow occurred in the outermost layer in a fairly concentrated manner.

第6表の結果から明らかなように従来技術により成形し
た高Vfのパイプでは弾性率は高い値を得られるものの曲
げ強度が逆に低い値となつてしまう。
As is clear from the results in Table 6, in the high Vf pipe molded by the conventional technique, a high elastic modulus can be obtained, but the bending strength is conversely low.

【図面の簡単な説明】[Brief description of drawings]

第1図は成形板曲げ強度と炭素繊維ストランドの引張強
度との関係を示すグラフ、第2図は本発明で使用したプ
リプレグ製造装置の略解図、第3図はパイプの四点曲げ
試験測定装置を示す略解図、第4図は剥離紙の剥離性を
測定するための測定装置を示す略解図である。
FIG. 1 is a graph showing the relationship between the bending strength of a molded plate and the tensile strength of carbon fiber strands, FIG. 2 is a schematic view of the prepreg manufacturing apparatus used in the present invention, and FIG. 3 is a pipe four-point bending test measuring apparatus. FIG. 4 is a schematic solution diagram showing a measuring device for measuring the releasability of the release paper.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−81571(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-81571 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】樹脂含有率が19〜27wt%である一方向引揃
え炭素繊維プリプレグを、樹脂流れによる樹脂含有率の
低下が2wt%以下となるように積層成形して炭素繊維体
積含有率が67〜75vol%の炭素繊維強化硬化型樹脂の成
形体とすることを特徴とする成形体の製造方法。
1. A unidirectionally aligned carbon fiber prepreg having a resin content of 19 to 27 wt% is laminated and molded so that the decrease in the resin content due to the resin flow is 2 wt% or less, and the carbon fiber volume content is A method for producing a molded article, which is a molded article of a carbon fiber reinforced curable resin of 67 to 75 vol%.
JP1010267A 1988-01-21 1989-01-19 Molded body manufacturing method Expired - Lifetime JPH0759645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010267A JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1172188 1988-01-21
JP63-11721 1988-01-21
JP1010267A JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Publications (2)

Publication Number Publication Date
JPH01279932A JPH01279932A (en) 1989-11-10
JPH0759645B2 true JPH0759645B2 (en) 1995-06-28

Family

ID=26345520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010267A Expired - Lifetime JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Country Status (1)

Country Link
JP (1) JPH0759645B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596135Y2 (en) * 1992-07-04 1999-06-07 ダイワ精工株式会社 Laminate
JP5423387B2 (en) * 2009-12-25 2014-02-19 東レ株式会社 Sheet-like prepreg and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381571A (en) * 1976-12-20 1978-07-19 Mitsubishi Rayon Co Intermediate body for fiber reinforced composite material
JPS59230723A (en) * 1983-06-14 1984-12-25 Mitsubishi Rayon Co Ltd Preparation of prepreg
JPS6037810A (en) * 1983-08-10 1985-02-27 Nec Corp Ceramic filter

Also Published As

Publication number Publication date
JPH01279932A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
US8273454B2 (en) Epoxy resin impregnated yarn and the use thereof for producing a preform
JP3648743B2 (en) "Resin composition for fiber reinforced composite material and its manufacturing method, prepreg, fiber reinforced composite material, honeycomb structure"
JP3661194B2 (en) Woven prepreg and honeycomb sandwich panel
EP0885704B1 (en) Carbon fiber prepreg and method of production thereof
TWI601771B (en) Conductive fiber reinforced polymer composite and multifunctional composite
JPWO2005083002A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
CN107108930B (en) Prepreg
JP2010057462A (en) Prepreg for fishing rod tip, fiber-reinforced composite material for fishing rod tip, solid body for fishing rod tip, tubular body for fishing rod tip, and fishing rod tip
JP2008274520A (en) Sizing agent for carbon fiber and carbon fiber bundle
KR920001624B1 (en) Molding and process for its production
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JPH0759645B2 (en) Molded body manufacturing method
JP4651779B2 (en) Roving prepreg and manufacturing method thereof
JP2007145963A (en) Intermediate for producing carbon fiber-reinforced composite material and carbon fiber-reinforced composite material
JP2003277532A (en) Prepreg and tubular product made of fiber reinforced composite material
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
US20210214511A1 (en) Molding Material, Fiber-Reinforced Composite Article and Method for Producing Fiber-Reinforced Composite Article
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JP2020029553A (en) Prepreg and carbon fiber-reinforced composite material
JPH032224A (en) Hybrid prepreg
JPH09255801A (en) Prepreg and fiber-reinforced resin molding and production of the same
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
EP0385592A2 (en) Method of treating inorganic fiber and inorganic fiber-reinforced composite material
JPH0881572A (en) Prepreg and tubular molding made by using it