JPH0756500B2 - Distribution line failure section determination device - Google Patents
Distribution line failure section determination deviceInfo
- Publication number
- JPH0756500B2 JPH0756500B2 JP61020633A JP2063386A JPH0756500B2 JP H0756500 B2 JPH0756500 B2 JP H0756500B2 JP 61020633 A JP61020633 A JP 61020633A JP 2063386 A JP2063386 A JP 2063386A JP H0756500 B2 JPH0756500 B2 JP H0756500B2
- Authority
- JP
- Japan
- Prior art keywords
- section
- failure
- voltage
- current
- distribution line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Locating Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は配電線の短絡,地絡,断線等の故障区間を確実
・早期に発見し、故障発生個所を早期に復旧するために
用いられる装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is used for surely and early detection of a failure section such as a short circuit, ground fault, or disconnection of a distribution line, and for early recovery of a failure occurrence point. It relates to the device.
第3図(a)(b)は例えばオーム社刊「保護継電器ハ
ンドブック」P393〜P394に示された従来の配電線の故障
区間判定装置に関するものであり、順送時限式と称する
ものである。FIGS. 3 (a) and 3 (b) relate to a conventional faulty section determination device for a distribution line shown in, for example, "Protective Relay Handbook" P393-P394 published by Ohmsha Co., Ltd., which is called a progressive feed timed type.
図において(5)は配電用変電所の母線、(6)は配電
線、(CB1)はしゃ断器、(SS1)(SS2)(SS3)は区分
開閉器、(TR1)(TR2)(TR3)は電圧トランス、(C
1)(C2)(C3)は区分開閉器制御装置である。In the figure, (5) is a distribution substation busbar, (6) is a distribution line, (CB1) is a circuit breaker, (SS1) (SS2) (SS3) is a section switch, and (TR1) (TR2) (TR3) Is a voltage transformer, (C
1) (C2) and (C3) are classification switch control devices.
次に動作について説明する。配電線(6)に発生した故
障は、しゃ断器(CB1)の位置に配置される図には示し
ていない保護継電器の動作によりしゃ断器(CB1)を開
くことにより一旦除去される。この後図には示さない再
閉路継電器の動作によりしゃ断器(CB1)が投入され、
(CB1)〜(SS1)間が充電される。制御器(C1)は受電
後X秒継続受電すれば区分開閉器(SS1)を投入する。
投入後Y秒送電を継続すれば自己の投入回路は平常の状
態(無電圧で引外し、受電後X秒後に投入できる状態)
を維持するが、Y秒内に再度停電すれば次に受電した時
投入機構をロックし次区間への送電は行なわない。Next, the operation will be described. The fault occurring in the distribution line (6) is once removed by opening the circuit breaker (CB1) by the operation of a protective relay (not shown in the figure) arranged at the position of the circuit breaker (CB1). After that, the circuit breaker (CB1) is turned on by the operation of the reclosing relay not shown in the figure,
The area between (CB1) and (SS1) is charged. The controller (C1) turns on the classification switch (SS1) if it receives power continuously for X seconds after receiving the power.
If the power transmission is continued for Y seconds after the power is turned on, the power supply circuit of itself is in a normal state (triggered with no voltage and can be turned on X seconds after receiving the power).
However, if a power failure occurs again within Y seconds, the closing mechanism will be locked when the next power is received and power will not be transmitted to the next section.
以下区分開閉器(SS2),(SS3)も同様の動作を行うの
で、故障区間迄順次区分開閉器は1回目の投入が行なわ
れ、故障区間を充電した時2度目の故障が発生し(CB
1)の2度目の引外し、再閉路が行なわれる。この後2
度目の区分開閉器の投入が順次行なわれ故障区間の手前
の区分開閉器以降は投入がロックされているため投入さ
れない。Since the segment switches (SS2) and (SS3) perform the same operation below, the segment switches are sequentially turned on for the first time until the faulty section, and a second fault occurs when the faulty section is charged (CB
The second trip of 1) is performed and the circuit is closed again. After this 2
The division switches are turned on sequentially for the second time, and since the closing switches before the faulty section are closed, they are not turned on.
このようにして送電可能区間のみ自動復旧することが可
能となる。In this way, it becomes possible to automatically restore only the power transmission possible section.
従来の故障区間判定装置は以上のように構成されている
ので、故障区間を発見するのに最初の故障発生に加えて
2度目の人為的な故障を発生させる必要があり、系統全
体に与える影響が大きいばかりでなく、故障点に再度充
電するので人体への危険、火災発生の危険等安全上にも
問題となることがあり得た。Since the conventional failure section determination device is configured as described above, it is necessary to generate a second artificial failure in addition to the first failure occurrence in order to discover the failure section, which has an effect on the entire system. Not only is it large, but since it is charged again at the point of failure, it could pose a safety problem such as a danger to humans and a fire.
また送電可能区間への送電再開も遅れるという欠点があ
った。In addition, there was a drawback that the restart of power transmission to the power transmission section was delayed.
この発明は上記のような問題点を解消するためになされ
たもので、最初の故障発生時点で故障区間を確実に判定
するため故障区間の充電はロックして送電可能部分のみ
早期に送電を再開し、また故障区間の早期復旧を可能な
らしめる配電線故障区間判定装置を得ることを目的とす
る。The present invention has been made to solve the above-mentioned problems, and in order to reliably determine the failure section at the time of the first failure occurrence, the charging of the failure section is locked and the power transmission is resumed early only in the transmittable portion. It is also an object of the present invention to provide a distribution line failure section determination device that enables early restoration of a failure section.
この発明に係る配電線故障区間判定装置は、配電線の各
区分開閉器の通過電流の大きさ、電圧に対する位相関係
を検出する装置と、この電圧に対する位相関係を含む通
過電流情報を相互又は特定の個所に伝送する装置と、伝
送された各区分開閉器の通過電流情報を比較し故障区間
を判定する装置を備え、各区分開閉器の通過電流情報分
布の変化が最も大きい区間を故障区間と判定するもので
ある。The distribution line failure section determination device according to the present invention detects the magnitude of the passing current of each distribution switch of the distribution line, a device for detecting the phase relationship with respect to the voltage, and the passing current information including the phase relationship with respect to this voltage, or mutually. Equipped with a device that determines the failure section by comparing the transmitted current information of each section switch that has been transmitted, and the section with the largest change in the passing current information distribution of each section switch is the failure section. It is a judgment.
この発明における配電線故障区間判定装置は、電圧に対
する位相関係を含む通過電流情報の分布が故障点の両端
の区分開閉器の部分で最も大きく変化することを利用し
たものであり、電圧に対する位相関係を含む通過電流情
報としては、通過電流のベクトル量(大きさと位相)や
通過電流の電圧に対する方向判別結果(同相方向か逆相
方向か)あるいは通過電流の大きさと電圧に対する方向
判別結果を用いることにより、効果的な故障区間判定が
行える。The distribution line failure section determination device according to the present invention utilizes the fact that the distribution of passing current information including the phase relationship with respect to the voltage changes the largest at the section switches at both ends of the failure point. As the passing current information including, use the vector amount (magnitude and phase) of the passing current, the direction determination result for the voltage of the passing current (in-phase direction or opposite phase direction), or the direction determination result for the magnitude and voltage of the passing current. Thus, effective failure section determination can be performed.
以下この発明の一実施例について説明する。第1図にお
いて(1)は電源、(2)は配電用変電所、(3)は変
圧器、(4)は接地変圧器、(5)は母線、(6)は配
電線、(7)は通信線、(8)は親局、(9)は判定装
置、(SS1)(SS2)(SS3)は区分開閉器、(CT1)(CT
2)(CT3)は変流器、(TR1)(TR2)(TR3)は電圧ト
ランス、(C1)(C2)(C3)は区分開閉器制御装置、
(T0)(T1)(T2)(T3)は伝送端末である。An embodiment of the present invention will be described below. In FIG. 1, (1) is a power source, (2) is a distribution substation, (3) is a transformer, (4) is a grounding transformer, (5) is a busbar, (6) is a distribution line, (7). Is a communication line, (8) is a master station, (9) is a determination device, (SS1) (SS2) (SS3) are section switches, (CT1) (CT
2) (CT3) is a current transformer, (TR1) (TR2) (TR3) is a voltage transformer, (C1) (C2) (C3) is a section switch controller,
(T0) (T1) (T2) (T3) are transmission terminals.
変流器(CT1)(CT2)(CT3)により検出された電流情
報は、区分開閉器制御装置により加工演算されその大き
さおよび電圧に対する方向あるいは位相関係に関する情
報が取り出される。この電流に関する情報は伝送端末
(T0)(T1)(T2)(T3)を経由して親局判定装置
(9)に送られる。この親局判定装置により各区分開閉
器電流情報が比較され故障区間が判定される。この判定
結果により故障区間に隣接する区分開閉器に開放信号を
送って配電線から切離すかあるいは投入ロック信号を送
出し受電後の投入を阻止する等の処置を行い、必要区間
のみの再受電を可能ならしめる。また親局においては故
障区間の表示により早期へ復旧活動を可能ならしめる。The current information detected by the current transformers (CT1) (CT2) (CT3) is processed and operated by the divisional switch controller, and the information regarding the magnitude and the direction or phase relationship with respect to the voltage is extracted. Information about this current is sent to the master station determination device (9) via the transmission terminals (T0) (T1) (T2) (T3). This master station determination device compares the current information of each section switch and determines the failure section. Depending on the result of this judgment, an open signal is sent to the segment switch adjacent to the faulty section to disconnect it from the distribution line, or a closing lock signal is sent to prevent the closing after receiving power, and power is re-received only in the necessary section. If possible. In addition, the parent station will be able to perform recovery activities early by displaying the faulty section.
尚、故障電流の大きさ,電圧に対する位相,及び電圧に
対する故障電流の方向は、例えば、電気学会刊、電気学
会大学講座「保護継電工学」p112,(昭和56年7月20
日,初版発行)に記載のディジタル形継電器の演算原理
などの既存技術を用いて算出できる。The magnitude of the fault current, the phase with respect to the voltage, and the direction of the fault current with respect to the voltage are described in, for example, the Institute of Electrical Engineers, University of Electrical Engineers, "Protective Relay Engineering" p112, (July 20, 1981).
It can be calculated using existing technology such as the calculation principle of the digital relay described in Japanese, first edition).
すなわち、各区分開閉器の通過電流,電圧の瞬時値を各
区分開閉器制御装置に取り込んで、これを電気角30゜で
サンプリングした後、アナログ量からディジタル量に変
換したデータに対して下記の演算を行う。That is, the instantaneous values of the passing current and voltage of each section switch are taken into each section switch controller, sampled at an electrical angle of 30 °, and the following data is converted from the analog quantity to the digital quantity. Calculate.
X2=x0 2+x-3 2 ・・・(4)式 XYcosθ=x0y0+x-3y-3 ・・・(5)式 XYsinθ=x0y-3−x-3y0 ・・・(6)式 ここで、X;電流の絶対値の演算結果 Y;電圧の絶対値の演算結果 θ;電流の電圧に対する位相の演算結果 x0;現在のサンプリング電流値 x-m;mサンプリング前のサンプリング電流値{例えば
x-3;3サンプリング(サンプリング間隔30゜で90゜)前
のサンプリング電流値} y0;現在のサンプリング電圧値 y-m;mサンプリング前のサンプリング電圧値{例えば
y-3;3サンプリング(サンプリング間隔30゜で90゜)前
のサンプリング電圧値}である。 X 2 = x 0 2 + x -3 2・ ・ ・ Equation 4 XYcos θ = x 0 y 0 + x -3 y -3・ ・ ・ Equation 5 XYsin θ = x 0 y -3 −x -3 y 0・..Formula (6) Where: X: Current absolute value calculation result Y: Voltage absolute value calculation result θ: Current voltage phase calculation result x 0 ; Current sampling current value x -m ; m Sampling current value before sampling {For example
x -3 ; Sampling current value before 3 sampling (90 ° at 30 ° sampling interval)} y 0 ; Current sampling voltage value y -m ; m Sampling voltage value before sampling {eg
y -3 ; sampling voltage value before 3 samplings (90 ° at 30 ° sampling interval)}.
上記(1)式〜(4)式により電流の絶対値が、(7)
式により電流の電圧に対する位相が求まる。From the above equations (1) to (4), the absolute value of the current is (7)
The phase of the current with respect to the voltage can be obtained by the equation.
また(5)式または(6)式の正負を判定することによ
り、電流の電圧に対する方向判定結果が得られる。Further, by determining whether the equation (5) or (6) is positive or negative, the direction determination result for the current voltage can be obtained.
次に親局判定装置の動作を第2図により説明する。第2
図(a)は2回線の配電線を持つ系統図の例である。
(CB1)(CB2)はしゃ断器、(SS11)(SS12)(SS13)
(SS21)(SS22)(SS23)は区分開閉器、(C11)(C1
2)(C13)(C21)(C22)(C23)は配電線各区間の浮
遊量、(I11)(I12)(I13)(I21)(I22)(I23)は
各区分開閉器の通過電流である。Next, the operation of the master station determination device will be described with reference to FIG. Second
Figure (a) is an example of a system diagram having two distribution lines.
(CB1) (CB2) is a circuit breaker, (SS11) (SS12) (SS13)
(SS21) (SS22) (SS23) are sectional switches, (C11) (C1
2) (C13) (C21) (C22) (C23) is the amount of floating in each section of the distribution line, (I11) (I12) (I13) (I21) (I22) (I23) is the passing current of each section switch is there.
今、2号線の各区間の故障(F1)(F2)(F3)を考え
る。Now consider failure (F1) (F2) (F3) in each section of Line 2.
第2図(b)は短絡故障時の電流分布の例を示す。F1点
短絡故障時(SS21)通過電流(I21)は背後電源インピ
ーダンスによって決る大きな短絡電流が流れる。一方
(SS22)(SS23)等には回転機負荷等から故障点に向っ
て流れる比較的小さな電流が流れる。したがって(F1)
点故障のばあい(I21)と(I22)には大きな差があり、
(I22)と(I23)の差は小さい。FIG. 2 (b) shows an example of current distribution at the time of short circuit failure. When the F1 point short circuit fault (SS21), the passing current (I21) is a large short circuit current determined by the impedance of the power source behind. On the other hand, a relatively small current flows from (SS22), (SS23), etc. to the failure point due to the load of the rotating machine. Therefore (F1)
In case of point failure, there is a big difference between (I21) and (I22),
The difference between (I22) and (I23) is small.
(F2)(F3)故障のばあいも同様に故障点に隣接する区
分開閉器の通過電流は差が大きく、それ以外は差が少な
い。Similarly, in the case of (F2) and (F3) failures, there is a large difference between the passing currents of the sectional switches adjacent to the failure point, and other differences are small.
第2図(c)はF1点短絡故障時の電圧(図ではA相の事
故前相電圧Va)に対する各区分開閉器通過電流のベクト
ル図である。大きさの関係は、前記第2図(b)の説明
の通りであるが位相関係は(I21)が背後インピーダン
スおよび故障点抵抗で決る位相となる。また(I22),
(I23)は回転機負荷等が逆流するような位相関係とな
る。FIG. 2 (c) is a vector diagram of the passing currents of the respective switchgear with respect to the voltage at the time of the F1 point short-circuit fault (in the figure, the phase voltage Va before the accident of the phase A). The magnitude relationship is as described in FIG. 2 (b), but the phase relationship is (I21) is the phase determined by the back impedance and the fault point resistance. Also (I22),
(I23) has a phase relationship such that the load of the rotating machine flows backward.
したがって各区分開閉器の通過電流をベクトル量として
比較すれば(I21)と(I22)には大きな差があり、(I2
2)と(I23)との差は小さくなることは単に大きさだけ
を比較するばあいに比べてより明瞭となる。Therefore, when comparing the passing currents of each section switch as a vector quantity, there is a big difference between (I21) and (I22).
It becomes clearer that the difference between 2) and (I23) becomes smaller than when comparing only the sizes.
第2図(d)は第2図(c)において電圧と同相方向を
前方故障とし逆相方向を後方故障と判別した上でこれら
の判別結果の分布をF1点短絡故障時において示したもの
である。このばあい(I21)と(I22)の間で方向が逆転
しこの間の区間に故障があることが判定できる。この方
法では大きさあるいは位相の量を伝送する必要がなく方
向の判別結果のみを伝送すればよいため伝送装置を簡単
にできる特徴がある。Fig. 2 (d) shows the distribution of these judgment results at the time of F1 point short-circuit fault after discriminating the in-phase direction as the forward fault and the opposite phase direction as the backward fault in Fig. 2 (c). is there. In this case, the direction is reversed between (I21) and (I22), and it can be determined that there is a failure in the section between these. This method has a feature that the transmission device can be simplified because it is not necessary to transmit the magnitude or phase amount and only the direction determination result needs to be transmitted.
第2図(e)は電流の大きさと第2図(d)のばあいと
同様の方向判別結果を組み合せて判定するものであり、
単に大きさのみを判定するより差が明瞭となり判定が確
実となる。FIG. 2 (e) is a combination of the magnitude of the current and the same direction determination result as in the case of FIG. 2 (d).
The difference becomes clearer and the judgment becomes more reliable than simply judging the size.
第2図(f)は地絡故障時の電流分布である。F1点故障
時(SS21)通過電流(I21)は1号線浮遊容量(C11)
(C12)(C13)の充電電流、接地変圧器(4)の抵抗器
電流母線(5)と故障点迄の変電電流の総和の比較的大
きな電流が通過する。一方(SS22)(SS23)には浮遊容
量(C22)(C23)等の充電々流が流れ比較的小さな電流
が通過する。したがって(F1)点故障のばあい(I21)
と(I22)には大きな差があり(I22)と(I23)の差は
小さい。(F2)(F3)故障のばあいも同様に故障点に隣
接する区分開閉器の通過電流は差が大きくそれ以外は差
が少ない。FIG. 2 (f) is a current distribution when a ground fault occurs. At F1 point failure (SS21), passing current (I21) is Line 1 stray capacitance (C11)
A relatively large sum of the charging currents of (C12) and (C13), the resistor current busbar (5) of the grounding transformer (4) and the transformation current up to the fault point passes. On the other hand, charging currents such as stray capacitances (C22) and (C23) flow through (SS22) and (SS23), and relatively small current passes through them. Therefore, in case of (F1) point failure (I21)
There is a large difference between and (I22), and the difference between (I22) and (I23) is small. Similarly, in the case of (F2) and (F3) failures, there is a large difference between the passing currents of the sectional switches adjacent to the failure point, and other differences are small.
また故障点抵抗を伴う不完全地絡故障のばあいにも故障
電流の大きさは小さくなるが故障点に隣接する区分開閉
器の通過電流の差が最も大きいことは変らない。Also, in the case of an incomplete ground fault with resistance at the fault point, the magnitude of the fault current becomes smaller, but the difference in the passing currents of the segment switches adjacent to the fault point remains the same.
第2図(g)は(F1)地絡故障時の系統零相電圧V0に対
する電流ベクトル分布であり(I21)は背後充電電流、
接地変圧器抵抗器電流、故障点抵抗で決る位相関係とな
る。また(I22)(I23)は区間浮遊容量(C21)(C22)
の充電電流で決る位相関係となる。これらの電流方向を
判別できる方向判別直線で前方故障、後方故障を区別し
ている。Figure 2 (g) is the current vector distribution for the system zero-phase voltage V 0 at (F1) ground fault, (I21) is the back charging current,
The phase relationship is determined by the grounding transformer resistor current and the fault point resistance. Also, (I22) (I23) is the section stray capacitance (C21) (C22)
The phase relationship is determined by the charging current of. A forward failure and a backward failure are distinguished by a direction determination straight line that can determine the current directions.
第2図(h)は(F1)地絡故障時の電流の方向分布 第2図(i)は(F1)地絡故障時の電流の大きさ、方向
を組み合わせた分布を示す図であり、第2図(g)
(h)(i)は第2図(c)(d)(e)の短絡故障時
のばあいと同様の判定を行う。FIG. 2 (h) is a direction distribution of the current in the case of (F1) ground fault, and FIG. 2 (i) is a diagram showing a distribution in which the magnitude and the direction of the current in the case of (F1) the ground fault are combined. Figure 2 (g)
For (h) and (i), the same judgment as in the case of the short-circuit fault in FIGS. 2 (c), (d) and (e) is performed.
尚図示していないが配電線の断線故障時にも負荷電流の
分布の急激な変化、あるいは逆相、又は零相電流分布の
急激な変化を検出することにより断線区間を判定するこ
とが可能である。Although not shown, it is possible to determine the disconnection section by detecting a rapid change in the distribution of the load current or a rapid change in the reverse phase or zero-phase current distribution even when the distribution line has a disconnection failure. .
以上の様に本発明による配電線故障区間判定装置は電流
の大きさおよび電圧に対する方向あるいは位相関係の分
布に着目し各区分開閉器の通過電流を比較して、分布の
急激な変化を検出して故障区間を判定するものである。As described above, the distribution line failure section determination apparatus according to the present invention focuses on the distribution of the magnitude of the current and the direction or phase relationship with respect to the voltage, compares the passing currents of the respective section switches, and detects a rapid change in the distribution. The failure section is determined by
なお上記実施例では伝送手段として通信線を利用したも
のを示したが電流情報を伝達できるものであれば何であ
ってもよい。In the above-mentioned embodiment, the communication line is used as the transmission means, but any means can be used as long as the current information can be transmitted.
また、上記実施例では親局を設け故障区間判定を親局一
ケ所で行う例を示したが各区分開閉器に判定装置を設け
隣接区間との電流情報を比較して判定させるものであっ
てもよい。Further, in the above-mentioned embodiment, an example in which the master station is provided and the failure section determination is performed at one location of the master station is shown. However, a determination device is provided in each division switch to make a determination by comparing the current information with the adjacent section. Good.
また電流分布をCRT等の表示装置に表示すると共に人間
の目で確認できる手段を付加するものであってもよい。Further, a means for displaying the current distribution on a display device such as a CRT and for confirming it with human eyes may be added.
以上のようにこの発明によれば配電線故障区間判定装置
を、配電線の各区分開閉器の通過電流の大きさ、電圧に
対する位相関係を検出する装置と、この電圧に対する位
相関係を含む通過電流情報を相互又は特定の個所に伝送
する装置と、伝送された各区分開閉器の通過電流情報を
比較し故障区間を判定する装置を備え、各区分開閉器の
通過電流情報分布の変化が最も大きい区間を故障区間と
判定するように構成したので、故障発生時に確実に判定
が可能となり、強行送電による系統への影響が少なく、
人体、火災等に対して安全性が高く、必要区間の再送電
が早くできる装置を提供することができる。As described above, according to the present invention, the distribution line failure section determination device includes a device that detects the magnitude of the passing current of each distribution switch of the distribution line, a device that detects the phase relationship to the voltage, and a passing current that includes the phase relationship to this voltage. Equipped with a device that transmits information to each other or a specific place and a device that compares the transmitted passing current information of each section switch to determine a failure section, and the change in the passing current information distribution of each section switch is the largest Since it is configured to judge the section as a failure section, it is possible to make a reliable judgment when a failure occurs, and the influence of forced transmission on the system is small,
It is possible to provide a device that has high safety against a human body, a fire, and the like, and can re-transmit power in a required section quickly.
上記電圧に対する位相関係を含む通過電流情報として、
通過電流ベクトル量(大きさと位相)を伝送し、故障区
間を判定することにより、単に通過電流の大きさのみの
場合より分布の変化が故障区間の所で大きく、より確実
な判定ができる。また、通過電流の電圧に対する方向判
別結果(同相方向か逆相方向か)を伝送し、故障区間を
判定することにより、通過電流の大きさの場合より伝送
量を低減できる。また、通過電流の大きさと電圧に対す
る方向判別結果を伝送し、故障区間を判定することによ
り、単に大きさのみを判定するより僅かな伝送量の増加
で差が明瞭となり、判定がより確実となる。As the passing current information including the phase relationship with respect to the voltage,
By transmitting the passing current vector amount (magnitude and phase) and determining the failure section, the change in distribution is larger in the failure section than in the case of only the magnitude of the passing current, and more reliable judgment can be performed. Further, by transmitting the direction determination result (in-phase direction or opposite-phase direction) with respect to the voltage of the passing current and determining the failure section, it is possible to reduce the amount of transmission as compared with the case of the magnitude of the passing current. Further, by transmitting the direction determination result for the magnitude of the passing current and the voltage and determining the faulty section, the difference becomes clear with a slight increase in the transmission amount compared to the case where only the magnitude is determined, and the determination becomes more reliable. .
第1図はこの発明の一実施例による配電線故障区間判定
装置の構成を示す図、第2図はこの発明の一実施例の動
作を説明する図、第3図は従来の配電線故障区間判定装
置の原理を示す図である。 図において、(1)は電源、(2)は配電用変電所、
(3)は変圧器、(4)は接地変圧器、(5)は母線、
(6)は配電所、(7)は通信線、(8)親局である。
なお図中同一符号は同一、又は相当部分を示す。FIG. 1 is a diagram showing the configuration of a distribution line failure section determination device according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of an embodiment of the present invention, and FIG. 3 is a conventional distribution line failure section. It is a figure which shows the principle of a determination apparatus. In the figure, (1) is a power source, (2) is a distribution substation,
(3) is a transformer, (4) is a grounding transformer, (5) is a busbar,
(6) is a power distribution station, (7) is a communication line, and (8) is a master station.
The same reference numerals in the drawings indicate the same or corresponding parts.
Claims (4)
さ、電圧に対する位相関係を検出する装置、 この電圧に対する位相関係を含む通過電流情報を相互又
は特定の個所に伝送する装置、 伝送された各区分開閉器の通過電流情報を比較し故障区
間を判定する装置を備え、 各区分開閉器の通過電流情報分布の変化が最も大きい区
間を故障区間と判定することを特徴とする配電線故障区
間判定装置。1. A device for detecting a magnitude of a passing current of each section switch of a distribution line and a phase relation with respect to a voltage, a device for transmitting passing current information including a phase relation with respect to the voltage to each other or a specific place, and transmission. A distribution line characterized by comprising a device for comparing the passing current information of each of the divided switches and determining a failure section, and determining the section in which the change in the passing current information distribution of each of the divided switches is the largest as the failure section. Failure zone determination device.
て、各区分開閉器の通過電流の大きさと電圧に対する位
相関係をベクトル量として伝送、判定することを特徴と
する配電線故障区間判定装置。2. The distribution line fault section determination device according to claim 1, wherein the phase relationship between the magnitude of the passing current and the voltage of each section switch is transmitted and determined as a vector quantity. .
て、各区分開閉器の通過電流の電圧に対する特定の位相
差内であるか否かにより方向判別しこの方向判別結果を
伝送、判定することを特徴とする配電線故障区間判定装
置。3. The device according to claim 1, wherein the direction is discriminated by whether or not it is within a specific phase difference with respect to the voltage of the passing current of each section switch, and the direction discrimination result is transmitted and judged. A distribution line failure section determination device characterized by the above.
て、各区分開閉器の通過電流の大きさと電圧に対する特
定の位相差内であるか否かによる方向判別結果を伝送、
判定することを特徴とする配電線故障区間判定装置。4. The method according to claim 1, wherein the direction determination result is transmitted depending on whether or not the magnitude of the passing current of each section switch is within a specific phase difference with respect to the voltage.
A distribution line failure section determination device characterized by making a determination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61020633A JPH0756500B2 (en) | 1986-01-30 | 1986-01-30 | Distribution line failure section determination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61020633A JPH0756500B2 (en) | 1986-01-30 | 1986-01-30 | Distribution line failure section determination device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62177462A JPS62177462A (en) | 1987-08-04 |
JPH0756500B2 true JPH0756500B2 (en) | 1995-06-14 |
Family
ID=12032634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61020633A Expired - Fee Related JPH0756500B2 (en) | 1986-01-30 | 1986-01-30 | Distribution line failure section determination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0756500B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2865682B2 (en) * | 1988-12-23 | 1999-03-08 | 株式会社日立製作所 | Information processing system and information processing method |
JP2870551B2 (en) * | 1990-12-25 | 1999-03-17 | 日立電線株式会社 | Method and apparatus for determining direction of occurrence of partial discharge |
CN104049178A (en) * | 2014-06-28 | 2014-09-17 | 国家电网公司 | Fault locating method and system of active power distribution network |
CN104635115B (en) * | 2015-03-10 | 2017-10-27 | 广州供电局有限公司 | A kind of active power distribution network Fault Locating Method |
JP2019161692A (en) * | 2018-03-07 | 2019-09-19 | オムロン株式会社 | Distribution network monitoring system |
CN113534011B (en) * | 2021-06-25 | 2024-02-13 | 许继电气股份有限公司 | Intelligent substation current transformer broken line identification method and device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55155261A (en) * | 1979-05-23 | 1980-12-03 | Fuji Electric Co Ltd | System for locating broken section of cable |
JPS5946867A (en) * | 1982-09-10 | 1984-03-16 | Hitachi Ltd | Searching system of slight ground-fault point |
-
1986
- 1986-01-30 JP JP61020633A patent/JPH0756500B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62177462A (en) | 1987-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2331978B1 (en) | Method and device for supervising secondary circuit of instrument transformer in power system | |
US4528611A (en) | Relay for pilot protection of electrical power lines | |
JP2004282862A (en) | Controller for monitoring distribution system | |
KR101090425B1 (en) | Protection Coordination system in ungrounded distribution system and its operating method | |
US8102634B2 (en) | Differential protection method, system and device | |
US6816757B1 (en) | Control unit for a power-distribution network | |
JPS59209018A (en) | Protecting relaying device and method | |
CN1487641B (en) | Grounding direction relay system | |
JPH05336647A (en) | Method of protecting transmission line and protective relay device | |
JP2011247905A (en) | Fault direction identification device for distribution line | |
KR100775025B1 (en) | A automatic separating method and system of fault locating for distribution line | |
JPH0756500B2 (en) | Distribution line failure section determination device | |
CN112363005B (en) | GIS combined electrical apparatus fault detection and processing method, device and storage medium | |
Zhang | Improving real-time fault analysis and validating relay operations to prevent or mitigate cascading blackouts | |
CN102893476A (en) | Protection relay apparatus | |
US4536815A (en) | Protective relay apparatus and method for providing single-pole tripping | |
JP3684292B2 (en) | Power system controller | |
JPH0783564B2 (en) | Ground fault point recognition device for distribution lines | |
JPH10201082A (en) | Automatic section switch for distribution line | |
Genji et al. | Development of a high-speed switching system for distribution networks | |
JPS62177461A (en) | Deciding device for power distribution line fault section | |
JP2001352668A (en) | Accident-section separating system | |
JP2003143747A (en) | Monitoring and protection method for power system, and program | |
JPH0771377B2 (en) | Failure zone detector | |
JPH04161023A (en) | Detector of ground fault section of distribution line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |