JPH01279932A - Molding and its production - Google Patents

Molding and its production

Info

Publication number
JPH01279932A
JPH01279932A JP1010267A JP1026789A JPH01279932A JP H01279932 A JPH01279932 A JP H01279932A JP 1010267 A JP1010267 A JP 1010267A JP 1026789 A JP1026789 A JP 1026789A JP H01279932 A JPH01279932 A JP H01279932A
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
prepreg
strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1010267A
Other languages
Japanese (ja)
Other versions
JPH0759645B2 (en
Inventor
Shiro Asada
史朗 浅田
Ikuro Takiguchi
郁朗 滝口
Fujio Itani
居谷 富士男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1010267A priority Critical patent/JPH0759645B2/en
Publication of JPH01279932A publication Critical patent/JPH01279932A/en
Publication of JPH0759645B2 publication Critical patent/JPH0759645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a molding having a high carbon fiber content and improved in bending strength and modulus by laminate-molding unidirectionally doubled carbon fiber prepregs having a low resin content so that the decrease in the resin content due to resin flow may be very small. CONSTITUTION:Unidirectionally doubled carbon fiber prepregs having a resin content of 19-27wt.% are laminate-molded so that the decrease in the resin content due to resin flow is within 2wt.%, desirably, 1wt.% to form a carbon fiber-reinforced thermoplastic resin molding having a carbon fiber content of 67-75vol.%. According to the above process, a molding having a sufficient interlaminar shear strength and a strength and a modulus corresponding to Vf. can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一方向引揃え炭素繊維プリプレグを用いた新
規な成形体及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel molded article using unidirectionally aligned carbon fiber prepreg and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

配向した炭素繊維に熱硬化型樹脂を含浸せしめ一方向引
揃えプリプレグとした後、多層積層し硬化成形した炭素
繊維強化樹脂成形体は板バネやハニカム構造材料等の工
業材料、あるいは釣竿、プルフシャフト等のスポーツレ
ジャー用機材等に数多く利用されている。さらに最近で
は航空機、自動車、船舶などの部材としても利用されつ
つある。
Oriented carbon fibers are impregnated with a thermosetting resin to form a unidirectionally aligned prepreg, and then multi-layered and hardened, the carbon fiber-reinforced resin molded product can be used for industrial materials such as leaf springs and honeycomb structure materials, or for fishing rods and pull shafts. It is widely used in sports and leisure equipment such as Furthermore, recently it has been used as a component for aircraft, automobiles, ships, etc.

使用される炭素繊維の性能も近年著しく向上し、ポリア
クリロニトリル系炭素繊維では既に600 kg/■=
を越える引張強度を有する高強度高伸度タイプのものや
、500 kp/W”以上の引張強度を有しかつ46〜
50 ton/■2の引張弾性率を有する高強度高弾性
タイプのものなどが開発上布され、それらを強化繊維に
使用して得られる成形体に対する要求性能も原料炭素繊
維の性能向上を背景に増々高性能化してきている。
The performance of the carbon fibers used has improved significantly in recent years, and polyacrylonitrile carbon fibers have already reached 600 kg/■=
High strength and high elongation type with tensile strength exceeding 500 kp/W" and
High-strength, high-elasticity types with a tensile modulus of 50 ton/■2 have been developed and fabricated, and the performance requirements for molded products obtained by using them as reinforcing fibers have also improved as the performance of raw carbon fibers improves. Performance is increasing.

炭素繊維強化樹脂成形体の性能向上の第一歩は炭素繊維
とマトリックス樹脂との界面接着強度の向上であった。
The first step in improving the performance of carbon fiber-reinforced resin moldings was to improve the interfacial adhesive strength between carbon fibers and matrix resin.

この点に関しては多数の研究開発が過去十数年来精力的
に実施され電解酸化法や気相酸化法などにより現在では
かなり高いレベルで落着いて来ている。しかしながらこ
こ数年間を見るとこの技術の著しい進展は見られず、ま
た近い将来に層間剪断強度などの特性がさらに大巾に改
善されると言う見通しは少ない。
Regarding this point, a large amount of research and development has been carried out energetically over the past ten years, and it has now been achieved at a fairly high level using electrolytic oxidation methods, gas phase oxidation methods, etc. However, in recent years, no significant progress has been seen in this technology, and there is little prospect that properties such as interlaminar shear strength will be further improved in the near future.

又マトリックス樹脂の改質が炭素繊維強化樹脂成形体の
性能向上に寄与すると言うことも過去にはいくつか報告
(特開昭57−41612号公報等)されているが、硬
化温度が同程度の樹脂系では樹脂の改質による成形体自
身の大巾な性能向上はそれほど期待出来ない。ただ本発
明者等が経験上知シ得た処では一般に硬化温度が高く、
架橋密度が高(剛性の高いマトリックス樹脂の方がより
高い1間剪断強度と曲げ強度を示す。
In addition, there have been several reports in the past that modification of the matrix resin contributes to improving the performance of carbon fiber-reinforced resin molded bodies (e.g., Japanese Patent Application Laid-Open No. 57-41612). In the case of resin-based materials, it is not possible to expect much improvement in the performance of the molded product itself by modifying the resin. However, according to the experience of the present inventors, the curing temperature is generally high;
A matrix resin with a high crosslinking density (higher stiffness) exhibits higher one-way shear strength and bending strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

いずれにせよ従来の技術では同程度の硬化温度グレード
のマトリックス樹脂との組合せでは最近の炭素繊維自身
の著しい性能向上にもかかわらず、それが強化繊維とす
る複合材料成形体の性能向上につながらないのが現状で
ある。とりわけ問題となるのは炭素繊維の引張強度の向
上がそれを強化繊維とする成形体の曲げ強度の向上ある
いは圧縮強度の向上に貢献せず、マトリックス樹脂が同
じであればいくら高強度の炭素繊維を用いてもある程度
以上の曲げ強度の向上あるいは圧縮強度の向上が認めら
れないと言う事である。
In any case, with conventional technology, despite recent remarkable improvements in the performance of carbon fiber itself in combination with matrix resins of the same curing temperature grade, this does not lead to improvements in the performance of composite material molded bodies used as reinforcing fibers. is the current situation. A particular problem is that improving the tensile strength of carbon fiber does not contribute to improving the bending strength or compressive strength of the molded product using it as a reinforcing fiber, and no matter how strong the carbon fiber is, if the matrix resin is the same, This means that no improvement in bending strength or compressive strength beyond a certain level is observed even when using .

第1図は引張強度の異なる炭素繊維4種についてビスフ
ェノ−/I/A型エポキシ樹It! (硬化温度130
℃タイプ)との組合せで作成され九−方向配向繊維強化
樹脂成形板の三点曲げ強度と、それらに使用された炭素
繊維ストランド強度との関係を示したグラフである。な
お測定条件は試片寸法 繊維軸方向長さ100■×巾1
〇−×厚さ2■、スパン長=80m、スパン厚さ比=4
0、ノーズ及びサポートアール= 1141nch 。
Figure 1 shows bispheno-/I/A type epoxy resin It! for four types of carbon fibers with different tensile strengths. (Curing temperature 130
3 is a graph showing the relationship between the three-point bending strength of a nine-direction oriented fiber-reinforced resin molded plate made in combination with the carbon fiber strand strength used therein. The measurement conditions are specimen dimensions: fiber axial length 100cm x width 1
〇-×thickness 2■, span length = 80m, span thickness ratio = 4
0, nose and support radius = 1141nch.

クロスヘツドスピード5■/min、測定環境は21℃
504R)!である。又測定値は繊維体積含有率607
01憾換算値を用いた。
Crosshead speed 5/min, measurement environment 21℃
504R)! It is. Also, the measured value is fiber volume content 607
01 conversion value was used.

第1図から明らかを様にストランド強度の高い炭素繊維
の試片でも曲げ強度は約180に9/−意程度でそれ以
上高い値を発現しない。
As is clear from FIG. 1, the bending strength of even carbon fiber specimens with high strand strength is approximately 180 to 9/-, and does not exhibit any higher value.

又、これらの測定後の破断試片を観察すると第1図中人
は引張り側からの破断を示しているが、ストランド強度
の高いB%O,Dはすべて圧縮側からの破断を示してい
る。このことは引張強度が向上しても圧縮強度の向上が
伴っていないため曲げ破壊が圧縮破壊律速となることを
示している。この原因として圧縮の場合、繊維の座屈や
繊維とマトリックス樹脂の接着強度、あるいはマトリッ
クス樹脂の弾性率など複雑な要因が作用し引張りとは違
ったメカニズムで破壊が発生するためであると考えられ
る。
In addition, when observing the fractured specimens after these measurements, the specimen in Figure 1 shows fracture from the tension side, but B%O and D, which have high strand strength, all indicate fracture from the compression side. . This shows that even though the tensile strength is improved, the compressive strength is not improved, so that the bending fracture becomes the rate-limiting compression fracture. The reason for this is thought to be that in the case of compression, complex factors such as the buckling of the fibers, the adhesive strength between the fibers and the matrix resin, and the elastic modulus of the matrix resin act, and fracture occurs through a mechanism different from that in tension. .

このように曲げ強度の高いものが得られないと言うこと
は炭素繊維強化樹脂成形体を現実に使用しようとする場
合、板バネにしろ、釣竿にしろブ〜フVヤフトにしろほ
とんどすべての利用形態が曲げ変形であり、曲げ破壊で
あることを考えると極めて重大な問題であると言える。
The fact that it is not possible to obtain a product with high bending strength means that when trying to actually use a carbon fiber reinforced resin molded product, it cannot be used in almost all applications, whether it is a leaf spring, a fishing rod, or a boat. Considering that the form is bending deformation and bending fracture, this can be said to be an extremely serious problem.

一方、炭素繊維強化樹脂成形体を工業材料としであるい
はスポーツレジャー用機材に利用しようとする場合のも
うひとつの大きな問題点は高弾性あるいは高剛性の成形
体を得ようとすると、一般に極めて高価な高弾性タイプ
の炭素繊維を使用せねばならず、かつ概して高弾性にな
ればなるほど圧縮強度、曲げ強度が大きく低下してしま
うと言うことである。
On the other hand, another major problem when trying to use carbon fiber-reinforced resin molded bodies as industrial materials or sports and leisure equipment is that when trying to obtain molded bodies with high elasticity or high rigidity, it is generally extremely expensive. High elasticity carbon fiber must be used, and generally speaking, the higher the elasticity, the greater the reduction in compressive strength and bending strength.

発明者等はこのような炭素繊維強化樹脂成形体の曲げ強
度の向上と同時に弾性率の向上を計るため、成形体中の
炭素繊維含有率を一般に適応されている水準より大巾に
増加させると言う事を種々検討し本発明に至った。
In order to improve the elastic modulus at the same time as improving the bending strength of such a carbon fiber-reinforced resin molded product, the inventors increased the carbon fiber content in the molded product to a greater extent than the generally applied level. After various studies, we have arrived at the present invention.

従来技術では成形体中の炭素繊維含有率を増加させよう
とする試みは ・ プリプレグなどの中間材段階で樹脂含有率を低くす
る ・ 成形時プリーグークロスなどにより樹脂を吸い出す
か過大な圧力により絞り出す などにより一般に実施されてはいるが、工業材料、第3
1巻第2号24〜28頁(昭和58年)等に報告されて
いる様に高繊維含有率の成形体では繊維体積含有率(以
下Vf  と略す)が65〜67 vo1% 以上で特
に層間剪断強度が急激に低下しそれに伴って曲げ強度も
層間破壊律速となって大きく低下した。そのためパフツ
キを考慮するとV’f = 65マ01嘔を越えるよう
な炭素繊維強化樹脂成形体は物性的に危険であるとされ
、これより高いVf 領域の成形体についてはほとんど
検討がなされておらず、又その実用化の例もない。
In conventional technology, attempts to increase the carbon fiber content in the molded product include: - Lowering the resin content at the stage of intermediate materials such as prepreg - Sucking out the resin with prepreg cloth or squeezing it out with excessive pressure during molding Although it is generally carried out by
As reported in Vol. 1, No. 2, pp. 24-28 (1981), in a molded article with a high fiber content, when the fiber volume content (hereinafter abbreviated as Vf) is 65-67 vo1% or more, the interlayer The shear strength decreased rapidly, and the bending strength also decreased significantly due to the rate-limiting interlaminar fracture. Therefore, when puffiness is taken into account, carbon fiber reinforced resin molded bodies with V'f = 65 mm or more are considered to be physically dangerous, and molded bodies with a Vf higher than this have hardly been studied. , and there are no examples of its practical application.

本発明者等は既存市販の一方向引揃え炭素繊維プリプレ
グの樹脂重量含有率が最も低いもので約30 wtlま
でで、樹脂流れを抑えた成形では炭素繊維密度や樹脂密
度にもよるが成形品のVf  はせいぜい63〜64 
vo1%  にしかならず、従来技術では樹脂のブリー
ダークロスによる吸い出しや、加圧による絞り出しを行
わない限りVf  が65 vol% 以上の成形体を
得られないと言う点に着目し、この成形時の樹脂移動が
高Vf  成形体中の繊維分布あるいは分散状態を不均
一にし層間剪断強度や曲げ強度を著しく低下させている
と言う事実を見い出した。
The present inventors have found that the resin weight content of existing commercially available unidirectionally aligned carbon fiber prepregs is the lowest at approximately 30 wtl, and in molding that suppresses resin flow, the molded product can be reduced depending on the carbon fiber density and resin density. Vf is at most 63-64
Focusing on the fact that with conventional technology, it is impossible to obtain a molded product with Vf of 65 vol% or more unless the resin is sucked out using a bleeder cloth or squeezed out by pressure, we focused on the fact that the resin transfer during molding was It has been found that the fiber distribution or dispersion state in the high Vf molded article becomes non-uniform and the interlaminar shear strength and bending strength are significantly reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、樹脂含有率が従来用いられて来たもの
に比べて大巾に低い一方向引揃え炭素繊維プリプレグ、
具体的には樹脂含有率が19〜27 wtlの一方向引
揃え炭素繊維プリプレグを成形材料とする、機械的特性
に優れた炭素繊維強化熱硬化型樹脂成形体及びその製法
として樹脂含有率が19〜27 wtlである一方向引
揃え炭素繊維プリプレグを積層して積層体とするに際し
、樹脂流れによる樹脂含有率の低下が2 wt4以内好
しくは1 wt4以内となるように積1成型して炭素繊
維体積含有率が67〜75vo1% の炭素繊維強化熱
硬化型樹脂の成形体とする成形体の成形法にある。
The gist of the present invention is to provide a unidirectionally aligned carbon fiber prepreg with a significantly lower resin content than those conventionally used;
Specifically, a carbon fiber-reinforced thermosetting resin molded body with excellent mechanical properties, using a unidirectionally aligned carbon fiber prepreg with a resin content of 19 to 27 wtl as a molding material, and a method for manufacturing the same, include a resin content of 19 to 27 wtl. When laminating unidirectionally aligned carbon fiber prepregs of ~27wtl to form a laminate, the stacking and molding are performed so that the decrease in resin content due to resin flow is within 2wt4, preferably within 1wt4. The present invention relates to a method for forming a molded article of carbon fiber reinforced thermosetting resin having a fiber volume content of 67 to 75 vol%.

本発明によって充分な層間剪断強度とVf  に見合う
曲げ強度、弾性率を有する炭素繊維強化熱硬化型樹脂既
形体を得ることができる。本発明に使用されるプリプレ
グは無溶剤型のホットメルト含浸方式のものが好しい。
According to the present invention, it is possible to obtain a carbon fiber reinforced thermosetting resin preformed body having sufficient interlaminar shear strength, bending strength and elastic modulus commensurate with Vf. The prepreg used in the present invention is preferably a solvent-free hot melt impregnated prepreg.

これは溶剤希釈含浸方式のプリプレグで社残存揮発分に
より成形体中にマイクロボイドが見られるためである。
This is because microvoids are observed in the molded product due to residual volatile matter in the prepreg prepared by diluting and impregnating with a solvent.

又ホットメルト含浸方式であっても、離型紙上に形成し
た樹脂フィルムを炭素繊維繊維束シートの上下面からあ
てがって含浸する、いわゆるダブルフィルム方式よりも
、片面のみに樹脂フィルムを形成した1峻型紙をあてが
って含浸するシングルフィルム方式の方が好しい。
In addition, even with the hot melt impregnation method, a one-tension method in which a resin film is formed on only one side is preferable to the so-called double film method, in which a resin film formed on a release paper is impregnated by applying it from the top and bottom surfaces of a carbon fiber bundle sheet. A single film method in which a paper pattern is applied and impregnated is preferable.

ダブルフィルム方式では、本発明の如き樹脂含有率の低
いプリプレグを得ようとすると、プリプレグ日付にもよ
るが非常に薄い樹脂フィルムを精度よく離型紙上に形成
する必要がある。
In the double film method, in order to obtain a prepreg with a low resin content as in the present invention, it is necessary to accurately form a very thin resin film on the release paper, although it depends on the date of the prepreg.

又例え樹脂フィルムが出来たとしても、上下から樹脂含
浸を行うためプリプレグの中央部に未含浸部が多く残っ
て、成形後ボイドの原因となることがある。
Furthermore, even if a resin film is formed, since the resin is impregnated from above and below, a large amount of unimpregnated portion remains in the center of the prepreg, which may cause voids after molding.

しかしながら従来の無溶剤型のホットメルト含浸方式の
プリプレグでは樹脂重量含有率が27 wtl以下にな
ると樹脂含浸が極めて難しく又市販されているものもな
い。そこで本発明者等はこのような低樹脂含有率のプリ
プレグを得るために含浸樹脂の適性粘度レベルの検討を
実施した。
However, in conventional solvent-free hot-melt impregnation type prepregs, it is extremely difficult to impregnate resin when the resin weight content is less than 27 wtl, and there are no prepregs available on the market. Therefore, the present inventors investigated the appropriate viscosity level of the impregnated resin in order to obtain a prepreg with such a low resin content.

第2図はとの含浸検討に用いたプリプレグ製造装置の略
解図である。
FIG. 2 is a schematic diagram of the prepreg manufacturing equipment used for the impregnation study.

第2図中1はクリ−〃、2はコーム、3はフィードロー
ル、4,5は開繊用パー、6はエポキシ樹脂をコーティ
ングした離型紙、7は張力コントロール用ダンサ−ロー
#、8はカバー用ポリオレフインフイμム、9は予熱及
び含浸用プレートヒーター、10,11.12は含浸用
加熱ニップローμ、15はカパーフイ〃ムの巻き取り装
置、14はプリプレグの巻き取り装置である。
In Figure 2, 1 is cream, 2 is a comb, 3 is a feed roll, 4 and 5 are opening pars, 6 is a release paper coated with epoxy resin, 7 is a dancer row # for tension control, and 8 is a A polyolefin film μ for the cover, 9 a plate heater for preheating and impregnation, 10, 11.12 a heating nip row μ for impregnation, 15 a copper film winding device, and 14 a prepreg winding device.

この装置に繊維日付が10 Of/m”となるように炭
素繊維トウを準備し離型紙にコーティングするエポキシ
樹脂の粘度を種々変えて含浸検討を実施した。その結果
を第1表に示・す。なお樹脂粘度は便宜上90±(L2
℃で回転粘度計を用いて測定した場合の最低粘度を用い
た。第1表で明らかな様に樹脂重量含有率50 wt4
t度のプリプレグでは含浸及びタック性とも良好であっ
た樹脂粘度レベルでは樹脂重量含有率が27 vc%さ
らには19 wtlと低くなるにつれて含浸が極めて難
しくなる。しかしながら樹脂粘度Vぺyを下げるKつれ
て、低い樹脂重量含有率のプリプレグでも含浸が可能と
なる。又樹脂重量含有率が30 wtlのプリプレグで
はタックが強くなシ過ぎて、作業性に問題があった低い
粘度レベルの樹脂でも樹脂重量含有率が低いプリプレグ
になるにつれてタック性が小さくなす問題とならなくな
る。樹脂重量含有率が25wt4以下になると、低い粘
度レベルの樹脂を用い九場合であってもプリプレグの表
層に樹脂層が形成されなくなるためタックがほとんどな
くなりドライタック状態となって積層時の接着が難しく
なるがアイロンなどで積層時に加温するか、樹脂重電含
有率が高くタックのあるプリプレグとの組合せで使用す
ることが出来る。
Carbon fiber tow was prepared in this device so that the fiber date was 10 Of/m'', and impregnation studies were conducted by varying the viscosity of the epoxy resin used to coat the release paper.The results are shown in Table 1. For convenience, the resin viscosity is 90±(L2
The lowest viscosity measured using a rotational viscometer at °C was used. As is clear from Table 1, the resin weight content is 50 wt4.
At the resin viscosity level where impregnation and tack properties were good for prepregs with a degree of T, impregnation becomes extremely difficult as the resin weight content decreases to 27 vc% and even 19 wtl. However, as the resin viscosity Vpay is lowered, it becomes possible to impregnate prepregs with lower resin weight contents. In addition, prepregs with a resin weight content of 30 wtl had too strong tack, which caused problems in workability.Even with low viscosity level prepregs, the problem is that the tackiness decreases as the resin weight content becomes lower. It disappears. When the resin weight content is less than 25wt4, even if a resin with a low viscosity level is used, a resin layer will not be formed on the surface layer of the prepreg, resulting in almost no tack and a dry tack state, making it difficult to bond during lamination. However, it can be heated with an iron or the like during lamination, or it can be used in combination with prepreg that has a high resin content and tack.

又、このように樹脂重量含有率が低いプリプレグでは、
通常のプリプレグ用離型紙ではプリプレグと離型紙との
接着力が不足し作業性が、温くなることがあるが、離型
剤の種類や処理方法を変えて離型性を重くした離型紙を
用いることで解決出来る。
In addition, in prepreg with such a low resin weight content,
With normal release paper for prepreg, the adhesive strength between the prepreg and the release paper is insufficient, and the workability may become warm. However, release paper with higher release properties by changing the type of release agent and processing method is used. This can be solved.

本発明者らが第4図に示し九粘着テープの180°引き
剥し法によって離型紙の剥離性を評価した結果、本発明
に用いるプリプレグ用離型紙のプリプレグ担持面の剥離
力は300〜60Of / 25 wm巾が適当であり
、好ましくは350〜500 f/25−巾である。
The present inventors evaluated the release properties of the release paper using the 180° peeling method of the nine adhesive tapes shown in FIG. 25 wm width is suitable, preferably 350-500 f/25-width.

剥離力の測定環壊は21℃、504RT1、剥離力の測
定に用い九標準粘着テープは住友スリーエム■製5co
tch  片面粘着テープ◆25o。
Measurement of peeling force The ring breakage was performed at 21°C, 504RT1, and the nine standard adhesive tape used for measuring the peeling force was 5co manufactured by Sumitomo 3M ■.
tch Single-sided adhesive tape ◆25o.

引張試験機による引き剥し速度は50m/分、その他の
測定条件はJ工S Z 0237  に準じて剥離力の
評価を行った。
The peeling speed by the tensile tester was 50 m/min, and the other measurement conditions were in accordance with J-Ko S Z 0237 to evaluate the peeling force.

同方法によって測定した現在市販されているプリプレグ
用離型紙のプリプレグ担持面の剥離力は50〜250 
f / 25■巾であった。剥離力が600 y/2s
■巾を越えると剥離が重(なり過ぎ、本発明による樹脂
含有率のプリプレグであっても離型紙の引き刺しが困難
となる。
The peeling force of the prepreg supporting surface of currently commercially available prepreg release paper measured by the same method is 50 to 250.
It was f/25cm wide. Peeling force is 600y/2s
(2) If the width is exceeded, the peeling becomes too heavy, and even with the prepreg having the resin content according to the present invention, it becomes difficult to pierce the release paper.

しかしながら樹脂粘度が過度に低くなるとプリプレグの
繊維軸方向に対して直角(90° )方向のプリプレグ
としての強さがなくなり横方向へ裂けを生じやすくなっ
て作業性が悪くなる。
However, if the resin viscosity becomes too low, the strength of the prepreg in the direction perpendicular (90°) to the fiber axis direction of the prepreg will be lost, and tearing will easily occur in the lateral direction, resulting in poor workability.

いずれにせよ適当な樹脂粘度を選択すれば、離型紙の離
型性の適性化や、使用方法によって樹脂重量含有率が2
7 wt4t下の低Vジンコンテントなプリプレグでも
実用化可能である。
In any case, if you select an appropriate resin viscosity, you can optimize the release properties of the release paper and adjust the resin weight content by 2 or more depending on the method of use.
It is possible to put it to practical use even with prepregs with low V-gin content of 7wt4t or lower.

本発明者等は第1表の如き検討を通じて適性粘度レベル
の樹脂を用いれば27 Wt鴫以下の樹脂重量含有率の
プリプレグが製造可能であることを確認した後、それら
の一方向引揃え炭素繊維プリプレグを用いて約2−の一
方向積響板を成形し、長さ(繊維軸方向)100■×巾
10■の矩形の試片を作成、三点曲げ試験及びショート
ビーム法による層間剪断強度試験を実施した。又、比較
のために樹脂重量含有率的29vrt4及び約35 w
t憾織繊維日付100 t/@”のプリプレグについて
も同様の試片を作成し測定に供した。なお炭素繊維とし
ては、いずれも引張強度360 kg/w”、引張弾性
率24 ton/w”グレードのものを用い、又エボキ
V It QWとしてはビスフェノ−A/Aジグリシジ
yエーテル型エポキシをジアミノジフェニルスルホンで
変成増粘させたものを主として、これに硬化触媒とじて
ジクロロフエニ〃ジメチルウVアを又希釈剤としてビス
フェノールAあるいはビスフェノ−〃Fジグリシジ〃エ
ーテル型エポキv (n = o〜1)を用いた。樹脂
粘度の調製は主成分エポキシの変成の程度及び希釈剤添
加量の調整により実施した。
After confirming through the study shown in Table 1 that it is possible to produce prepreg with a resin weight content of 27 Wt or less by using a resin with an appropriate viscosity level, Approximately 2-directional unidirectional soundboard was formed using prepreg, and a rectangular specimen with a length (fiber axis direction) of 100 cm x width of 10 cm was created, and the interlaminar shear strength was measured by three-point bending test and short beam method. A test was conducted. Also, for comparison, the resin weight content was 29vrt4 and about 35w.
A similar specimen was prepared for the prepreg of 100 t/@" carbon fiber and used for measurement. As for carbon fiber, both had a tensile strength of 360 kg/w" and a tensile modulus of 24 ton/w". EBOKI V It QW is mainly made by modifying and thickening bispheno-A/A diglycidi ether type epoxy with diaminodiphenylsulfone, and also dichloropheni dimethyl urea is used as a curing catalyst. Bisphenol A or bispheno-F diglycidyl ether type epoxy v (n = o to 1) was used as a diluent.Resin viscosity was adjusted by adjusting the degree of modification of the main component epoxy and the amount of diluent added.

成形板の作成はコンブレジョン金型成形によった。樹脂
流れの調節はイ、ナイロンタフタとグツスフアイパーブ
リーダークロスを積V物の上下に重ねる、口、成形圧力
を変える、の2つの方法で実施した。
The molded plate was created by combination molding. The resin flow was adjusted by two methods: 1. Layering nylon taffeta and Gutsufu Iperbleeder cloth on top and bottom of the stack, and changing the molding pressure.

これらの三点曲げ試験及びVa−)ビーム法層間剪断強
度試験の結果を第2表に示す。
The results of the three-point bending test and the Va-) beam method interlaminar shear strength test are shown in Table 2.

表から明らかな様に、67マ014 以上の高Vf  
領域においても、成形時に樹脂流れを少なく抑えた試片
においては層間剪断強度の低下は少なく曲げ強度、曲げ
弾性率ともVf  に比例した増大傾向が認められる。
As is clear from the table, high Vf of 67m014 or higher
In the test specimens in which resin flow was suppressed during molding, there was little decrease in interlaminar shear strength, and both bending strength and bending modulus tended to increase in proportion to Vf.

一方プリプVグ樹脂重量含有率約29 wt憾あるいは
約53 wt4のプリプレグで多くの樹脂流れを起こさ
せ高Vf  を達成させたものは層間剪断強度が低下し
曲げ強度も高Vf  にもかかわらず高い値とはならな
い。
On the other hand, prepregs with resin weight content of about 29 wt or about 53 wt4 that cause a lot of resin flow and achieve high Vf have lower interlaminar shear strength and high bending strength despite high Vf. It is not a value.

又、その時の樹脂流れの量が多ければ多いほど層間剪断
強度の低下が太き(曲げ強度も低い値を示す。
Furthermore, the greater the amount of resin flow at that time, the greater the decrease in interlaminar shear strength (the bending strength also shows a lower value).

第2表から樹脂重量含有率27 wt、’6以下のプリ
プレグではコンブVツション成形の場合、15に9/c
−”程度の圧力では樹脂流れによる樹脂重量含有率の低
下は1 wt4程度にとどま9層間剪断強度の低下は少
いが、さらに圧力を高くして多くの樹脂流れを起こさせ
、樹脂重量含有率の低下が約2 wt4越ると層間剪断
強度のかなりの低下ヲ生じる。一方、ブリーダークロス
により樹脂流れを起こさせたものでも同様に2〜s w
t4を起えると層間剪断強度の低下が著しい。この様な
樹脂流れによる層間剪断強度の低下は成形品でのVf 
 が65 vox憾 以下のものでは比較的小さく問題
とならなかった。
From Table 2, the resin weight content is 27 wt, and in the case of kelp V-tension molding for prepregs of '6 or less, the resin weight content is 15 to 9/c.
- At a pressure of about 100 lbs., the decrease in resin weight content due to resin flow remains at about 1wt4, and the decrease in interlaminar shear strength is small. If the decrease exceeds about 2 wt4, a considerable decrease in interlaminar shear strength will occur.On the other hand, even if the resin flow is caused by a bleeder cloth, it will be 2 to 4 wt4.
When t4 occurs, the interlaminar shear strength decreases significantly. The decrease in interlaminar shear strength due to such resin flow reduces the Vf of the molded product.
However, it was relatively small and did not pose a problem for items below 65 vox Sorry.

これは67 voll を越える様な高Vf 領域の成
形体では、成形時に樹脂流れを多くさせる様な成形法を
採用すると、その樹脂流れが成形体全体に均一に起こら
ず例えばコンブVツション成形の場合は繊維軸方向の端
部から、又プy−ダークロスを使用する場合はクロスに
接する表層から選択的に樹脂の移動が起り、元々樹脂量
が少いこともあって単繊維間の樹脂欠損、マイクロボイ
ド等が集中的に発生し層間剪断強度や曲げ強度あるいは
圧縮強度等の特性を低下させることによるものと考えら
れる。
This is because for molded products in the high Vf region, such as those exceeding 67 vol, if a molding method that increases resin flow is adopted during molding, the resin flow will not occur uniformly throughout the molded product, for example, in the case of comb V-tension molding. In this case, resin transfer occurs selectively from the ends in the fiber axial direction, or from the surface layer in contact with the cloth when using a pulley cloth, and because the amount of resin is originally small, resin loss between single fibers, This is thought to be due to the intensive generation of microvoids and the like, which deteriorate properties such as interlaminar shear strength, bending strength, and compressive strength.

第2表に示す実験結果あるいはその他の検討から成形体
の物性低下を来たさないための限度は樹脂重量含有率の
低下で約2 wtl以下より好ましくは1 wt4以下
である。
From the experimental results shown in Table 2 and other studies, the limit for reducing the resin weight content to avoid deterioration of the physical properties of the molded product is about 2 wtl or less, preferably 1 wt4 or less.

釣竿やゴルフシャフトなどのテープラッピング法による
成形では一般に樹脂流れのコントロールが難しく、特に
成形時に多くの樹脂を流すと言うことは難しい。例えば
樹脂重量含有率30 wt4のプリプレグを用いてVf
 = 67 vo1%以上に仕上げることはかな9困難
である。たとえ成形が出来たとしても樹脂流れを不均一
に生じたものしか得られず、層間剪断強度、曲げ強度の
低下を来たす。本発明による樹脂重量含有率19〜27
 wt4のプリプレグを用いた成形では炭素繊維密度、
樹脂密度にもよるが無理なく67 voll 以上の高
Vf  成形体が得られ、Vf比例で高曲げ強度、高曲
げ弾性率が発現出来る。
When molding fishing rods, golf shafts, etc. by the tape wrapping method, it is generally difficult to control the resin flow, and it is particularly difficult to flow a large amount of resin during molding. For example, using a prepreg with a resin weight content of 30 wt4, Vf
= 67 It is difficult to achieve VO1% or higher. Even if molding is possible, the resin will flow unevenly, resulting in a decrease in interlaminar shear strength and bending strength. Resin weight content according to the invention 19-27
In molding using wt4 prepreg, carbon fiber density,
Although it depends on the resin density, a high Vf molded product of 67 vol or more can be easily obtained, and high bending strength and high bending elastic modulus can be expressed in proportion to Vf.

またビスフェノ−A/Aジグリシジ〜エーテル型エポキ
シ樹脂よりも硬化後の樹脂剛性が高いエポキシ樹脂を用
いれば、元々曲げ強度が高いことに加えて本発明のVf
  の効果により更に高い曲げ強度が発現できる。
In addition, if an epoxy resin with higher resin rigidity after curing than bispheno-A/A diglycidi-ether type epoxy resin is used, in addition to originally having high bending strength, the Vf of the present invention
Due to this effect, even higher bending strength can be developed.

しかしながら高Vf にも限度が認められる。However, there are limits to high Vf.

たとえ樹脂流れを低く抑えて成形した場合でもVf が
約75 voll を越えると層間剪断強度の著しい低
下を来たし曲げ強度の低下をまねく。
Even if molding is carried out with the resin flow kept low, if Vf exceeds about 75 vol, the interlaminar shear strength will drop significantly, leading to a drop in bending strength.

したがって樹脂重量含有率が約194を下回わる様なプ
リプレグを用いた場合は樹脂流れをいかに抑えようとも
得られた成形体のVf  が75vo1% を越えて好
ましくない。
Therefore, if a prepreg with a resin weight content of less than about 194 is used, no matter how much resin flow is suppressed, the Vf of the obtained molded article will exceed 75 vol%, which is undesirable.

本発明の成形体のより好しい炭素繊維体積含有率は69
〜75 vol% である。
A more preferable carbon fiber volume content of the molded article of the present invention is 69
~75 vol%.

Vf がこのように高くなり過ぎるとたとえ成形時の樹
脂流れを抑えても単繊維と単繊維がマトリックス樹脂を
介さず直接接触したり、マイクロボイドのつながった所
謂ボイドの巣が多発する。
If Vf becomes too high, even if the resin flow during molding is suppressed, single fibers will come into direct contact with each other without the matrix resin intervening, and so-called void nests in which microvoids are connected will occur frequently.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

実施例1 第2図の如きプリプレグ製造装置を用いて高強度炭素繊
維(引張強度360 kg/−” 、引張弾性率24 
ton/m” )と130℃硬化型エポキシ樹脂を剥離
力400 t/2s−巾の離型紙上にコーティングした
Vジンフィルムとの組合せにより樹脂重量含有率2五O
wt憾、繊維日付165?/−のプリプレグを作成し、
このプリプレグに横補強用として市販の極薄の一方向引
揃え炭素繊維プリプレグ(樹脂重量含有率57.s v
tt4、繊維日付27 f/m”、150℃硬化型エポ
キシ樹脂マトリックス)を直交に貼着した後、前者のプ
リプレグの繊維軸方向を長手方向とし、又後者のプリプ
レグを内巻き方向として、10φの鉄製マンドレ/L/
に4周巻き付け、ポリプロピレン製テープ(巾15 m
 )をテープ張力5ゆ/15−でフッピングし硬化炉に
入れ130℃2時間の条件で硬化して長さ600■のパ
イプを成形した。成形時の樹脂流れは横補強用プリプレ
グを含めて樹脂重量含有率の低下量としてα5 wt4
以内であった。
Example 1 High-strength carbon fiber (tensile strength 360 kg/-", tensile modulus 24
ton/m") and a V-gin film coated with a 130℃ curable epoxy resin on a release paper with a peeling force of 400 t/2s-width, the resin weight content is 250.
wt sorry, textile date 165? Create prepreg of /-,
In addition to this prepreg, a commercially available ultra-thin unidirectionally aligned carbon fiber prepreg (resin weight content: 57.sv) was used for lateral reinforcement.
tt4, fiber date 27 f/m", 150° C. curable epoxy resin matrix) was orthogonally attached, the fiber axis direction of the former prepreg was set as the longitudinal direction, and the latter prepreg was set as the inner winding direction, and a 10φ Iron mandre/L/
Wrap it 4 times around the polypropylene tape (width 15 m)
) was flopped at a tape tension of 5/15 mm, placed in a curing oven, and cured at 130°C for 2 hours to form a pipe with a length of 600 cm. The resin flow during molding is α5 wt4 as the decrease in resin weight content including the prepreg for lateral reinforcement.
It was within

又、比較のために市販の一方向引揃え炭素繊維プリプレ
グ(炭素繊維の引張強度360kl?/■:、引張弾性
率24 ton/■2、樹脂重量含有率s o wt4
、繊維日付I SOt/m”、130℃硬化型エポキシ
樹脂マトリックス)に実施例と同様の極薄プリプレグを
貼着し、同様の方法で10φのマンドレルを用いて長さ
600mのパイプを成形した。なおこのパイプの成形時
の樹脂流れによる樹脂重量含有率の低下もα5 wt4
以内であった。
For comparison, a commercially available unidirectionally aligned carbon fiber prepreg (carbon fiber tensile strength 360kl?/■:, tensile modulus 24 ton/■2, resin weight content s o wt4) was used for comparison.
An ultra-thin prepreg similar to that in the example was adhered to a 130° C. curable epoxy resin matrix, and a 600 m long pipe was formed in the same manner using a 10φ mandrel. Furthermore, the decrease in resin weight content due to resin flow during molding of this pipe is also α5 wt4.
It was within

これ等パイプについて四点曲げ試験を行ない、曲げ強度
、曲げ弾性率の測定を実施した。その測定結果を第3表
に示す。又第3図にはこの測定に用いた測定治具の略解
図を示す。図中1は可動圧子、2は固定圧子、3はサン
プfi10IFRPパイプ、4は圧子部での応力集中を
防ぐために装着した内径11.5■、厚さ2−1巾10
1の金属製リングを示す。測定条件は可動圧子スパン長
500■、固定圧子スパン長150■、クロスヘツドス
ピード5■/ min 、測定雰囲気ハ21℃5C1!
RHで実施した。
A four-point bending test was conducted on these pipes, and the bending strength and bending modulus were measured. The measurement results are shown in Table 3. Furthermore, FIG. 3 shows a schematic diagram of the measuring jig used for this measurement. In the figure, 1 is a movable indenter, 2 is a fixed indenter, 3 is a sump fi10 IFRP pipe, and 4 is an inner diameter of 11.5 cm and a thickness of 2-1 width 10 installed to prevent stress concentration at the indenter.
1 shows a metal ring. The measurement conditions were: movable indenter span length 500cm, fixed indenter span length 150cm, crosshead speed 5cm/min, measurement atmosphere 21℃5C1!
It was carried out at RH.

第3表から明らかな様に本発明の方法により成形したパ
イプは、市販のプリプレグを用いて行なう従来法の成形
で得られたパイプに比べ、はぼ同じ重量、同じ肉厚にも
かかわらず曲げ強度、曲げ弾性率が約154高いものが
得られる。
As is clear from Table 3, the pipes formed by the method of the present invention are more bendable than the pipes formed by the conventional method using commercially available prepreg, despite having the same weight and wall thickness. A product with a strength and flexural modulus of approximately 154 higher can be obtained.

実施例2 実施例1と同様にして、高強度、高弾性炭素繊維(引張
強度420 ’に9/ss”、引張弾性率40ton 
/■8、密度1. a 1y/♂)と130℃硬化型エ
ポキシ樹脂との組合せにより樹脂重量含有率25 wt
4、繊維日付152t/密1のプリプレグを作成し、こ
のプリプレグに横補強用として市販の極薄一方向引揃え
炭素繊維プリプレグ(樹脂重量含有率57.5 wt4
繊維日付27t/ml、130℃硬化型エポキシ樹脂マ
トリックス)を直交に貼着した後、前者のプリプレグの
繊維軸方向を長手方向として、後者のプリプレグを内巻
き方向として、10偽の鉄製マンドレルに4周巻き付け
、ポリプロピレン製テープ(巾15■)をテープ張力3
ゆ/ 15 asでラッピングし硬化炉に入れ130℃
2時間の条件で硬化して長さ600■のパイプを成形し
た。
Example 2 High strength, high elasticity carbon fiber (tensile strength 420' to 9/ss'', tensile modulus 40 tons) was prepared in the same manner as in Example 1.
/■8, density 1. a 1y/♂) and a 130°C curing epoxy resin, the resin weight content is 25 wt.
4. A prepreg with a fiber date of 152 t/density 1 was prepared, and a commercially available ultra-thin unidirectionally aligned carbon fiber prepreg (resin weight content 57.5 wt4) was added to this prepreg for lateral reinforcement.
After orthogonally pasting the fibers (27t/ml, 130°C curable epoxy resin matrix), the former prepreg's fiber axis direction is the longitudinal direction, and the latter prepreg's inner winding direction, and 4 Wrap the polypropylene tape (width 15cm) around the circumference with a tape tension of 3.
Wrap with Yu/15as and put in a curing oven at 130℃
It was cured for 2 hours to form a pipe with a length of 600 square meters.

成形時の樹脂流れは横補強用プリプレグを含めて樹脂重
量含有率の低下量としてα5 wt4以下であった。又
試験後パイプの最外層をビールし酸分解法により樹脂重
量含有率を求めた所、いずれも低下量として1wt4以
下であった。
The resin flow during molding was α5 wt4 or less as a decrease in resin weight content including the prepreg for lateral reinforcement. Further, after the test, the outermost layer of the pipe was beer-filled and the resin weight content was determined by acid decomposition method, and the decrease was 1wt4 or less in all cases.

又、比較として、引張弾性率46 ton/■2の超高
弾性炭素繊維を用いた市販の一方向引揃えプリプレグ(
炭素繊維の引張強度33okp/■2、炭繊維密度1.
88 f/ctyt”樹脂重量含有率33vtt6、繊
維日付13997m”、130℃硬化型エポキシ樹脂マ
トリックス)に同様の極薄プリプレグを貼着し、同じ方
法にて長さ600■のパイプを成形した。
In addition, as a comparison, a commercially available unidirectionally aligned prepreg (
Tensile strength of carbon fiber: 33okp/■2, carbon fiber density: 1.
A similar ultra-thin prepreg was attached to a 88 f/ctyt (resin weight content: 33 vtt6, fiber date: 13997 m, epoxy resin matrix cured at 130° C.), and a pipe with a length of 600 cm was formed using the same method.

これらパイプについて実施例1と同様の方法にて、四点
曲げ試験を行ない、測定結果を第4表に示した。
A four-point bending test was conducted on these pipes in the same manner as in Example 1, and the measurement results are shown in Table 4.

又、この測定に用いた引張弾性率40 ton /−1
の高弾性炭素繊維を使った樹脂重量含有率25 wt4
のプリプレグ及び比較用として用いた市販の超高弾性炭
素繊維プリプレグよりコンブVツション金型成形で繊維
軸方向長さ100■、10m1ll、厚さ2−の試験片
を作成し、スパン長80■、スパン:厚さ比40:1、
ノーズ及すポートアーA/兎1nch 、  クロスヘ
ツドスピード5 wm / min 、測定環境は21
℃、504RHで3点曲げ試験を実施し、その結果を洛
5表に示した。
Also, the tensile modulus used in this measurement was 40 ton/-1
Resin weight content 25wt4 using high modulus carbon fiber
Test specimens with a length in the fiber axis direction of 100 cm, 10 ml, and a thickness of 2 mm were made from the prepreg and a commercially available ultra-high modulus carbon fiber prepreg used for comparison using a comb V-tension mold, and the span length was 80 cm. Span:thickness ratio 40:1,
Nose extending port A/rabbit 1nch, crosshead speed 5 wm/min, measurement environment is 21
A three-point bending test was conducted at 504 RH and the results are shown in Table 5.

なお第5表中Vfは、酸分解法により繊維重量含有率を
求め樹脂密度(1,2597cm” )と炭素繊維密度
を用いて、次式により算出した。
In addition, Vf in Table 5 was calculated by the following formula using the resin density (1,2597 cm'') and carbon fiber density obtained by determining the fiber weight content by acid decomposition method.

H (ここでPR=樹脂密度、ρOF =炭素繊維密度、W
f =繊維重量含有率鴫を示す)第4表から明らかな様
に重量、肉厚、曲げ弾性率が同じであっても本発明によ
る例では比較例に比べて曲げ強度が40係も高いパイプ
が得られる。これは同程度の曲げ弾性率のパイプを得る
に当り同じVfで見た場合の弾性率が低くても元々曲げ
強度が高(発現出来る炭素繊維からなるプリプレグを選
択出来るため、Vf比例以上の曲げ強度向上が計れるた
めである。このことは第5表に示した三点曲げ試験の結
果からも明らかである。この場合同じVf (60vo
l%)換算値で約23#Iの曲げ強度の差であるが、v
f換算なしでは本発明の例は、比較例に比して、はぼ同
じ弾性率で約404高い曲げ強度の測定値が得られてい
る。
H (where PR = resin density, ρOF = carbon fiber density, W
f = fiber weight content) As is clear from Table 4, even if the weight, wall thickness, and bending modulus are the same, the bending strength of the pipe according to the present invention is 40 times higher than that of the comparative example. is obtained. This means that in order to obtain a pipe with the same bending modulus, even if the modulus of elasticity is low when viewed at the same Vf, the bending strength is originally high. This is because the strength can be improved. This is clear from the results of the three-point bending test shown in Table 5. In this case, the same Vf (60vo
The difference in bending strength is approximately 23 #I in terms of 1%), but v
Without f conversion, the example of the present invention has a measured value of bending strength that is approximately 404 times higher than that of the comparative example with almost the same modulus of elasticity.

又、第4表において本発明によるパイプでは長手方向の
炭素繊維使用重量が比較例に比べ約104と多くなるが
、焼成コストなどの関係から一般に市場価格として本発
明によるパイプに用いた引張弾性率40 ton/■寡
グレードグレード維は、比較例に使用した引張弾性率4
6 ton/■on/■ドの炭素繊維に比べ大巾に安く
、本発明によるパイプは比較例のパイプに比べ充分低コ
ストで製造することが出来る。
Furthermore, in Table 4, the weight of carbon fiber used in the longitudinal direction of the pipe according to the present invention is approximately 104, which is greater than that of the comparative example, but due to factors such as firing cost, the tensile modulus of elasticity used for the pipe according to the present invention is generally determined as the market price. 40 ton/■ low grade fiber has a tensile modulus of elasticity of 4 used in the comparative example.
The pipe according to the present invention is significantly cheaper than carbon fiber of 6 ton/■on/■do, and can be manufactured at a sufficiently lower cost than the pipe of the comparative example.

比較例1 実施例1において樹脂重量含有率50 wt4、繊維目
付16517m”のプリプレグを作成し、実施例1と同
様に極薄の炭素繊維プリプレグを直交に貼着し、10φ
の鉄製マンドレルに4周巻き付は片面にg1m剤を塗布
したポリエステル製テープ(15−巾)を離型処理面が
デリデVグ面に接する方向で、実施例1の倍のテープ張
力、6)c9/15■でフッピング後、硬化炉で150
℃、2時間硬化成形し長さ600−のパイプを得た。な
おパイプ成形時の樹脂流れは極薄プリプレグを含む全体
の樹脂含有率の低下量として約6 vt%であった。
Comparative Example 1 In Example 1, a prepreg with a resin weight content of 50 wt4 and a fiber basis weight of 16,517 m'' was created, and as in Example 1, extremely thin carbon fiber prepreg was pasted orthogonally to a 10φ
To wrap the iron mandrel four times, use a polyester tape (15-width) coated with G1M agent on one side in the direction in which the release-treated surface touches the Deride V surface, and use a tape tension twice that of Example 1.6) After flapping with c9/15■, hardening oven at 150
C. for 2 hours to obtain a pipe with a length of 600 mm. Note that the resin flow during pipe molding was approximately 6 vt% as a reduction in the overall resin content including the ultra-thin prepreg.

このパイプについて実施例1と同様の方法で四点曲げ試
験を実施した。その結果を第6表に示す。
A four-point bending test was conducted on this pipe in the same manner as in Example 1. The results are shown in Table 6.

又、曲げ破壊後パイプの最外層(長手方向が繊維軸の層
)をカッターナイフでビールし樹脂重量含有率を測定し
た所約19 wt’!でちった。
Also, after bending and breaking, the outermost layer of the pipe (the layer with the fiber axis in the longitudinal direction) was brewed with a cutter knife and the resin weight content was measured, and it was approximately 19 wt'! It was made.

すなわち最外層の樹脂流れによる樹脂重量含有率の低下
量は11 wt4と非常に大きく、最外層でかなり集中
的に樹脂流れが生じていることがわかった。
That is, the amount of decrease in resin weight content due to resin flow in the outermost layer was as large as 11 wt4, indicating that resin flow occurred quite intensively in the outermost layer.

第6表の結果から明らかなように従来技術により成形し
た高Vf のパイプでは弾性率は高い値を得られるもの
の曲げ強度が逆に低い値となってしまう。
As is clear from the results in Table 6, high Vf pipes formed using the prior art have a high elastic modulus but a low bending strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形板曲げ強度と炭素繊維ストランドの引張強
度との関係を示すグラフ、第2図は本発明で使用したプ
リプレグ製造装置の略解図、第3図はパイプの四点曲げ
試験測定装置を示す略解図、第4図は剥離紙の剥離性を
測定するための測定装置を示す略解図である。 泰1閑 aη 又ドラシト“引張強、肩L (k3/rrrn’ン鳥2
図 奉3I21 為4凹 ↑ 手続補正書 1、事件の表示 特願平1−10267号 2発明の名称 成形体及びその成形法 五補正をする者 事件との関係  特許出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長 永 井 彌太部 4、代理人 〒104東京都中央区京橋二丁目3番19号\ 明細書を次の通り補正する。 1)3頁12行「層間剪断強度」の後に「(工L8日)
」を挿入する。 2)4頁9行「それが強化繊維とする」を削除する。 3)5頁3行「なお」の後に「三点曲げ試験の」を挿入
する。 4)14頁11〜12行「実施した。」の後に次項を追
加する。 「層間剪断強度試験の条件は、長さ(R離軸方向)12
mX巾10腫×厚さ2履、スパン長10順、スパン:厚
さ比5:1、ノーズ及びサポートアール1/81nch
 、クロスヘツドスピード5 W / min 、測定
環境は21℃、50係RHである。」 5)15頁9行「ブリーダー」を「ブリーダー」に補正
する。 6)23頁14行「10amlの前に「巾」を挿入する
。 7)23頁18行「曲げ試験を」の後に「、又第2表の
層間剪断強度(工LSe)と同様の測定条件で、層間剪
断強度試験を」を挿入する。
Fig. 1 is a graph showing the relationship between the bending strength of the formed plate and the tensile strength of the carbon fiber strand, Fig. 2 is a schematic diagram of the prepreg manufacturing equipment used in the present invention, and Fig. 3 is a pipe four-point bending test measurement device. FIG. 4 is a schematic diagram showing a measuring device for measuring the releasability of release paper. Tai 1 Kanaη Mata Drashito “Tensile strength, shoulder L (k3/rrrn'n bird 2
Illustration 3 I21 Tame 4 indentation ↑ Procedural amendment 1, indication of the case Patent Application No. 1-10267 2 Name of the invention Molded object and its molding method 5 Person making the amendment Relationship with the case Patent applicant 2 Kyobashi, Chuo-ku, Tokyo 3-19-chome (603) Mitsubishi Rayon Co., Ltd. President Yatabe Nagai 4, Agent Address: 2-3-19 Kyobashi, Chuo-ku, Tokyo 104 The description has been amended as follows. 1) After “Interlaminar shear strength” on page 3, line 12, “(Work Length 8 days)
” is inserted. 2) Delete page 4, line 9, "It is considered as a reinforcing fiber." 3) Insert ``Three-point bending test'' after ``Note'' on page 5, line 3. 4) On page 14, lines 11-12, add the following paragraph after "Implemented." “The conditions for the interlaminar shear strength test are length (R off-axis direction) 12
m x width 10 mm x thickness 2 shoes, span length 10 order, span:thickness ratio 5:1, nose and support radius 1/81 nch
The crosshead speed was 5 W/min, and the measurement environment was 21° C. and 50 RH. ” 5) On page 15, line 9, “Breeder” is corrected to “Breeder”. 6) Page 23, line 14, “Insert “width” before 10aml. 7) After "bending test" on page 23, line 18, insert "Also, perform an interlaminar shear strength test under the same measurement conditions as the interlaminar shear strength (LSe) in Table 2."

Claims (1)

【特許請求の範囲】 1、樹脂含有率が19〜27wt%である一方向引揃え
炭素繊維プリプレグを成形材料とすることを特徴とする
炭素繊維強化熱硬化型樹脂成形体。 2、剥離力が300〜600g/25mm巾にコントロ
ールされた離型面を有する離型紙の離型面に担持してな
る一方向引揃え炭素繊維プリプレグである請求項1記載
の成形体。 3、炭素繊維含有率が67〜75vol%である請求項
1記載の成形体。 4、成形体がパイプである請求項1記載の成形体。 5、樹脂含有率が19〜27wt%である一方向引揃え
炭素繊維プリプレグを、樹脂流れによる樹脂含有率の低
下が2wt%以下となるように積層成形して炭素繊維体
積含有率が67〜75vol%の炭素繊維強化熱硬化型
樹脂の成形体とすることを特徴とする成形体の成形法。
[Scope of Claims] 1. A carbon fiber-reinforced thermosetting resin molded article, characterized in that a unidirectionally aligned carbon fiber prepreg having a resin content of 19 to 27 wt% is used as a molding material. 2. The molded article according to claim 1, which is a unidirectionally aligned carbon fiber prepreg supported on the release surface of release paper having a release surface whose peeling force is controlled to 300 to 600 g/25 mm width. 3. The molded article according to claim 1, wherein the carbon fiber content is 67 to 75 vol%. 4. The molded article according to claim 1, wherein the molded article is a pipe. 5. One-way aligned carbon fiber prepreg with a resin content of 19 to 27 wt% is laminated and molded so that the decrease in resin content due to resin flow is 2 wt% or less, so that the carbon fiber volume content is 67 to 75 vol. % carbon fiber-reinforced thermosetting resin molding method.
JP1010267A 1988-01-21 1989-01-19 Molded body manufacturing method Expired - Lifetime JPH0759645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010267A JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-11721 1988-01-21
JP1172188 1988-01-21
JP1010267A JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Publications (2)

Publication Number Publication Date
JPH01279932A true JPH01279932A (en) 1989-11-10
JPH0759645B2 JPH0759645B2 (en) 1995-06-28

Family

ID=26345520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010267A Expired - Lifetime JPH0759645B2 (en) 1988-01-21 1989-01-19 Molded body manufacturing method

Country Status (1)

Country Link
JP (1) JPH0759645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067923U (en) * 1992-07-04 1994-02-01 ダイワ精工株式会社 Laminate
JP2011132389A (en) * 2009-12-25 2011-07-07 Toray Ind Inc Sheet-like prepreg and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381571A (en) * 1976-12-20 1978-07-19 Mitsubishi Rayon Co Intermediate body for fiber reinforced composite material
JPS59230723A (en) * 1983-06-14 1984-12-25 Mitsubishi Rayon Co Ltd Preparation of prepreg
JPS6037810A (en) * 1983-08-10 1985-02-27 Nec Corp Ceramic filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381571A (en) * 1976-12-20 1978-07-19 Mitsubishi Rayon Co Intermediate body for fiber reinforced composite material
JPS59230723A (en) * 1983-06-14 1984-12-25 Mitsubishi Rayon Co Ltd Preparation of prepreg
JPS6037810A (en) * 1983-08-10 1985-02-27 Nec Corp Ceramic filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067923U (en) * 1992-07-04 1994-02-01 ダイワ精工株式会社 Laminate
JP2011132389A (en) * 2009-12-25 2011-07-07 Toray Ind Inc Sheet-like prepreg and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0759645B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
KR930003894B1 (en) New prepreg and composite molding and production of composite molding
US3472730A (en) Heat-curable filament-reinforced resinous sheeting and laminating process using same
US5326630A (en) Reinforcing fiber sheet, method of manufacturing the same, and method of reinforcing structure with the reinforcing fiber sheet
KR100347286B1 (en) Epoxy Resin Composition for FRP, Prepreg, and Tubular Molded Article Obtained by Use Thereof
JP3648743B2 (en) "Resin composition for fiber reinforced composite material and its manufacturing method, prepreg, fiber reinforced composite material, honeycomb structure"
WO1997031052A1 (en) Epoxy resin composition for fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
JP6895682B2 (en) Manufacturing method of unidirectional prepreg, fiber reinforced thermoplastic resin sheet, unidirectional prepreg and fiber reinforced thermoplastic resin sheet, and molded article
US20180100043A1 (en) Unidirectional prepreg, fiber-reinforced thermoplastic resin sheet, manufacturing methods of unidirectional prepreg and fiber-reinforced thermoplastic resin sheet, and molded body
Chiu et al. The longitudinal and transverse tensile properties of unidirectional and bidirectional bamboo fiber reinforced composites
JP7047755B2 (en) Fiber reinforced plastic sheet
Sonparote et al. Mechanical properties of carbon/glass fibre reinforced hybrids
KR102118285B1 (en) Towpreg for filament winding and manufacturing method thereof
EP0326409A1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
US5137594A (en) Moldings and method for forming the same
JPH01279932A (en) Molding and its production
Zhao et al. Polypropylene matrix composites reinforced with pre‐stressed glass fibers
KR20210121409A (en) Towpreg for filament winding and manufacturing method thereof
JP2007276249A (en) Glass scrim cloth prepreg material and its manufacturing method
TW206263B (en)
JP4651779B2 (en) Roving prepreg and manufacturing method thereof
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JPS63289034A (en) Thermoplastic resin composition and its production
Kale Nano Composite Material With Multiwall Carbon Nano Tubes As Composite, Glass Fibre As Fibre With the Help of Epoxy Resin As Resin
Yusuff et al. Effect of Stacking Sequences on Mechanical Properties of Kenaf Hybrid Composites
KR20240052432A (en) Epoxy resin composition with improved mechanical properties and towpreg comprising the same