JPH075820B2 - Blow molding resin composition - Google Patents

Blow molding resin composition

Info

Publication number
JPH075820B2
JPH075820B2 JP2059850A JP5985090A JPH075820B2 JP H075820 B2 JPH075820 B2 JP H075820B2 JP 2059850 A JP2059850 A JP 2059850A JP 5985090 A JP5985090 A JP 5985090A JP H075820 B2 JPH075820 B2 JP H075820B2
Authority
JP
Japan
Prior art keywords
compound
composition
resin composition
blow molding
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2059850A
Other languages
Japanese (ja)
Other versions
JPH03263451A (en
Inventor
淳 七沢
憲章 梅田
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP2059850A priority Critical patent/JPH075820B2/en
Publication of JPH03263451A publication Critical patent/JPH03263451A/en
Publication of JPH075820B2 publication Critical patent/JPH075820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大型部品のブロー成形に適した塗装性、耐熱性
等の優れたブロー成形用熱可塑性樹脂組成物に関する。
TECHNICAL FIELD The present invention relates to a thermoplastic resin composition for blow molding, which is suitable for blow molding of large parts and has excellent paintability and heat resistance.

〔従来の技術〕[Conventional technology]

ブロー成形法は、主として中空容器を成形する技術とし
てポリオレフィン系樹脂を中心に利用されて来たが、比
較的簡便な装置を用いて大型成形品を得られることから
大型の構造部品を成形する技術としても注目されてい
る。しかし、ブロー成形による成形品は射出成形による
成形品と比較すると表面の平滑度が低いことから良好な
外観の求められる用途では成形品表面をサンドペーパー
で仕上げるサンディング処理やバフがけ工程が必要であ
った。特に自動車外装部品に用いる場合には、金属材料
と同等の塗装品質が求められるため入念な仕上げが必要
で、これにかかる負担は無視できない。ポリオレフィン
の場合はブロー成形性に優れ、比較的平滑な成形体表面
が得られることが知られているが、必ずしも塗装性が良
好ではなく塗膜の密着強度が低い場合が多く、また耐熱
性も十分ではない。又、ポリフェニレンオキサイドを一
成分とする樹脂材料はブロー成形性、塗膜の密着性、耐
熱性は良好なものの耐薬品性に劣るため、塗装時にシン
ナー等によるストレスクラックを生じ塗料を吸いこみ表
面光沢が失なわれる“すいこみ”現象を起こす場合があ
る。
Blow molding has been mainly used for molding hollow containers mainly for polyolefin resins, but it is a technology for molding large structural parts because large molded products can be obtained using relatively simple equipment. Is also attracting attention. However, since blow molded products have lower surface smoothness than injection molded products, sanding treatment or buffing process to finish the molded product surface with sandpaper is required for applications requiring good appearance. It was In particular, when it is used for automobile exterior parts, a coating quality equivalent to that of metal materials is required, so careful finishing is necessary, and the burden on this cannot be ignored. In the case of polyolefin, it is known that blow moldability is excellent and a relatively smooth molded body surface can be obtained, but the coatability is not always good and the adhesion strength of the coating film is often low, and it also has heat resistance. Not enough. A resin material containing polyphenylene oxide as one component has good blow moldability, coating adhesion, and heat resistance, but it is inferior in chemical resistance. There is a case where the "pour-in" phenomenon is lost, which is lost.

ところで、アクリロニトリル−ブタジエン−スチレン共
重合体であるABS樹脂は塗装性の優れた樹脂材料である
が、この樹脂の特徴は強度と射出成形のし易さと射出成
形品の外観の良さにあるため、あえてブロー成形用材料
として検討されることは無かった。また射出成形法によ
る加工を前提に設計されたABS樹脂をそのままの形でブ
ロー成形に適用してもパリソン強度が低くドローダウン
し易いため、大型成形品は得にくいこと、更に耐熱性が
必ずしも十分でなく塗装の焼付時に変形する等の問題が
あった。
By the way, ABS resin which is acrylonitrile-butadiene-styrene copolymer is a resin material having excellent coatability, but the characteristics of this resin are strength and ease of injection molding and good appearance of injection molded products. It was never considered as a blow molding material. In addition, even if ABS resin designed on the premise of processing by injection molding is applied to blow molding as it is, parison strength is low and drawdown is easy, so it is difficult to obtain large molded products and heat resistance is not always sufficient. However, there was a problem such as deformation during baking of the paint.

ABS樹脂に耐熱性を付与するには、芳香族ビニル化合物
としてαメチルスチレンを用いる方法が良く知られてい
るが、ブロー成形時のドローダウンを抑えるべく分子量
を上げると、押出時に熱分解するために工業的に用いる
ことは困難であった。すなわち、ブロー成形性と塗装
性、更にはブロー成形性、塗装性、耐熱性ともに優れた
材料は未だ確立されていなかったのである。
To impart heat resistance to ABS resin, the method of using α-methylstyrene as an aromatic vinyl compound is well known, but if the molecular weight is increased to suppress drawdown during blow molding, it will thermally decompose during extrusion. It was difficult to use it industrially. That is, a material excellent in blow moldability and coatability, as well as blow moldability, coatability, and heat resistance has not yet been established.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、かかる現状に鑑み、射出成形法では得にくい
大型の成形品が得られ、サンディング処理等を実施せず
とも良好な塗装外観と塗膜密着強度の得られるブロー成
形用樹脂材料を提供することを課題とするものである。
In view of the present situation, the present invention provides a blow molding resin material that can obtain a large-sized molded article that is difficult to obtain by an injection molding method and that can obtain a good coating appearance and a coating film adhesion strength without performing a sanding treatment or the like. The task is to do so.

〔課題を解決するための手段〕 本発明のブロー成形性、塗装性に優れたブロー成形用熱
可塑性組成物とは、ゴム質重合体(B)にシアン化ビニ
ル化合物(A)、芳香族ビニル化合物(S)が共重合し
てなるグラフト共重合体(I)とシアン化ビニル化合物
(A)及び芳香族ビニル化合物(S)が有機シラン化合
物単量体と共重合するか、又はシアン化ビニル化合物
(A)及び芳香族ビニル化合物(S)及び共重合可能な
ビニル化合物(E)が、有機シラン化合物単量体と共重
合してなる共重合体(II)よりなる樹脂組成物であっ
て、 (i)該組成物中の(B)が10〜30重量%であり、 (ii)該組成物において(B)を除く樹脂成分に占める
(A)が35〜50重量%であり、 (iii)該組成物中の有機シラン化合物単位が0.005〜0.
12重量% (iii)該組成物のペレットをブロー成形機を用い、シ
リンダー温度220℃で直径50mm、スリット間隔3.2mmのダ
イから溶融樹脂を押出し、成形されたパリソンより求め
たスウェル比が1.5以上でドローダウン比が0.8以上であ
ることを特徴とするブロー成形用熱可塑性樹脂組成物で
ある。
[Means for Solving the Problems] The thermoplastic composition for blow molding having excellent blow moldability and coatability according to the present invention means a rubbery polymer (B), a vinyl cyanide compound (A) and an aromatic vinyl. The graft copolymer (I) obtained by copolymerizing the compound (S) with the vinyl cyanide compound (A) and the aromatic vinyl compound (S) are copolymerized with the organic silane compound monomer, or vinyl cyanide. A resin composition comprising a copolymer (II) obtained by copolymerizing a compound (A), an aromatic vinyl compound (S) and a copolymerizable vinyl compound (E) with an organosilane compound monomer. (I) 10 to 30% by weight of (B) in the composition, (ii) 35 to 50% by weight of (A) in the resin component excluding (B) in the composition, iii) The organic silane compound unit in the composition is 0.005 to 0.
12% by weight (iii) Using a blow molding machine, pellets of the composition were extruded from a molten resin at a cylinder temperature of 220 ° C. with a diameter of 50 mm and a slit interval of 3.2 mm, and the swell ratio obtained from the molded parison was 1.5 or more. And a drawdown ratio of 0.8 or more, which is a thermoplastic resin composition for blow molding.

更に、耐熱性を改良したい場合には、(S)成分がスチ
レン及び/又はαメチルスチレンよりなる組成物と、
(E)成分としてn置換マレイミドを共重合した組成物
が好適である。
Further, when it is desired to improve heat resistance, a composition in which the component (S) is styrene and / or α-methylstyrene,
A composition obtained by copolymerizing an n-substituted maleimide as the component (E) is suitable.

以下、詳細に本発明を説明する。Hereinafter, the present invention will be described in detail.

一般に、ブロー成形性に優れた樹脂、すなわち大型のパ
リソンを成形してもドローダウンしにくい樹脂とは溶融
粘度の高い樹脂といわれている。
Generally, a resin having excellent blow moldability, that is, a resin which is difficult to draw down even when a large parison is molded is said to have a high melt viscosity.

ABS樹脂において溶融粘度を高める手段として、(イ)
ゴム質重合体含有率を上げる、(ロ)アクリロニトリル
−スチレン共重合体成分の分子量を上げる、(ハ)同共
重合体のガラス転移温度が上がるような成分を共重合さ
せる方法等が挙げられる。
As means for increasing melt viscosity in ABS resin, (a)
Examples thereof include a method for increasing the rubbery polymer content, (b) increasing the molecular weight of the acrylonitrile-styrene copolymer component, and (c) copolymerizing a component that raises the glass transition temperature of the copolymer.

しかしながら、これらの方法により溶融粘度を高くした
だけのABS樹脂はドローダウンしにくくなるものの平滑
な成形体表面が得られにくく実用的には問題があった。
しかるところ、本発明者らは有機シラン化合物を共重合
したシアン化ビニル化合物と芳香族ビニル化合物の共重
合体をABS樹脂の一成分として用いると、シアン化ビニ
ル−芳香族ビニル共重合体の分子量を大きくせずとも優
れた耐ドローダウン性が得られ、かつ成形体表面が十分
に平滑であることを発見した。この事実は、単に共重分
分子鎖間に架橋が生じ、みかけ上分子量が上がったため
だけでは説明できず、共重合体が弾性体的性質をも獲得
し、ブロー成形時の伸びを均一化させたためと推定さ
れ、予期し得なかった効果である。特にこの方法は、α
メチルスチレン、n置換マレイミド等のガラス転移温度
を高める成分を共重合した溶融粘度が高くこのため分子
量を大きくしにくい樹脂組成物に応用すると有効であ
る。
However, although the ABS resin whose melt viscosity is simply increased by these methods is difficult to draw down, it is difficult to obtain a smooth molded product surface, and there is a practical problem.
However, when the present inventors use a copolymer of a vinyl cyanide compound and an aromatic vinyl compound obtained by copolymerizing an organic silane compound as one component of the ABS resin, the molecular weight of the vinyl cyanide-aromatic vinyl copolymer is It has been discovered that excellent drawdown resistance can be obtained without increasing the value and the surface of the molded body is sufficiently smooth. This fact cannot be explained simply by the fact that cross-linking occurs between co-polymeric molecular chains and the apparent increase in molecular weight.The copolymer also acquires elastic properties and makes the elongation during blow molding uniform. This is an unexpected effect that was presumed to have occurred. In particular, this method
It is effective to apply it to a resin composition in which a component having a high glass transition temperature such as methylstyrene and n-substituted maleimide is copolymerized and thus has a high melt viscosity, and therefore it is difficult to increase the molecular weight.

本発明の樹脂組成物は、ゴム質重合体に化学的に結合し
たシアン化ビニル化合物と芳香族ビニル化合物共重合体
を有するグラフト共重合体(I)と、有機シラン化合物
とシアン化ビニル化合物と芳香族ビニル化合物及び必要
に応じこれらと共重合可能な単量体の共重合体(II)よ
りなる。共重合体(II)は、グラフト共重合反応を実施
する際にグラフト結合せずに生じたもの(以下II−1と
称する)、グラフト共重合反応とは別個の反応で作製し
組成物に混合したものである。別個に作製した重合体
は、有機シラン化合物を共重合した成分(以下II−2と
称する)と有機シラン化合物を含まない成分(以下III
−3と称する)をそれぞれ独自に作製し混合物として用
いても良い。共重合体(II)は、樹脂組成物のアセトン
可溶分として分離することができる。
The resin composition of the present invention comprises a graft copolymer (I) having a vinyl cyanide compound and an aromatic vinyl compound copolymer chemically bonded to a rubber polymer, an organosilane compound and a vinyl cyanide compound. It is composed of an aromatic vinyl compound and a copolymer (II) of a monomer copolymerizable therewith. The copolymer (II) is produced without graft bonding when the graft copolymerization reaction is carried out (hereinafter referred to as II-1), and is prepared in a reaction separate from the graft copolymerization reaction and mixed with the composition. It was done. Separately prepared polymers were a component obtained by copolymerizing an organic silane compound (hereinafter referred to as II-2) and a component not containing an organic silane compound (hereinafter referred to as III
-3) may be independently produced and used as a mixture. The copolymer (II) can be separated as an acetone-soluble component of the resin composition.

有機シラン化合物としては、γメタクリロキシプロピル
トリメトキシシラン、γメタクリロキシプロピルメチル
ジメトキシシラン、γメタクリロキシプロピルトリエト
キシシランなどが挙げられる。共重合体(II)に含まれ
るシラン化合物の量には特に制限は無いが、共重合体
(I)と組み合わせた樹脂組成物を基準として0.005〜
0.12重量%が好適である。0.005重量%未満ではブロー
成形性改善効果は顕著ではなく、0.12重量%を越えると
加工性が低下する。共重合体(I),(II)を構成する
シアン化ビニル化合物(A)としてはアクリロニトリ
ル、メタアクリロニトリルが、芳香族ビニル化合物
(S)としてはスチレン、αメチルスチレンが、これら
と共重合可能なビニル化合物単量体(E)としてはメチ
ルメタアクリレート、ブチルアクリレート等の(メタ)
アクリル酸エステル化合物、nフェニルマレイミド、n
シクロヘキシルマレイミド、無水マレイン酸等が挙げら
れる。これらのうち好ましい組合せは、アクリロニトリ
ル−スチレン及び/又はαメチルスチレンと、アクリロ
ニトリル−スチレン−nフェニルマレイミドである。
Examples of the organic silane compound include γmethacryloxypropyltrimethoxysilane, γmethacryloxypropylmethyldimethoxysilane, and γmethacryloxypropyltriethoxysilane. The amount of the silane compound contained in the copolymer (II) is not particularly limited, but 0.005 to 0.005% based on the resin composition combined with the copolymer (I).
0.12% by weight is preferred. If it is less than 0.005% by weight, the effect of improving blow moldability is not remarkable, and if it exceeds 0.12% by weight, workability is deteriorated. The vinyl cyanide compound (A) constituting the copolymers (I) and (II) can be copolymerized with acrylonitrile and methacrylonitrile, and the aromatic vinyl compound (S) can be copolymerized with styrene and α-methylstyrene. As the vinyl compound monomer (E), (meth) such as methyl methacrylate and butyl acrylate
Acrylic ester compound, n-phenylmaleimide, n
Examples thereof include cyclohexylmaleimide and maleic anhydride. Among these, a preferable combination is acrylonitrile-styrene and / or α-methylstyrene and acrylonitrile-styrene-n-phenylmaleimide.

本発明の樹脂組成物にあっては、樹脂中のシアン化ビニ
ル化合物単位の含有量も重要である。ブロー成形法によ
って得られた成形品は射出成形による成形品に比べ外観
が劣るため塗装されることが通例であるが、ブロー成形
品の塗装性は、成形歪が比較的残りにくいので使用する
樹脂材料の組成が主として関与する。本発明の樹脂組成
物にあってはゴム質重合体を除く樹脂成分中のシアン化
ビニル化合物単位の含有率が重要であり、35〜50重量%
が好適であり、36〜44重量%が更に好適である。含有率
が35重量%未満では、塗装又はシンナーによる成形品表
面のストレスクラックが発生し、塗料のすいこみをおこ
し、50重量%を越えると、バリ部分をリワークする際に
樹脂が着色し好ましくない。
In the resin composition of the present invention, the content of vinyl cyanide compound units in the resin is also important. Molded products obtained by the blow molding method are usually painted because they are inferior in appearance to those molded by injection molding, but the paintability of blow molded products is relatively low in molding distortion, so the resin used The composition of the material is of primary concern. In the resin composition of the present invention, the content of the vinyl cyanide compound unit in the resin component excluding the rubbery polymer is important and is 35 to 50% by weight.
Is preferable, and 36 to 44% by weight is more preferable. If the content is less than 35% by weight, stress cracks will occur on the surface of the molded product due to painting or thinner, causing paint swelling.If it exceeds 50% by weight, the resin will be colored when reworking the burr portion, which is not preferable. .

本樹脂組成物に於けるゴム質重合体としては、ポリブタ
ジエン、ブタジエン−スチレン共重合体、ブタジエン−
アクリロニトリル共重合体といったジエン系ゴム質重合
体、ブチルアクリレート−メチルメタアクリレート−
(メタ)アクリル酸エステル共重合体等のアクリルゴ
ム、エチレン−プロピレン共重合ゴムといった飽和ゴム
質重合体が挙げられる。ゴム質重合体(B)の含有率は
塗装性、ブロー成形性に大きく関与しないので、製品に
求められる耐衝撃性に応じ設定すれば良く、10重量%〜
30重量%が好適である。
Examples of the rubbery polymer in the resin composition include polybutadiene, butadiene-styrene copolymer, butadiene-
Diene rubbery polymer such as acrylonitrile copolymer, butyl acrylate-methyl methacrylate-
Examples include acrylic rubber such as (meth) acrylic acid ester copolymer, and saturated rubbery polymer such as ethylene-propylene copolymer rubber. Since the content of the rubbery polymer (B) does not significantly affect the paintability and blow moldability, it may be set according to the impact resistance required for the product, 10% by weight to
30% by weight is preferred.

さらに、本発明の組成物は上記の要件を満たした上で、
該組成物のペレットをブロー成形機を用い、シリンダー
温度220℃で直径50mm、スリット間隔3.2mmのダイから溶
融樹脂を押出し、成形されたパリソンより求めたスウェ
ル比が1.5以上でドローダウン比が0.8以上でなければな
らない。
Furthermore, the composition of the present invention satisfies the above requirements,
Using a blow molding machine for pellets of the composition, a molten resin was extruded from a die having a cylinder temperature of 220 ° C., a diameter of 50 mm, and a slit interval of 3.2 mm, and a swell ratio determined from the molded parison was 1.5 or more and a drawdown ratio was 0.8. Must be above.

共重合体(I),(II)の製造方法には特に制限はなく
公知の方法、すなわち乳化重合法、懸濁重合法、溶液重
合法が適用可能であるが、乳化グラフト重合法によりゴ
ム質重合体含有率の高い共重合体(I)を作製し、有機
シラン化合物を含有する共重合体(II)を溶液重合法に
て作製し両者を押出しブレンドする方法が好ましい。
The method for producing the copolymers (I) and (II) is not particularly limited, and known methods such as emulsion polymerization method, suspension polymerization method and solution polymerization method can be applied. A method is preferred in which a copolymer (I) having a high polymer content is prepared, a copolymer (II) containing an organosilane compound is prepared by a solution polymerization method, and both are extruded and blended.

また共重合体(II)は、有機シラン化合物を含む共重合
体(II−2)と有機シラン化合物を含まない共重合体
(II−3)を別々に作製しグラフト共重合体(I)を加
えた三成分を押出し混練することで樹脂組成物とする方
法が最も好ましい。
As the copolymer (II), a copolymer (II-2) containing an organic silane compound and a copolymer (II-3) not containing an organic silane compound are separately prepared to obtain a graft copolymer (I). The most preferable method is to extrude and knead the added three components to obtain a resin composition.

本樹脂組成物に対し、公知の熱安定剤、紫外線吸収剤、
離型剤、滑剤、帯電防止剤、難燃剤、着色剤を加えるこ
とは任意である。
For the resin composition, a known heat stabilizer, ultraviolet absorber,
It is optional to add a release agent, a lubricant, an antistatic agent, a flame retardant and a coloring agent.

〔実 施 例〕〔Example〕

以下実施例に基き本発明を説明する。 The present invention will be described below based on Examples.

尚、以下に用いる部数は、重量部である。The number of parts used below is parts by weight.

<グラフト共重合反応> G−1: ポリブタジエンゴムラテックス60部(固形分換算)及び
脱イオン水100部を、還流冷却器付き重合槽に入れ、気
相部を窒素置換しながら70℃に昇温した。
<Graft copolymerization reaction> G-1: 60 parts of polybutadiene rubber latex (as solid content) and 100 parts of deionized water were put in a polymerization tank equipped with a reflux condenser, and the temperature was raised to 70 ° C while replacing the gas phase with nitrogen. did.

次いで、これに、スチレン24部、アクリロニトリル16
部、t−ドデシルメルカプタン0.3部、クメンハイドロ
パーオキシド0.2部から成る混合液及び脱イオン水50
部、ナトリウムホルムアルデヒドスルホキシレート0.2
部、硫酸第一鉄0.004部、エチレンジアミンテトラ酢酸
二ナトリウム塩0.008部から成る水溶液を、5時間要し
て連続追添加して反応させた。この間重合温度を70℃に
調節し、追添加終了後、さらに30分間その状態を維持し
て重合を完結させた。
Then add 24 parts of styrene and 16 parts of acrylonitrile.
Part, 0.3 part of t-dodecyl mercaptan, 0.2 part of cumene hydroperoxide and deionized water 50
Part, sodium formaldehyde sulfoxylate 0.2
Parts, 0.004 parts of ferrous sulfate, and 0.008 parts of ethylenediaminetetraacetic acid disodium salt were added continuously for 5 hours to react. During this period, the polymerization temperature was adjusted to 70 ° C., and after the additional addition was completed, the state was maintained for another 30 minutes to complete the polymerization.

単量体の重合率は93.3%、ゴム質重合体を除く樹脂成分
中のアクリロニトリル単位の含有率は、36.1%であっ
た。
The polymerization rate of the monomer was 93.3%, and the content rate of acrylonitrile unit in the resin component excluding the rubbery polymer was 36.1%.

G−2: ポリブタジエンゴムラテックスゴム固形分40部、脱イオ
ン水100部、ロジン酸カリウム0.3部、t−ドデシルメル
カプタン0.2部を、還流冷却器付き重合槽に入れ、気相
部を窒素置換しながら70℃に昇温した。アクリロニトリ
ル24部、スチレン36部、クメンハイドロパーオキサイド
0.15部、t−ドデシルメルカプタン0.4部の混合液、及
び脱イオン水50部にナトリウムホルムアルデヒドスルホ
キシレート0.3部、硫酸第一鉄0.004部、エチレンジアミ
ンテトラ酢酸ナトリウム塩0.04部を加えてなる水溶液
を、7時間にわたり連続追添加して、反応させた。この
間、重合系の温度を70℃にコントロールし、追添加終了
後に更にクメンハイドロパーオキサイド0.02部を加え、
1時間その状態を維持して、反応を完結した。
G-2: Polybutadiene rubber latex rubber solid content 40 parts, deionized water 100 parts, potassium rosinate 0.3 parts, t-dodecyl mercaptan 0.2 parts were put in a polymerization tank equipped with a reflux condenser, and the gas phase was replaced with nitrogen. The temperature was raised to 70 ° C. 24 parts acrylonitrile, 36 parts styrene, cumene hydroperoxide
A mixed solution of 0.15 parts, t-dodecyl mercaptan 0.4 parts, and an aqueous solution prepared by adding 50 parts of deionized water, 0.3 parts of sodium formaldehyde sulfoxylate, 0.004 parts of ferrous sulfate, and 0.04 parts of ethylenediaminetetraacetic acid sodium salt, It was made to react by adding continuously over time. During this period, the temperature of the polymerization system was controlled at 70 ° C, and 0.02 parts of cumene hydroperoxide was further added after the addition was completed,
The state was maintained for 1 hour to complete the reaction.

単量体重合率は97.5%、ゴム質重合体を除く樹脂成分中
のアクリロニトリル単位の含有率は、39.3%であった。
The monomer polymerization rate was 97.5%, and the content rate of acrylonitrile units in the resin component excluding the rubbery polymer was 39.3%.

<有機シラン化合物共重合反応> 還流冷却器付きフラスコに、エチルベンゼン5000g、ス
チレン1750g、アクリロニトリル3250g、γメタクリロキ
シプロピルトリメトキシシラン10.0g、ベンゾイルパー
オキサイド15.0gを加え、60℃にて3時間反応させた。
共重合体をメタノールを用い析出させ回収し、原素分析
からアクリロニトリル含有率を、原子吸光法により求め
たケイ素含有率からγメタクリロキシプロピルトリメト
キシシラン含有率を算出したところ、それぞれ38.5%、
0.35%であった。
<Organosilane compound copolymerization reaction> To a flask equipped with a reflux condenser, 5000 g of ethylbenzene, 1750 g of styrene, 3250 g of acrylonitrile, 10.0 g of γ-methacryloxypropyltrimethoxysilane and 15.0 g of benzoyl peroxide were added, and the mixture was reacted at 60 ° C for 3 hours. It was
The copolymer was precipitated and recovered using methanol, and the acrylonitrile content was determined from the atomic analysis, and the γ-methacryloxypropyltrimethoxysilane content was calculated from the silicon content determined by the atomic absorption method.
It was 0.35%.

<シアン化ビニル化合物−芳香族ビニル化合物共重合反
応> M−1: 脱イオン水170部、アルケニルコハク酸カリウム〔花王
石鹸(株)製、ラテムルASK〕1.0部、不均化ロジン酸カ
リウム1.0部、ナトリウムホルムアルデヒドスルホキシ
レート0.4部、硫酸第一鉄0.004部、エチレンジアミンテ
トラ酢酸二ナトリウム塩0.008部を還流冷却器付き重合
槽に入れ、気相部を窒素置換しながら65℃に昇温した。
次いで、これにアクリロニトリル40部、α−メチルスチ
レン60部、t−ドデシルメルカプタン0.1部、クメンハ
イドロパーオキシド0.5部から成る混合液及び脱イオン
水80部、ナトリウムホルムアルデヒドスルホキシレート
0.1部、硫酸第一鉄0.001部、エチレンジアミンテトラ酢
酸二ナトリウム塩0.002部からなる水溶液を8時間要し
て連続的に追添加し反応させた。この間重合温度を65℃
に調節し、追添加終了後、さらに1時間その状態を維持
して重合を完結させた。
<Vinyl cyanide compound-aromatic vinyl compound copolymerization reaction> M-1: 170 parts of deionized water, potassium alkenyl succinate [Latemul ASK manufactured by Kao Soap Co., Ltd.] 1.0 part, disproportionated potassium rosinate 1.0 part 0.4 parts of sodium formaldehyde sulfoxylate, 0.004 parts of ferrous sulfate and 0.008 parts of ethylenediaminetetraacetic acid disodium salt were placed in a polymerization tank equipped with a reflux condenser and heated to 65 ° C. while substituting the gas phase with nitrogen.
Then, a mixture of 40 parts of acrylonitrile, 60 parts of α-methylstyrene, 0.1 part of t-dodecyl mercaptan and 0.5 part of cumene hydroperoxide, and 80 parts of deionized water, sodium formaldehyde sulfoxylate.
An aqueous solution containing 0.1 part, 0.001 part of ferrous sulfate, and 0.002 part of ethylenediaminetetraacetic acid disodium salt was continuously added for 8 hours and reacted. During this time, the polymerization temperature was 65 ° C.
After completion of the additional addition, the state was maintained for 1 hour to complete the polymerization.

M−2: M−1と同一の反応を、アクリロニトリル27部、αメチ
ルスチレン73部にて実施し、M−2を得た。
M-2: The same reaction as M-1 was carried out with 27 parts of acrylonitrile and 73 parts of α-methylstyrene to obtain M-2.

M−3: M−1と同一の反応を、tドデシルメルカプタンを用い
ずに実施し、M−3を得た。
M-3: The same reaction as M-1 was carried out without t-dodecyl mercaptan to give M-3.

M−4〜M−6: 完全混合型連続反応器を用い、アクリロニトリル、スチ
レン、エチルベンゼンよりなる単量体溶液を一定速度で
生成物を払い出しつつ連続追添加し重合系内の反応率を
一定に保ち、アクリロニトリル−スチレン共重合体を得
た。この時、連続追添加する単量体の組成を変えてM−
4〜M−6を得た。
M-4 to M-6: Using a completely mixed continuous reactor, a monomer solution consisting of acrylonitrile, styrene, and ethylbenzene was continuously added at a constant rate while the product was being dispensed to keep the reaction rate in the polymerization system constant. It kept, and the acrylonitrile-styrene copolymer was obtained. At this time, by changing the composition of the monomer added continuously, M-
4-M-6 were obtained.

M−1〜M−6の分析値を表1に一括して示した。The analytical values of M-1 to M-6 are collectively shown in Table 1.

実施例 1 グラフト共重合体G−1と有機シラン化合物単位を含ま
ない共重合体M−1を固形分で35:65の比率でラテック
スブレンドし、全固形分100部に対し1.3部の硫酸マグネ
シウムを添加し凝集体を得た。凝集体を水洗し脱水、乾
燥して得た樹脂粉末90重量部に有機シラン化合物を含む
共重合体を10重量部加え、フェノール系熱安定剤〔住友
化学(株)製、BHT〕0.2重量部、エチレンビスステアリ
ルアミド0.5重量部を添加した後、押出機を用いペレッ
ト化した。ペレットをブロー成形機を用い、シリンダー
温度220℃でダイ直径50mm、スリット間隔3.2mmのダイか
ら溶融樹脂を押し出し、成形されたパリソンより、次式
に従いスウェル比、ドローダウン比を求めたところ、そ
れぞれ1.85,0.95であった。
Example 1 Graft copolymer G-1 and copolymer M-1 containing no organic silane compound unit were latex-blended at a ratio of 35:65 in solid content, and 1.3 parts of magnesium sulfate based on 100 parts of total solid content. Was added to obtain an aggregate. 0.2 parts by weight of a phenolic heat stabilizer [Sumitomo Chemical Co., Ltd., BHT] was added to 10 parts by weight of a copolymer containing an organic silane compound to 90 parts by weight of a resin powder obtained by washing the aggregate with water, dehydration and drying. After adding 0.5 parts by weight of ethylenebisstearylamide, the mixture was pelletized using an extruder. Using a blow molding machine for pellets, the molten resin was extruded from a die with a die diameter of 50 mm and a slit interval of 3.2 mm at a cylinder temperature of 220 ° C., and from the molded parison, the swell ratio and drawdown ratio were calculated according to the following formulas, respectively. It was 1.85 and 0.95.

冷却したパリソンを23℃の塗料溶液(レクラック55(藤
倉化成):ノンブラッシング:169シンナ=50:15:35)に
20秒浸漬し、80℃で30分乾燥し表面状態を観察したとこ
ろ、クラックの発生は認められなかった。またペレット
は、射出成形により試験片とし、規格に基きアイゾット
衝撃値及び加熱変形温度を測定したところ、それぞれ13
kg cm/cm、100℃であった。
Cooled parison into a coating solution at 23 ℃ (Lecrac 55 (Fujikura Kasei): Non-brushing: 169 thinner = 50:15:35)
When immersed for 20 seconds and dried at 80 ° C. for 30 minutes and observing the surface condition, no cracks were found. The pellets were injection-molded into test pieces, and the Izod impact value and heat distortion temperature were measured according to the standard.
It was kg cm / cm and 100 ° C.

実施例2〜4、比較例1〜4は、同様の試験を各共重合
体の比率を変えて実施したものである。結果を一括して
表2に示した。比較例2は、パリソン成形そのものが不
可能であった。尚ブロー成形性は、スウェル比1.5以
上、ドローダウン比0.8以上のものを以って良好と判断
した。
In Examples 2 to 4 and Comparative Examples 1 to 4, the same test was conducted by changing the ratio of each copolymer. The results are collectively shown in Table 2. In Comparative Example 2, parison molding itself was impossible. The blow moldability was judged to be good when the swell ratio was 1.5 or more and the drawdown ratio was 0.8 or more.

実施例 5 グラフト共重合ラテックスG−2を実施例1に用いたも
のと同一の方法により粉末とし別途重合した有機シラン
化合物を含まない共重合体M−4及び有機シラン化合物
共重合体を加え、熱安定剤及び滑剤を加え、押出機を用
いペレット化した。実施例1と同じ評価を行ない結果を
表2に示した。
Example 5 A copolymer M-4 containing no organosilane compound and an organosilane compound copolymer which were separately polymerized into a powder by the same method as that used in Example 1 using the graft copolymer latex G-2, were added, Heat stabilizer and lubricant were added and pelletized using an extruder. The same evaluations as in Example 1 were performed and the results are shown in Table 2.

実施例6,7、比較例5,6 実施例5と同一の操作を、各成分の比率を変えて実施
し、結果を一括して表2にまとめた。
Examples 6 and 7, Comparative Examples 5 and 6 The same operation as in Example 5 was carried out by changing the ratio of each component, and the results are summarized in Table 2.

表2より組成物中のゴム質重合体10〜30重量%、有機シ
ラン化合物単位含有率0.005〜0.12で良好なブロー成形
性及び衝撃強度が得られ、ゴム質重合体を除く樹脂成分
中のアクリロニトリル単位含有率が0.35重量%以上で良
好な塗装性が得られることが明らかである。この方は、
αメチルスチレンの共重合体(実施例1〜4)、nフェ
ニルマレイミド共重合体(実施例6,7)を用いた場合に
も有効であることが明らかである。
From Table 2, good blow moldability and impact strength were obtained at 10 to 30% by weight of the rubbery polymer in the composition and the content of the organic silane compound unit was 0.005 to 0.12, and acrylonitrile in the resin component excluding the rubbery polymer. It is clear that good coatability is obtained when the unit content is 0.35% by weight or more. This person
It is clear that it is also effective when the α-methylstyrene copolymers (Examples 1 to 4) and the n-phenylmaleimide copolymers (Examples 6 and 7) are used.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ゴム質重合体(B)にシアン化ビニル化合
物(A)、芳香族ビニル化合物(S)が共重合してなる
グラフト共重合体(I)とシアン化ビニル化合物(A)
及び芳香族ビニル化合物(S)が有機シラン化合物単量
体と共重合するか、又はシアン化ビニル化合物(A)及
び芳香族ビニル化合物(S)及び共重合可能なビニル化
合物(E)が有機シラン化合物単量体と共重合してなる
共重合体(II)よりなる樹脂組成物であって、 (i)該組成物中の(B)が10〜30重量%であり、 (ii)該組成物において(B)を除く樹脂成分に占める
(A)が35〜50重量%であり、 (iii)該組成物中の有機シラン化合物単位が0.005〜0.
12重量%であり、 (iv)該組成物のペレットをブロー成形機を用い、シリ
ンダー温度220℃で直径50mm、スリット間隔3.2mmのダイ
から溶融樹脂を押出し、成形されたパリソンより求めた
スウェル比が1.5以上でドローダウン比が0.8以上 であることを特徴とするブロー成形用熱可塑性樹脂組成
物。
1. A graft copolymer (I) obtained by copolymerizing a rubbery polymer (B) with a vinyl cyanide compound (A) and an aromatic vinyl compound (S), and a vinyl cyanide compound (A).
And an aromatic vinyl compound (S) are copolymerized with an organic silane compound monomer, or a vinyl cyanide compound (A) and an aromatic vinyl compound (S) and a copolymerizable vinyl compound (E) are an organic silane. A resin composition comprising a copolymer (II) copolymerized with a compound monomer, wherein (i) (B) in the composition is 10 to 30% by weight, and (ii) the composition. (A) occupy 35 to 50% by weight of the resin component excluding (B) in the product, and (iii) the organic silane compound unit in the composition is 0.005 to 0.
12% by weight, and (iv) using a blow molding machine, extruding a molten resin from a die having a cylinder temperature of 220 ° C., a diameter of 50 mm and a slit interval of 3.2 mm, and a swell ratio obtained from a molded parison. Of 1.5 or more and a drawdown ratio of 0.8 or more, a thermoplastic resin composition for blow molding.
【請求項2】組成物を構成する(A)がアクリロニトリ
ルであり、(S)がスチレン及び/又はαメチルスチレ
ンである請求項1記載の耐熱性の改良されたブロー成形
用熱可塑性樹脂組成物。
2. A thermoplastic resin composition for blow molding with improved heat resistance according to claim 1, wherein (A) which constitutes the composition is acrylonitrile and (S) is styrene and / or α-methylstyrene. .
【請求項3】組成物を構成する(A)がアクリロニトリ
ルであり(S)がスチレンであり、(E)がn置換マレ
イミドである請求項1記載の耐熱性の改良されたブロー
成形用熱可塑性樹脂組成物。
3. The thermoplastic resin for blow molding with improved heat resistance according to claim 1, wherein (A) constituting the composition is acrylonitrile, (S) is styrene, and (E) is an n-substituted maleimide. Resin composition.
【請求項4】請求項1又は2又は3記載のブロー成形用
樹脂組成物を用いてなるブロー成形品。
4. A blow-molded article obtained by using the blow-molding resin composition according to claim 1.
【請求項5】請求項4記載の成形品に塗装を施してなる
製品。
5. A product obtained by applying a coating to the molded product according to claim 4.
JP2059850A 1990-03-13 1990-03-13 Blow molding resin composition Expired - Fee Related JPH075820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059850A JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059850A JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Publications (2)

Publication Number Publication Date
JPH03263451A JPH03263451A (en) 1991-11-22
JPH075820B2 true JPH075820B2 (en) 1995-01-25

Family

ID=13125086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059850A Expired - Fee Related JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Country Status (1)

Country Link
JP (1) JPH075820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648114B1 (en) * 2005-12-22 2006-11-24 제일모직주식회사 Branched styrenic thermoplastic polymers having a excellent productivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368043B1 (en) * 1997-12-26 2003-03-31 제일모직주식회사 Styrene-based resin composition excellent in stretching property and formability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339353A1 (en) * 1983-10-29 1985-05-09 Bayer Ag, 5090 Leverkusen ABS MOLDS WITH IMPROVED FIRE RESISTANCE
JPH0735462B2 (en) * 1987-06-23 1995-04-19 鐘淵化学工業株式会社 Thermoplastic resin composition having matte properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648114B1 (en) * 2005-12-22 2006-11-24 제일모직주식회사 Branched styrenic thermoplastic polymers having a excellent productivity

Also Published As

Publication number Publication date
JPH03263451A (en) 1991-11-22

Similar Documents

Publication Publication Date Title
US5091470A (en) Molding resin
US4608414A (en) Thermoplastic resin composition containing an imide polymer and graft copolymer
KR101750603B1 (en) Thermoplastic resin composition and molded article prepared therefrom
JP7206436B2 (en) Resin composition and resin molded product
JP2896331B2 (en) Rubber modified styrenic resin composition
EP1911773A2 (en) Copolymer and process for producing the same
JPH09302197A (en) Coating-resistant thermoplastic resin composition and its production
JPH075820B2 (en) Blow molding resin composition
US7547744B2 (en) Thermoplastic resin composition having excellent resistance and low gloss
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP3405478B2 (en) Thermoplastic resin composition
JP2524367B2 (en) ABS molding composition with low residual butadiene content
JP3850504B2 (en) Thermoplastic resin composition
JPH09272783A (en) Thermoplastic resin composition dispensing with coating and part dispensing with coating
JP4013338B2 (en) Thermoplastic resin composition excellent in paintability and molded article for automobile
JP3340631B2 (en) Thermoplastic resin composition
KR100546768B1 (en) Abs resin composition with good painging
JPH0425431A (en) Blow molding
JP2928830B2 (en) Blow molding resin composition with excellent heat resistance
JP2617509B2 (en) N-substituted maleimide-containing thermoplastic resin composition
JPH03243646A (en) Resin composition for blow molding
JPH06166795A (en) Thermoplastic resin composition for blowing use
JP3543885B2 (en) Polystyrene resin composition
JPH02185509A (en) Rubber-modified styrene copolymer
JPS61235450A (en) Resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees