JPH03263451A - Resin composition having excellent blow moldability - Google Patents

Resin composition having excellent blow moldability

Info

Publication number
JPH03263451A
JPH03263451A JP5985090A JP5985090A JPH03263451A JP H03263451 A JPH03263451 A JP H03263451A JP 5985090 A JP5985090 A JP 5985090A JP 5985090 A JP5985090 A JP 5985090A JP H03263451 A JPH03263451 A JP H03263451A
Authority
JP
Japan
Prior art keywords
compound
composition
copolymer
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5985090A
Other languages
Japanese (ja)
Other versions
JPH075820B2 (en
Inventor
Atsushi Shichizawa
七沢 淳
Noriaki Umeda
梅田 憲章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2059850A priority Critical patent/JPH075820B2/en
Publication of JPH03263451A publication Critical patent/JPH03263451A/en
Publication of JPH075820B2 publication Critical patent/JPH075820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a resin composition having excellent coating-ability, heat- resistance, etc., and suitable for the blow-molding of a large-sized article by compounding a specific graft copolymer derived from vinyl cyanide, etc., to a specific copolymer. CONSTITUTION:The objective composition is produced by compounding (A) a graft copolymer produced by the copolymerization of a vinyl cyanide compound (e.g. acrylonitrile) and an aromatic vinyl compound (e.g. styrene and/or alpha-methylstyrene) to a rubbery polymer and (B) a copolymer produced by copolymerizing a vinyl cyanide compound and an aromatic vinyl compound to an organic silane compound monomer or copolymerizing a vinyl cyanide compound, an aromatic vinyl compound and a copolymerizable vinyl compound to an organic silane compound monomer. The content of the rubbery polymer in the composition is 10-30wt.% and the ratios of the vinyl cyanide compound and the organic silane compound unit to the resin components excluding the rubbery polymer are 35-50wt.% and 0.005-0.12wt.%, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大型部品のブロー成形に適した塗装性、耐熱性
等の優れた熱可塑性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermoplastic resin composition with excellent paintability, heat resistance, etc., suitable for blow molding large parts.

〔従来の技術〕[Conventional technology]

ブロー成形法は、主として中空容器を成形する技術とし
てポリオレフィン系樹脂を中心に利用されて来たが、比
較的簡便な装置を用いて大型成形品を得られることから
大型の構造部品を成形4る技術としても注[Iさねてい
る。[2,かし2、ブロー成形による成形品は射出成形
による成形品と比較−4ると表面のQL滑度が低いこと
から良好な外観の求められる用途では成形品表面をサン
ドペ、−バーで仕、l−げるり゛ンディング処理やバソ
が1.)工程が必要であった。特に自動東外装部品に用
いる場合には、金属材料と同等の塗装品質が求められる
ため入念な仕上げが必要で、これにかかる負担は無視で
きない。ポリオレフィンの場合はブロー成形性に優れ、
比較的平滑な成形体表面が得られることが知られている
が、必ずしも塗装性が良好ではなく塗膜の密着強度が低
い場合が多く、また耐熱性も1−分ではない。又、ポリ
フェニレンオギサイドを一成分とする樹脂材料はブロー
成形性、塗膜の密着性、耐熱性は良好なものの耐薬品性
に劣るため、塗装時にシンナー等によるストレスクラッ
クを生じ塗料を吸いこみ表面光沢が失なわれる“すいこ
み”現象を起こす場合がある。
Blow molding has been used mainly for polyolefin resins as a technique for molding hollow containers, but it has also been used to mold large structural parts4 because it allows large molded products to be obtained using relatively simple equipment. As a technique, note [I'm copying. [2, Kashi 2, Compared to molded products made by injection molding, blow molded products have lower surface QL smoothness, so in applications where a good appearance is required, the surface of the molded product should be sandpapered or barred. 1. Processing, L-Gel Landing Processing and Batho. ) process was necessary. Particularly when used for the exterior parts of an automobile, the coating quality is required to be equivalent to that of metal materials, so careful finishing is required, and the burden placed on this cannot be ignored. Polyolefin has excellent blow moldability,
Although it is known that a relatively smooth surface of the molded product can be obtained, the paintability is not always good, the adhesion strength of the coating film is often low, and the heat resistance is also not 1 minute. In addition, although resin materials containing polyphenylene ogicide as one component have good blow moldability, paint film adhesion, and heat resistance, they have poor chemical resistance, which causes stress cracks caused by thinner etc. during painting, and the paint is sucked into the surface. It may cause a "wash-in" phenomenon where the gloss is lost.

ところで、アクリロ−トリル−ブタン、1、ン スチレ
ン共重合体であるABS樹脂は塗装性の優れた樹脂材料
であるが、この樹脂の特徴は強度と射出成形のL2易さ
と射出成形品の外観の良さ(Jあるため、あえてブロー
ー成形用祠料として検問されることは無かった。また射
出成形法にょイ)加工を前提に設計されたABS樹脂を
そのままの形でブロー成形に適用してもパリソン強度が
低くドロダウンし易いため、大型成形品は得にくいこと
、更に耐熱性が必ずしもl゛分でなく塗装の焼伺時に変
形する等の問題があった。
By the way, ABS resin, which is an acrylo-tolyl-butane, 1, styrene copolymer, is a resin material with excellent paintability, but the characteristics of this resin are strength, L2 ease of injection molding, and appearance of injection molded products. Goodness (because it has J, it was not inspected as a blow molding abrasive material.Also, it is an injection molding method) Even if ABS resin, which was designed for processing in its original form, is applied to blow molding, it will not work as a parison. Since the strength is low and it is easy to draw down, it is difficult to obtain large molded products.Furthermore, the heat resistance is not necessarily 100%, and there are problems such as deformation during baking of the coating.

ABS樹脂に耐熱性を(=Jりするには、芳香族ビニル
化合物としてαメチルスチレンを用いる方法が良く知ら
れ”Cいるが、ブロー成形時のドローダウンを抑えるべ
く分子量を−1−げろと、押出時に熱分解するために工
業的に用いることは困難であった。すなわち、ブロー成
形性と塗装性、更にはブロー成形性、塗装性、耐熱性と
もに優ねた材料は未だ確立されていなかったのである。
In order to add heat resistance to ABS resin, it is well known that α-methylstyrene is used as an aromatic vinyl compound. However, it was difficult to use it industrially because it thermally decomposed during extrusion.In other words, a material with excellent blow moldability and paintability, as well as excellent blow moldability, paintability, and heat resistance, had not yet been established. It was.

〔発明が解決し2ようとする課題〕 本発明は、かかる現状に鑑み、射出成形法では得にくい
大型の成形品が得られ、ザンディング処理等を実施せず
とも良好な塗装外観と塗膜密着強度の得られるブロー成
形用樹脂材料を提供することを課題とするものである。
[Problems to be Solved by the Invention (2)] In view of the current situation, the present invention has been developed to provide a large molded product that is difficult to obtain by injection molding, and to provide a good painted appearance and coating film without the need for sanding or the like. An object of the present invention is to provide a resin material for blow molding that provides adhesive strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のブロー成形性、塗装性に優れた熱可塑性組成物
とは、ゴム質重合体(B)にシアン化ビニル化合物(A
)、芳香族ビニル化合物(S)が共重合してなるグラフ
ト共重合体(I)とシアン化ビニル化合物(A)及び芳
香族ビニル化合物(S)が有機シラン化合物単量体と共
重合するが、又はシアン化ビニル化合物(A)及び芳香
族ビニル化合物(S)及び共重合可能なビニル化合物(
E)が、有機シラン化合物単量体と共重合してなる共重
合体(II)よりなる樹脂組成物であって、(1)該組
成物中の(B)が10〜30重量%であり、〈jl)該
組成物において(B)を除く樹脂成分に占める(A)が
35〜50重量%であり、(Iij)該組成物中の有機
シラン化合物中位が0.005〜0.]、2’u量% であることを特徴とする熱可塑性樹脂組成物である。
The thermoplastic composition of the present invention having excellent blow moldability and paintability is a rubbery polymer (B) containing a vinyl cyanide compound (A).
), a graft copolymer (I) formed by copolymerizing an aromatic vinyl compound (S), a cyanide vinyl compound (A), and an aromatic vinyl compound (S) are copolymerized with an organosilane compound monomer. , or vinyl cyanide compound (A) and aromatic vinyl compound (S) and copolymerizable vinyl compound (
E) is a resin composition comprising a copolymer (II) copolymerized with an organic silane compound monomer, wherein (1) (B) in the composition is 10 to 30% by weight; , <jl) In the composition, (A) accounts for 35 to 50% by weight of the resin components excluding (B), and (Iij) The median content of the organosilane compound in the composition is 0.005 to 0. ], 2'u amount %.

更に、耐熱性を改良したい場合には、(S)成分がスチ
レン及び/又はαメチルスチレンよりなる組成物と、(
E)成分とL2てn置換マレイミドを共重合した組成物
が好適である。
Furthermore, when it is desired to improve heat resistance, a composition in which the component (S) is styrene and/or α-methylstyrene, and (
A composition obtained by copolymerizing component E) with L2 n-substituted maleimide is suitable.

以下、詳細に本発明を説明する。The present invention will be explained in detail below.

一般に、ブロー成形性に優れた樹脂、すなわち大型のパ
リソンを成形し7てもドローダウンしにくい樹脂とは溶
融粘度の高い樹脂といわれている。
Generally, a resin with excellent blow moldability, that is, a resin that does not easily draw down even when molded into a large parison, is said to have a high melt viscosity.

ABS樹脂において溶融粘度を高める手段として、(イ
)ゴム質重合体含有率を−1−げる、(ロ)アクリロニ
トリル−スチレン共重合体成分の分子量を上げる、(ハ
)同共重合体のガラス転移温度がI−がるような成分を
共重合させる方法等が挙げられる。
As a means to increase the melt viscosity of ABS resin, (a) increasing the rubbery polymer content, (b) increasing the molecular weight of the acrylonitrile-styrene copolymer component, and (c) glass of the copolymer. Examples include a method of copolymerizing components whose transition temperature increases by I-.

しかしながら、これらの方法により溶融粘度を高くした
だけのABS樹脂はドローダウンしにくくなるものの平
滑な成形体表面が得られにくく実用的には問題があった
。しかるところ、本発明者らは有機シラン化合物を共重
合したシアン化ビニル化合物と芳香族ビニル化合物の共
重合体をABS樹脂の一成分として用いると、シアン化
ビニル−芳香族ビニル共重合体の分子量を大きくせずと
も優れた耐ドローダウン性が得られ、かつ成形体表面が
十分に平滑であることを発見した。この事実は、単に共
重分分子鎖間に架橋が生じ、みかけ上分子量が上がった
ためだけでは説明できず、共重合体が弾性体的性質をも
獲得し、ブロー成形時の伸びを均一化させたためと推定
され、予期し得なかった効果である。特にこの方法は、
αメチルスチレン、n置換マレイミド等のガラス転移温
度を高める成分を共重合した溶融粘度が高くこのため分
子量を大きくしにくい樹脂組成物に応用すると有効であ
る。
However, although ABS resins whose melt viscosity is simply increased by these methods are difficult to draw down, it is difficult to obtain a smooth molded product surface, which poses a practical problem. However, when the present inventors used a copolymer of a vinyl cyanide compound and an aromatic vinyl compound copolymerized with an organic silane compound as a component of an ABS resin, the molecular weight of the vinyl cyanide-aromatic vinyl copolymer decreased. It has been discovered that excellent drawdown resistance can be obtained without increasing the diameter, and the surface of the molded product is sufficiently smooth. This fact cannot be explained simply by the fact that cross-links occur between the copolymer molecular chains and the apparent molecular weight increases; the copolymer also acquires elastic properties, making the elongation uniform during blow molding. This is an unexpected effect, and is presumed to be due to a negative effect. In particular, this method
It is effective when applied to resin compositions copolymerized with components that increase the glass transition temperature, such as α-methylstyrene and n-substituted maleimide, which have a high melt viscosity and are therefore difficult to increase in molecular weight.

本発明の樹脂組成物は、ゴム質重合体に化学的に結合し
たシアン化ビニル化合物と芳香族ビニル化合物共重合体
を有するグラフト共重合体(I)と、シアン化ビニル化
合物と芳香族ビニル化合物及び必要に応じこれらと共重
合可能な単量体の共重合体(II)よりなる。共重合体
(II)は、グラフト共重合反応を実施する際にグラフ
ト結合せずに生じたもの(以下n−1と称する)、グラ
フト共重合反応とは別個の反応で作製し組成物に混合し
たものである。別個に作製した重合体は、有機シラン化
合物を共重合した成分(以下U−2と称する)と有機シ
ラン化合物を含まない成分(以下m−3と称する)をそ
れぞれ独自に作製し混合物として用いても良い。共重合
体(II)は、樹脂組成物のアセトン可溶分として分離
することができる。
The resin composition of the present invention comprises a graft copolymer (I) having a vinyl cyanide compound and an aromatic vinyl compound copolymer chemically bonded to a rubbery polymer, and a vinyl cyanide compound and an aromatic vinyl compound copolymer. and, if necessary, a copolymer (II) of a monomer copolymerizable with these. The copolymer (II) is one produced without graft bonding during the graft copolymerization reaction (hereinafter referred to as n-1), or one produced by a reaction separate from the graft copolymerization reaction and mixed into the composition. This is what I did. The separately produced polymers include a component copolymerized with an organic silane compound (hereinafter referred to as U-2) and a component not containing an organic silane compound (hereinafter referred to as m-3), which are each independently prepared and used as a mixture. Also good. Copolymer (II) can be separated as an acetone-soluble component of the resin composition.

有機シラン化合物としては、γメタクリロキシプロピル
トリメトキシシラン、γメタクリロキシプロピルメチル
ジメトキシシラン、γメタクリロキシプロピルトリエト
キシシランなどが挙げられる。共重合体(II)に含ま
れるシラン化合物の量には特に制限は無いが、共重合体
(I)と組み合わせた樹脂組成物を基準として0.00
5〜0.12重量%が好適である。0.005重量%未
満ではブロー成形性改善効果は顕著ではなく、0.12
重量%を越えると加工性が低下する。共重合体(I)、
  (If)を構成するシアン化ビニル化合物(A)と
してはアクリロニトリル、メタアクリロニトリルが、芳
香族ビニル化合物(S)としてはスチレン、αメチルス
チレンが、これらと共重合可能なビニル化合物単量体(
E)としてはメチルメタアクリレート、ブチルアクリレ
ート等の(メタ)アクリル酸エステル化合物、nフェニ
ルマレイミド、nシクロへキシルマレイミド、無水マレ
イン酸等が挙げられる。これらのうち好ましい組合せは
、アクリロニトリル−スチレン及び/又はαメチルスチ
レンと、アクリロニトリル−スチレン−nフェニルマレ
イミドである。
Examples of the organic silane compound include γmethacryloxypropyltrimethoxysilane, γmethacryloxypropylmethyldimethoxysilane, and γmethacryloxypropyltriethoxysilane. There is no particular limit to the amount of the silane compound contained in the copolymer (II), but the amount is 0.00 based on the resin composition combined with the copolymer (I).
5 to 0.12% by weight is preferred. If it is less than 0.005% by weight, the effect of improving blow moldability is not significant;
If it exceeds % by weight, processability will decrease. copolymer (I),
The vinyl cyanide compound (A) constituting (If) is acrylonitrile or methacrylonitrile, and the aromatic vinyl compound (S) is styrene or α-methylstyrene.
Examples of E) include (meth)acrylic acid ester compounds such as methyl methacrylate and butyl acrylate, n-phenylmaleimide, n-cyclohexylmaleimide, maleic anhydride, and the like. Among these, a preferred combination is acrylonitrile-styrene and/or α-methylstyrene and acrylonitrile-styrene-n-phenylmaleimide.

本発明の樹脂組成物にあっては、樹脂中のシアン化ビニ
ル化合物単位の含有量も重要である。
In the resin composition of the present invention, the content of vinyl cyanide compound units in the resin is also important.

ブロー成形法によって得られた成形品は射出成形による
成形品に比べ外観が劣るため塗装されることが通例であ
るが、ブロー成形品の塗装性は、成形歪が比較的残りに
くいので使用する樹脂材料の組成が主として関与する。
Molded products obtained by blow molding have an inferior appearance compared to molded products made by injection molding, so they are usually painted. However, the paintability of blow molded products is relatively less likely to leave molding distortion, so the resin used The composition of the material is primarily involved.

本発明の樹脂組成物にあってはゴム質重合体を除く樹脂
成分中のシアン化ビニル化合物単位の含有率が重要であ
り、35〜50重量%が好適であり、36〜44重量%
が更に好適である。含有率が35重量%未満では、塗料
又はシンナーによる成形品表面のストレスクラックが発
生し、塗料のすいこみをおこし、50重量%を越えると
、パリ部分をリワークする際に樹脂が着色し好ましくな
い。
In the resin composition of the present invention, the content of vinyl cyanide compound units in the resin components excluding the rubbery polymer is important, and 35 to 50% by weight is suitable, and 36 to 44% by weight.
is even more suitable. If the content is less than 35% by weight, stress cracks will occur on the surface of the molded product due to the paint or thinner, causing the paint to seep in, and if it exceeds 50% by weight, the resin will become colored when reworking the paring part, which is undesirable. .

本樹脂組成物に於けるゴム質重合体としては、ポリブタ
ジェン、ブタジェン−スチレン共重合体、ブタジェン−
アクリロニトリル共重合体といったジエン系ゴム質重合
体、ブチルアクリレート−メチルメタアクリレート−(
メタ)アクリル酸エステル共重合体等のアクリルゴム、
エチレン−プロピレン共重合ゴムといった飽和ゴム質重
合体が挙げられる。ゴム質重合体(B)の含有率は塗装
性、ブロー成形性に大きく関与しないので、製品に求め
られる耐衝撃性に応じ設定すれば良く、10重量%〜3
0重量%が好適である。
Examples of the rubbery polymer in this resin composition include polybutadiene, butadiene-styrene copolymer, butadiene-styrene copolymer, and butadiene-styrene copolymer.
Diene-based rubbery polymers such as acrylonitrile copolymers, butyl acrylate-methyl methacrylate-(
Acrylic rubber such as meth)acrylic acid ester copolymer,
Examples include saturated rubbery polymers such as ethylene-propylene copolymer rubber. The content of the rubbery polymer (B) does not significantly affect paintability and blow moldability, so it can be set depending on the impact resistance required for the product, and is 10% by weight to 3% by weight.
0% by weight is preferred.

共重合体(I)、  (II)の製造方法には特に制限
はなく公知の方法、すなわち乳化重合法、懸濁重合法、
溶液重合法が適用可能であるが、乳化グラフト重合法に
よりゴム質重合体含有率の高い共重合体(I)を作製し
、有機シラン化合物を含有する共重合体(II)を溶液
重合法にて作製し7両者を押出しブレンドする方法が好
ましい。
There are no particular limitations on the method for producing copolymers (I) and (II), and known methods such as emulsion polymerization, suspension polymerization,
Solution polymerization is applicable, but copolymer (I) with a high rubbery polymer content is prepared by emulsion graft polymerization, and copolymer (II) containing an organic silane compound is prepared by solution polymerization. A preferred method is to prepare the two by extrusion blending.

また共重合体(II)は、有機シラン化合物を含む共重
合体(IT −2)と有機シラン化合物を含まない共重
合体(II −3)を別々に作製しグラフト共重合体(
I)を加えた三成分を押出し混練することで樹脂組成物
とする方法が最も好ましい。
Copolymer (II) can be obtained by separately preparing a copolymer containing an organosilane compound (IT-2) and a copolymer containing no organosilane compound (II-3), and then producing a graft copolymer (
The most preferred method is to extrude and knead the three components including I) to form a resin composition.

本樹脂組成物に対し、公知の熱安定剤、紫外線吸収剤、
離型剤、滑剤、帯電防止剤、難燃剤、着色剤を加えるこ
とは任意である。
For this resin composition, known heat stabilizers, ultraviolet absorbers,
It is optional to add a mold release agent, a lubricant, an antistatic agent, a flame retardant, and a coloring agent.

〔実 施 例〕〔Example〕

以下実施例に基き本発明を説明する。 The present invention will be explained below based on Examples.

尚、以下に用いる部数は、重量部である。Note that the numbers used below are parts by weight.

〈グラフト共重合反応〉 G−1= ポリブタジェンゴムラテックス60部(固形分換算)及
び脱イオン水100部を、還流冷却器付き重合槽に入れ
、気相部を窒素置換しながら70℃に昇温した。
<Graft copolymerization reaction> G-1 = 60 parts of polybutadiene rubber latex (solid content equivalent) and 100 parts of deionized water were placed in a polymerization tank equipped with a reflux condenser, and heated to 70°C while replacing the gas phase with nitrogen. The temperature rose.

次いで、これに、メグ−1224部、“アクリロニトリ
ル16部、t−ドデシルメルカプタン0.3部、クメン
ハイドロパーオキシド0.2部から成る混合液及び脱イ
オン水50部、ナトリウムホルムアルデヒドスルホキシ
レート032部、硫酸第一鉄0.004部、エヂレンジ
アミンテトう酢酸二すトリウl、塩o、oos部から成
る水溶液を、5時間要して連続追添加して反応させた。
Next, to this was added a mixture of 1224 parts of Meg, 16 parts of acrylonitrile, 0.3 parts of t-dodecyl mercaptan, 0.2 parts of cumene hydroperoxide, 50 parts of deionized water, and 032 parts of sodium formaldehyde sulfoxylate. , 0.004 parts of ferrous sulfate, ethylenediaminetetotriacetate, and parts of salt were added continuously over a period of 5 hours to react.

この間重合温度を70℃に調節し、追添加終了後、さら
に30分間その状態を維持して重合を完結させた。
During this time, the polymerization temperature was adjusted to 70°C, and after the completion of the additional addition, this state was maintained for an additional 30 minutes to complete the polymerization.

単量体の重合率は93.3%、ゴム質重合体を除く樹脂
成分中のアクリロニトリル単位の含有率は、36.1%
であった。
The polymerization rate of the monomer is 93.3%, and the content of acrylonitrile units in the resin components excluding the rubbery polymer is 36.1%.
Met.

1 2 G−2: ポリブタジェンゴムラテックスゴム固形分40部、脱イ
オン水100部、ロジン酸カリウム0.3部、t−ドデ
シルメルカプタン0.2部を、還流冷却器付き重合槽に
入れ、気相部を窒素置換しながら70℃に昇温しまた。
1 2 G-2: Put 40 parts of polybutadiene rubber latex rubber solids, 100 parts of deionized water, 0.3 parts of potassium rosinate, and 0.2 parts of t-dodecyl mercaptan into a polymerization tank equipped with a reflux condenser, While replacing the gas phase with nitrogen, the temperature was raised to 70°C.

アクリロニトリル24部、スチレン36部、クメンハイ
ドロパーオキサイド0.15部、t−ドデシルメルカプ
タン0.4部の混合液、及び脱イオン水50部にナトリ
ウムホルムアルデヒドスルホキシレート0.3部、硫酸
第一鉄0.004部、エチレンジアミンテトラ酢酸ナト
リウム塩0.04部を加えてなる水溶液を、7時間にわ
たり連続追添加して、反応させた。この間、重合系の温
度を70℃にコントロールし、追添加終了後に更にクメ
ン/”iイドロバ−オキサイド0.02部を加え、1時
間その状態を維持しで、反応を完結した。
A mixture of 24 parts of acrylonitrile, 36 parts of styrene, 0.15 parts of cumene hydroperoxide, 0.4 parts of t-dodecyl mercaptan, and 0.3 parts of sodium formaldehyde sulfoxylate and ferrous sulfate in 50 parts of deionized water. An aqueous solution containing 0.004 part of ethylenediaminetetraacetic acid sodium salt was continuously added over 7 hours to cause reaction. During this time, the temperature of the polymerization system was controlled at 70°C, and after the completion of the additional addition, 0.02 part of cumene/hydrobar oxide was further added, and this state was maintained for 1 hour to complete the reaction.

単量体重合率は97,5%、ゴl、質重合体を除く樹脂
成分中のアクリロニトリル単位の含有率は、39.3%
であった。
The monomer polymerization rate is 97.5%, and the content of acrylonitrile units in the resin component excluding polymers and polymers is 39.3%.
Met.

〈有機シラン化合物共重合反応〉 還流冷却器付きフラスコに、エチルベンゼン5000g
、スチレン1750g、アクリロニトリル3250g1
 γメタクリロキシプロピルトリメトキシシラン10゜
0g1ベンゾイルパーオキサイドJ5゜Ogを加え、6
0℃にて3時間反応させた。共重合体をメタノールを用
い析出させ回収し、原素分析からアクリロニトリル含有
率を、原子吸光法により求めたケイ素含有率からγメタ
クリロキシプロピルトリメトキシシラン含有率を算出し
たところ、それぞれ88.5%、 0.35%であった
<Organosilane compound copolymerization reaction> 5000 g of ethylbenzene in a flask with a reflux condenser
, styrene 1750g, acrylonitrile 3250g1
Add 10°0 g of γmethacryloxypropyltrimethoxysilane and 5°0 g of benzoyl peroxide J.
The reaction was carried out at 0°C for 3 hours. The copolymer was precipitated and recovered using methanol, and the acrylonitrile content was calculated from elemental analysis, and the γ methacryloxypropyltrimethoxysilane content was calculated from the silicon content determined by atomic absorption spectroscopy, and found to be 88.5%. , 0.35%.

くシアン化ビニル化合物−芳香族ビニル化合物共重合反
応〉 M−]: 脱イオン水170部、アルゲニルコハク酸カリウム〔花
王石鹸■製、ラテムルA S K)  1.0部、不均
化ロジン酸カリウム1.0部、ナトリウムホルムアルデ
ヒドスルホキシレート0.4部、硫酸第一鉄0.004
部、エチレンジアミンテトラ酢酸二ナトリウム塩0.0
08部を還流冷却器付き重合槽に入れ、 3 4 気相部を窒素置換しながら65℃に昇温した。次いで、
これにアクリロニトリル40部、α−メチルスチレン6
0部、t−ドデシルメルカプタン0.1部、クメンハイ
ドロパーオキシド0.5部から成る混合液及び脱イオン
水80部、ナトリウムホルムアルデヒドスルホキシレー
ト0.1部、硫酸第一鉄0.001部、エチレンジアミ
ンテトラ酢酸二ナトリウム塩0.002部からなる水溶
液を8時間要して連続的に追添加し反応させた。この間
重合温度を65℃に調節し、追添加終了後、さらに1時
間その状態を維持して重合を完結させた。
Vinyl uccinide compound-aromatic vinyl compound copolymerization reaction> M-]: 170 parts of deionized water, potassium argenyl succinate [manufactured by Kao Soap ■, Latemul ASK] 1.0 part, disproportionated rosin acid Potassium 1.0 part, sodium formaldehyde sulfoxylate 0.4 part, ferrous sulfate 0.004 part
parts, ethylenediaminetetraacetic acid disodium salt 0.0
08 parts were placed in a polymerization tank equipped with a reflux condenser, and the temperature was raised to 65° C. while replacing the gas phase with nitrogen. Then,
To this, 40 parts of acrylonitrile, 6 parts of α-methylstyrene
0 part, 0.1 part of t-dodecyl mercaptan, 0.5 part of cumene hydroperoxide and 80 parts of deionized water, 0.1 part of sodium formaldehyde sulfoxylate, 0.001 part of ferrous sulfate, An aqueous solution consisting of 0.002 part of ethylenediaminetetraacetic acid disodium salt was continuously added over a period of 8 hours to cause a reaction. During this time, the polymerization temperature was adjusted to 65°C, and after the completion of the additional addition, this state was maintained for an additional hour to complete the polymerization.

M−2: M−1と同一の反応を、アクリロニトリル27部、αメ
チルスチレン73部にて実施し、M−2を得た。
M-2: The same reaction as M-1 was carried out using 27 parts of acrylonitrile and 73 parts of α-methylstyrene to obtain M-2.

M−3: M−1と同一の反応を、tドデシルメルカプタンを用い
ずに実施し、M−3を得た。
M-3: The same reaction as M-1 was carried out without t-dodecyl mercaptan to give M-3.

M−4〜M−6= 完全混合型連続反応器を用い、アクリロニトリル、スチ
レン、エチルベンゼンよりなる単量体溶5 液を一定速度で生成物を払い出しつつ連続追添加し重合
系内の反応率を一定に保ち、アクリロニトリル−スチレ
ン共重合体を得た。この時、連続追添加する単量体の組
成を変えてM−4〜M−6を得た。
M-4 to M-6 = Using a complete mixing type continuous reactor, 5 monomer solutions consisting of acrylonitrile, styrene, and ethylbenzene are continuously added while discharging the product at a constant rate to control the reaction rate in the polymerization system. By keeping the temperature constant, an acrylonitrile-styrene copolymer was obtained. At this time, M-4 to M-6 were obtained by changing the composition of the monomer that was continuously added.

M−1〜M−6の分析値を表1に一括して示した。The analytical values of M-1 to M-6 are collectively shown in Table 1.

実施例 1 グラフト共重合体G−1と有機シラン化合物単位を含ま
ない共重合体M−1を固形分で35 : 85の比率で
ラテックスブレンドし、全固形分100部に対し1.3
部の硫酸マグネシウムを添加し凝集体を得た。凝集体を
水洗し脱水、乾燥して得た樹脂粉末90重量部に有機シ
ラン化合物を含む共重合体を10重量部加え、フェノー
ル系熱安定剤[住友化学■製、BHT]0.2重量部、
エチレンビスステアリルアミド0.5重量部を添加した
後、押出機を用いペレット化した。ペレットをブロー成
形機を用い、シリンダー温度220℃でダイ直径50m
m、スリット間隔3.2mmのダイから溶融樹脂を押し
出し、6 成形されたパリソンより、次式に従いスウェル比、ドロ
ーダウン比を求めたところ、それぞれ1.85゜0.9
5であった。
Example 1 Graft copolymer G-1 and copolymer M-1 not containing organosilane compound units were latex blended at a solid content ratio of 35:85, and the solid content was 1.3 parts per 100 parts of total solid content.
of magnesium sulfate was added to obtain an aggregate. 10 parts by weight of a copolymer containing an organic silane compound was added to 90 parts by weight of the resin powder obtained by washing the aggregate with water, dehydration, and drying, and 0.2 parts by weight of a phenolic heat stabilizer [manufactured by Sumitomo Chemical ■, BHT] was added. ,
After adding 0.5 parts by weight of ethylene bisstearylamide, the mixture was pelletized using an extruder. Pellets are molded using a blow molding machine with a cylinder temperature of 220℃ and a die diameter of 50m.
The molten resin was extruded through a die with a slit interval of 3.2 mm, and the swell ratio and drawdown ratio were determined from the molded parison according to the following equations, and they were 1.85° and 0.9, respectively.
It was 5.

冷却したパリソンを23℃の塗料溶液(レフラック55
(原意化成):ノンブラッシング:169シンナー50
 : 15 : 35)に20秒浸漬し、80℃で30
分乾燥し表面状態を観察したところ、クラックの発生は
認められなかった。またペレットは、射出成形により試
験片とし、規格に基きアイゾツト衝撃値及び加熱変形温
度を測定したところ、それぞれ13kgcm/cms 
 100℃であった。
The cooled parison was coated with a 23°C paint solution (Refrac 55).
(Original Kasei): Non-brushing: 169 Thinner 50
: 15 : 35) for 20 seconds, and then heated at 80℃ for 30 seconds.
After drying for a few minutes and observing the surface condition, no cracks were observed. In addition, the pellets were made into test pieces by injection molding, and the Izod impact value and heating deformation temperature were measured based on the standards, and they were 13 kgcm/cm.
The temperature was 100°C.

実施例2〜4、比較例1〜4は、同様の試験を各共重合
体の比率を変えて実施したものである。
In Examples 2 to 4 and Comparative Examples 1 to 4, similar tests were conducted by changing the ratio of each copolymer.

結果を一括して表2に示した。比較例2は、パリソン成
形そのものが不可能であった。尚ブロー成形性は、スウ
ェル比1.5以上、ドローダウン比0.8以上のものを
以って良好と判断した。
The results are summarized in Table 2. In Comparative Example 2, parison molding itself was impossible. The blow moldability was judged to be good if the swell ratio was 1.5 or more and the drawdown ratio was 0.8 or more.

実施例 5 グラフト共重合ラテックスG−2を実施例1に用いたも
のと同一の方法により粉末とし別途重合した有機シラン
化合物を含まない共重合体M−4及び有機シラン化合物
共重合体を加え、熱安定剤及び滑剤を加え、押出機を用
いペレット化した。
Example 5 Graft copolymer latex G-2 was made into powder by the same method as used in Example 1, and copolymer M-4 not containing an organic silane compound and organic silane compound copolymer which were separately polymerized were added. A heat stabilizer and a lubricant were added, and the mixture was pelletized using an extruder.

実施例1と同じ評価を行ない結果を表2に示した。The same evaluation as in Example 1 was performed and the results are shown in Table 2.

実施例6,7、比較例5,6 実施例5と同一の操作を、各成分の比率を変えて実施し
、結果を一括して表2にまとめた。
Examples 6 and 7, Comparative Examples 5 and 6 The same operation as in Example 5 was carried out by changing the ratio of each component, and the results are summarized in Table 2.

表2より組成物中のゴム質重合体10〜30重量%、有
機シラン化合物単位含有率0.005〜0.12で良好
なブロー成形性及び衝撃強度が得られ、ゴム質重合体を
除く樹脂成分中のアクリロニトリル単位含有率が0.3
5重量%以上で良好な塗装性が得られることが明らかで
ある。この方は、αメチルスチレンの共重合体(実施例
1〜・4)、nフェニルマレイミド共重合体〈実施例6
. 7)を用いた場合にも有効であることが明らかであ
る。
From Table 2, good blow moldability and impact strength can be obtained when the rubbery polymer is 10 to 30% by weight and the organosilane compound unit content is 0.005 to 0.12, and resins excluding the rubbery polymer can be obtained. Acrylonitrile unit content in the ingredients is 0.3
It is clear that good coating properties can be obtained with an amount of 5% by weight or more. In this case, α-methylstyrene copolymer (Examples 1 to 4), n-phenylmaleimide copolymer (Example 6)
.. It is clear that it is also effective when using 7).

(以丁余白) ]]二続ン市−1ト書自発) 平成2年9月 7”11 特〆Ir′J長官 i1j 松 敏 殿 1゜ 事件の表示 平成2江特訂願第59850号 2、発明の名称 7I]−成形性CJ優れた樹脂組成物 3゜ 補正を−りる者 事件との関係  特許出願人 大阪府大阪山北1メ堂島浜1−J” f−12番6月(
003)旭イヒ成T業株式会社 代表者 弓角礼− 4、代理人 郵便番号 04 東京都中央1ス新富11目3番0号 j7マイビル3階 明細書の[゛発明の詳細な説明」の欄 6゜補正の内容
(Items with margins)]] September 1990 7”11 Special Ir'J Secretary I1j Matsutoshi-dono 1゜ Incident Display 2000 Special Revised Application No. 59850 2 , Title of the Invention 7I] - Resin Composition with Excellent Moldability CJ 3° Amendment - Relationship with the Case of R. Patent Applicant: 1-J Medojimahama, Osaka Yamakita 1, Osaka Prefecture f-12 June (
003) Asahi Ihi Sei T Gyo Co., Ltd. Representative Rei Yukaku - 4, Agent Zip Code 04 Tokyo Chuo 1st Shintomi 11th 3-0 J7 My Building 3rd Floor [Detailed Description of the Invention] Column 6° Correction details

Claims (5)

【特許請求の範囲】[Claims] (1)ゴム質重合体(B)にシアン化ビニル化合物(A
)、芳香族ビニル化合物(S)が共重合してなるグラフ
ト共重合体( I )とシアン化ビニル化合物(A)及び
芳香族ビニル化合物(S)が有機シラン化合物単量体と
共重合するか、又はシアン化ビニル化合物(A)及び芳
香族ビニル化合物(S)及び共重合可能なビニル化合物
(E)が有機シラン化合物単量体と共重合してなる共重
合体(II)よりなる樹脂組成物であって、 (i)該組成物中の(B)が10〜30重量%であり、
(ii)該組成物において(B)を除く樹脂成分に占め
る(A)が35〜50重量%であり、 (iii)該組成物中の有機シラン化合物単位が0.0
05〜0.12重量% であることを特徴とするブロー成形性に優れた熱可塑性
樹脂組成物。
(1) A vinyl cyanide compound (A) is added to the rubbery polymer (B).
), a graft copolymer (I) obtained by copolymerizing an aromatic vinyl compound (S), a cyanide vinyl compound (A), and an aromatic vinyl compound (S) copolymerizing with an organosilane compound monomer. , or a resin composition consisting of a copolymer (II) formed by copolymerizing a vinyl cyanide compound (A), an aromatic vinyl compound (S), and a copolymerizable vinyl compound (E) with an organic silane compound monomer. (i) (B) in the composition is 10 to 30% by weight,
(ii) In the composition, (A) accounts for 35 to 50% by weight of the resin components excluding (B), and (iii) the organosilane compound unit in the composition is 0.0%.
05 to 0.12% by weight of a thermoplastic resin composition having excellent blow moldability.
(2)組成物を構成する(A)がアクリロニトリルであ
り、(S)がスチレン及び/又はαメチルスチレンであ
る請求項1記載の耐熱性の改良されたブロー成形性に優
れた熱可塑性樹脂組成物。
(2) The thermoplastic resin composition with improved heat resistance and excellent blow moldability according to claim 1, wherein (A) constituting the composition is acrylonitrile and (S) is styrene and/or α-methylstyrene. thing.
(3)組成物を構成する(A)がアクリロニトリルであ
り(S)がスチレンであり、(E)がn置換マレイミド
である請求項1記載の耐熱性の改良されたブロー成形性
に優れた熱可塑性樹脂組成物。
(3) The heat with improved heat resistance and excellent blow moldability according to claim 1, wherein (A) constituting the composition is acrylonitrile, (S) is styrene, and (E) is n-substituted maleimide. Plastic resin composition.
(4)請求項1又は2又は3記載の樹脂組成物を用いて
なるブロー成形品。
(4) A blow-molded product using the resin composition according to claim 1, 2, or 3.
(5)請求項4記載の成形品に塗装を施してなる製品。(5) A product obtained by coating the molded product according to claim 4.
JP2059850A 1990-03-13 1990-03-13 Blow molding resin composition Expired - Fee Related JPH075820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059850A JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059850A JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Publications (2)

Publication Number Publication Date
JPH03263451A true JPH03263451A (en) 1991-11-22
JPH075820B2 JPH075820B2 (en) 1995-01-25

Family

ID=13125086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059850A Expired - Fee Related JPH075820B2 (en) 1990-03-13 1990-03-13 Blow molding resin composition

Country Status (1)

Country Link
JP (1) JPH075820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368043B1 (en) * 1997-12-26 2003-03-31 제일모직주식회사 Styrene-based resin composition excellent in stretching property and formability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648114B1 (en) * 2005-12-22 2006-11-24 제일모직주식회사 Branched styrenic thermoplastic polymers having a excellent productivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112845A (en) * 1983-10-29 1985-06-19 バイエル・アクチエンゲゼルシヤフト Forming composition
JPS641751A (en) * 1987-06-23 1989-01-06 Kanegafuchi Chem Ind Co Ltd Matte thermoplastic resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112845A (en) * 1983-10-29 1985-06-19 バイエル・アクチエンゲゼルシヤフト Forming composition
JPS641751A (en) * 1987-06-23 1989-01-06 Kanegafuchi Chem Ind Co Ltd Matte thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368043B1 (en) * 1997-12-26 2003-03-31 제일모직주식회사 Styrene-based resin composition excellent in stretching property and formability

Also Published As

Publication number Publication date
JPH075820B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
KR102086537B1 (en) Preparation method of modified acrylonitrile-butadiene-styrene resin and modified acrylonitrile-butadiene-styrene resin produced by thereof
KR101750603B1 (en) Thermoplastic resin composition and molded article prepared therefrom
JP2021503534A (en) Thermoplastic resin composition
WO1990015100A1 (en) Thermoplastic copolymer, method of producing the same, and thermoplastic resin composition comprising the same
KR20180076637A (en) Thermoplastic resin composition, method for preparing the resin composition and molding product comprising the resin composition
JP6503374B2 (en) Thermoplastic resin composition and molded article to which the same is applied
JP7206436B2 (en) Resin composition and resin molded product
CN111741990B (en) Process for producing graft copolymer and graft copolymer
JPH09302197A (en) Coating-resistant thermoplastic resin composition and its production
JPH03263451A (en) Resin composition having excellent blow moldability
JP3286550B2 (en) Rubber modified styrenic resin composition
KR101931585B1 (en) Thermoplastic resin composition and molded article prepared therefrom
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP4359421B2 (en) Polymer composition, modifier, and method for producing thermoplastic resin composition
JP7417736B2 (en) Thermoplastic resin compositions and molded products manufactured therefrom
JP2617509B2 (en) N-substituted maleimide-containing thermoplastic resin composition
JP3386532B2 (en) Thermoplastic resin composition
JPH0715039B2 (en) Blow molding resin composition
TW202407032A (en) Thermoplastic resin composition, method of preparing the same, and molded article manufactured using the same
JP2854697B2 (en) Method for producing high nitrile polymer composition
JP3724591B2 (en) High gloss resin composition
JPH026781B2 (en)
EP4194505A1 (en) Thermoplastic resin composition, preparation method therefor, and molded product manufactured therefrom
JP2003020384A (en) Matte resin composition, and matte resin molding having uniform matte surface, obtained by molding it
JPH02185509A (en) Rubber-modified styrene copolymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees