JPS5946867A - Searching system of slight ground-fault point - Google Patents

Searching system of slight ground-fault point

Info

Publication number
JPS5946867A
JPS5946867A JP15656082A JP15656082A JPS5946867A JP S5946867 A JPS5946867 A JP S5946867A JP 15656082 A JP15656082 A JP 15656082A JP 15656082 A JP15656082 A JP 15656082A JP S5946867 A JPS5946867 A JP S5946867A
Authority
JP
Japan
Prior art keywords
point
fault
ground
ground fault
zero phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15656082A
Other languages
Japanese (ja)
Other versions
JPH0343593B2 (en
Inventor
Hiroshi Haga
博 芳賀
Atsuhiro Yoshizaki
敦浩 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15656082A priority Critical patent/JPS5946867A/en
Publication of JPS5946867A publication Critical patent/JPS5946867A/en
Publication of JPH0343593B2 publication Critical patent/JPH0343593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To detect a slight continuous ground-fault while keeping distribution lines applied with voltage by providing sub-stations plural pieces of which are installed in the distribution lines and transmit the electric signals proportional to the quantity of electricity relating to the ground-fault and a master station which compares successively the electric signals and judges a discontinuous point as a slight ground-fault point. CONSTITUTION:Plural sub-stations (36-1-36-n) consisting of a zero phase current transformer 32 which derives zero phase current and a measuring circuits 34 which measures the secondary current of said transformer, converts the same to the electrical signal corresponding to the currents and derive outputs are installed at optional intervals to distribution lines 12-1-12-n. When a slight ground-fault arises at the point F of the line 12-1, the zero phase current at the point C on the electric power source side of the fault-point F attains IN+ICN+IC2+IC1 and the zero phase current at the point D nearer the load side than the fault point F attains IC1'. A master station 40 receives the signals which the electrical signals proportional to the zero phase currents at the respective points are transmitted from the sub-stations 36-1-36-n, then the master station discriminates that the electrical signals of the substations 36-3 and 36-4 are discontinuous and displays that the slight ground-fault arises in this section.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、非接地系配電線路の地絡事故点の探査方式に
係り、特に放射状配電系統における配電線路の任意の点
の電気量を計測し線路の微地絡点を探査する方式に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for detecting a ground fault point on an ungrounded power distribution line, and in particular a method for measuring the amount of electricity at any point on a power distribution line in a radial distribution system. This article relates to a method for detecting minute ground faults on railroad tracks.

〔従来技術〕[Prior art]

従来、放射状の配電線路の地絡点探査方式は、一般に第
1図に示すように電気所10内に設置し、各配電線12
(12−1・・・l2−n)に設置され、地絡事故を検
出し該しゃ断器14(14−1・・・l4−n)に開路
指令を導出するJル絡方向K(k′屯器16と、地絡方
向継電器16が導出する開路指令と同時に起動し所定の
時間経過後膣しゃ断器14に閉路指令を導出する再閉路
継i[U装置i’、’S 18としゃ断器12が開路し
再び閉路したことによって起動し再び開路するまで所定
の時間で歩進するしく間表示器20など、また配電線路
12には、任意の間隔で設置され、線路電圧の有無で作
動1−1+Y’i!路電圧が印加されると所定の時間で
閉路となり次の区間に電力を供袷し、線路電圧がなしと
なると開路となるよう作動する区分開閉器22(22−
1・・・22−n)など全設置し!j〜故検出後、地絡
事故1ム間を操作する方式となっている。
Conventionally, the ground fault detection method for radial distribution lines is generally installed in an electrical station 10 as shown in FIG.
(12-1...l2-n) to detect a ground fault and issue an opening command to the breaker 14 (14-1...l4-n) in the fault direction K(k' A re-closing relay i [U device i', 'S 18 and a circuit breaker which starts at the same time as the opening command issued by the ground fault direction relay 16 and outputs a closing command to the vaginal breaker 14 after a predetermined period of time has elapsed. 12 is activated when the circuit is opened and then closed again, and steps in a predetermined period of time until the circuit is opened again.Also installed at arbitrary intervals on the power distribution line 12, there are display devices that activate 1 depending on the presence or absence of line voltage. -1+Y'i! Sectional switch 22 (22-
1...22-n) etc. all installed! The method is such that after detecting a fault, the system operates from 1 m to a ground fault.

第1図にボす配′r(i線12−1の故117.Y点F
に地絡事故が発生すると、故障点Fに向って、健全回綜
12−2・・・12−nの対地充電々流と接地形11器
用変成器24の中性点に流れる電流IN、白回物の故障
点Fから母線2]1:での対地光′「IL々流などの合
成電流が流れる。この電流は、零相変bIL器28−1
によって所定の値に変換され電流工。が地絡方向継電器
16に印加される。一方接地形計器用変成器24の3次
より導出される零相電圧voも地絡方向継電器16に印
加される。地絡方向継電器16は、vo 、I。の位相
関係とその大きさが所定値以上となったことを判別し、
しゃ断器14−1’i開略せしめ同時に再閉路継電器1
8を起動する。
117.Y point F
When a ground fault occurs, the current IN flowing toward the fault point F between the ground charging current of the healthy circuits 12-2...12-n and the neutral point of the grounding circuit 11 and the neutral point of the transformer 24. From the failure point F of the circuit to the bus 2]1:, a composite current such as an IL current flows.
The current is converted to the given value by the current engineer. is applied to the ground fault direction relay 16. On the other hand, a zero-sequence voltage vo derived from the tertiary of the grounded instrument transformer 24 is also applied to the ground fault directional relay 16 . The ground fault direction relay 16 is vo, I. Determine whether the phase relationship and its magnitude are greater than a predetermined value,
Breaker 14-1'i is opened and reclosed at the same time relay 1
8.

区分開閉器22−1・・・22−nは、しゃ断器14−
1の開路と同時に開路状態となり、故障点Fは系統より
分離され地絡方向継電器16も復帰状態となる。次に再
閉路継電器18は起動後所定の時間で、しゃ断器14−
1に閉路指令を導出する。しゃ断器14−1が閉路する
と区分開閉器22−1.22−2は所定の限時で順に閉
路され、故障点Fが永久故障とすると区分開閉器22−
2の閉路と同時に地絡方向継電器16が動作し再度しゃ
断器14−1e開略せしめる。一方区間表示器20は、
第1回目のしゃ断器閉路と同時に起動され、区分開閉器
22−1・・・22−nの閉路時間に関連した限時で順
次歩進し、しゃ断器14−1の再度開路と同時に歩進を
停止する。すなわち歩進停止位置が故障区間を表示して
いることになる。
The section switches 22-1...22-n are the circuit breakers 14-
1 becomes open, the fault point F is isolated from the system, and the ground fault direction relay 16 also returns to its restored state. Next, at a predetermined time after activation, the recloser relay 18 closes the circuit breaker 14-
1, derive the closing command. When the circuit breaker 14-1 is closed, the sectional switches 22-1 and 22-2 are closed in sequence for a predetermined period of time, and if the failure point F is a permanent failure, the sectional switches 22-
At the same time as the circuit 2 is closed, the ground fault direction relay 16 operates to open the circuit breaker 14-1e again. On the other hand, the section indicator 20 is
It is activated at the same time as the breaker is closed for the first time, steps sequentially at a time limit related to the closing time of the section switches 22-1...22-n, and starts stepping at the same time as the breaker 14-1 is opened again. Stop. In other words, the step stop position indicates the failure section.

以上のように従来方式でQ」1、地絡方向継電器で配電
線路の地絡事故を検出し、配電線路を一担無電圧とし、
線路に設置された区分開閉器全開路せしめ再閉路継電器
などで(4J′度線路に電圧を印加しこの印加継続時間
を計る区間表示によって地絡事故点を操作する方式とな
っている。。
As described above, in the conventional method Q1, a ground fault in the distribution line is detected using a ground fault directional relay, and the distribution line is made voltage-free.
The method is to operate the ground fault point by applying voltage to the line (4 J' degree) using a fully open and re-closing relay installed in the section switch installed on the line, and measuring the duration of this application.

すなわちこのように−担線路を無電圧として探査するこ
とより必ず停電すること、また一般に微地絡のような軽
微の地絡事故の場合は一担無゛電圧とすると事故点が消
滅してしまい永久地絡となるまで事故点の探査ができず
本格的手故に至る前の未然防止はできないなどの欠点が
ある。
In other words, in this way, if you investigate the carrier line with no voltage, there will always be a power outage, and in general, in the case of a minor ground fault such as a slight ground fault, if one line is set to no voltage, the fault point will disappear. There are drawbacks such as the fact that it is not possible to detect the point of a fault until it becomes a permanent ground fault, and it is not possible to prevent it before it becomes a full-scale fault.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、配−+lf、線路の1111−微々五
林続地絡を該配電線路を無電圧とせずに検出でさる微地
絡探査方式を提供するにろる。
An object of the present invention is to provide a micro-ground fault detection method for detecting a 1111-micro-Gorin ground fault in the distribution line -+lf and the line without making the distribution line voltageless.

〔発明の概要〕[Summary of the invention]

一般に非接地系耐重系統に1線地絡が発生すると対地静
電容量による対地充電々流が大きく影響をおよほす。こ
の時の電流分布を第2図に示す。
Generally, when a single-wire ground fault occurs in an ungrounded heavy-duty system, the ground-to-ground charging current due to ground-to-ground capacitance has a large effect. The current distribution at this time is shown in FIG.

第2図の配電系統の配電線12−1のF点で1線地絡事
故が発生すると、健全回線12−2・・・12−nの対
地充′rit々流←1、それぞれIc2 、 Icnが
母線26に入り事故点Fに向って流れ込む。事故回線1
2−1は事故点Fに向って電源側の電流Iclと負荷側
電流Ice’が流れる。これらの1″ei流の位相は同
相であるので事故点Fではこれらの合成値となる。この
ほか接地変圧器の中性点を流れる電流INがさらに合成
される、すなわち本発明は、放射状配電系統の配電線に
1線地絡が発生すると事故点より電源側の合成零相電流
と事故回線の負荷側零相電流とが不連続になることに着
目し、配電線路に任意の間隔で複数箇所の上記電流を計
測する手段とこの計測した結果を受信しこの値より地絡
事故区間を弁別する手段を具備させた点にある。
When a one-line ground fault occurs at point F of distribution line 12-1 in the distribution system in Figure 2, the ground fault current of healthy lines 12-2...12-n is Ic2 and Icn, respectively. enters the busbar 26 and flows toward the accident point F. Accident line 1
2-1, the power supply side current Icl and the load side current Ice' flow toward the fault point F. Since the phases of these 1"ei currents are in phase, their combined value is obtained at the fault point F. In addition, the current IN flowing through the neutral point of the grounding transformer is further combined, that is, the present invention Focusing on the fact that when a one-wire ground fault occurs in a distribution line of a power system, the composite zero-sequence current on the power supply side from the fault point and the zero-sequence current on the load side of the fault line become discontinuous, The present invention is provided with a means for measuring the above-mentioned current at a location, a means for receiving the measured result, and a means for discriminating the ground fault fault section from this value.

〔発明の実施例〕[Embodiments of the invention]

以ト本発明を第3図に示した’コア’ili例に一用い
て詳細に・説明する。
The present invention will now be described in detail using the 'core' example shown in FIG.

弔3図は放射状配flL系統の微池絡点4?N I’j
:方式設(’i’r:例示し/とものである1、各配・
性腺12−1・・・12−nへの磁力の供給は、1.j
:r原端より電力変圧器30を介して母線26に供給し
さらに母線26に接続したしゃ新婚14−1.14−2
・・・l4−nf介してそれぞれの配電線12 1 、
12 2・・・12−nに供給すめ。
Is Diagram 3 the Weiike connection point 4 of the radial distribution flL system? N I'j
:Method setting ('i'r: example / example 1, each arrangement /
The supply of magnetic force to the gonads 12-1...12-n is as follows: 1. j
:The newlyweds 14-1.14-2 are supplied from the r source to the bus 26 via the power transformer 30 and further connected to the bus 26.
...l4-nf through each distribution line 12 1 ,
12 2... Supply to 12-n.

配電線12−1.12−2・・・12−nには、零相電
流を導出する零相変流j?# 32と零相変流器32の
2次電流を計測しこの′電流に比例シ7.た電気信号に
変換して出力を導出する計測回路34とからなる子局3
6 (361,36’−2・・・:36− n )が任
意の間隔で複数個設置11される。子局36からの出力
は通信回路38を介しです11局40に伝送され、親局
において伝送された1、′□!>+を順次]IS較して
不連続か否か全弁別している。
The distribution lines 12-1, 12-2...12-n have zero-sequence current transformers j? that derive zero-sequence currents. #32 and the secondary current of the zero-phase current transformer 32 are measured and the current is proportional to this current.7. A slave station 3 comprising a measurement circuit 34 that converts the signal into an electric signal and derives an output.
6 (361, 36'-2...:36-n) are installed 11 at arbitrary intervals. The output from the slave station 36 is transmitted to the 11 station 40 via the communication circuit 38, and the output from the master station is 1,'□! >+ sequentially]IS is compared to determine whether or not there is discontinuity.

この構成において配αMl 12−1のF点に微地絡事
故が発生すると第4図に示す」:うに故障点II′の電
源側C点の零相電流はi)J + Ics + IC2
+Iclとなり故障点Fより負荷側り点の零相電流はI
ce’となる。
In this configuration, if a slight ground fault occurs at point F of distribution αMl 12-1, the zero-sequence current at point C on the power supply side of failure point II' is shown in Figure 4: i) J + Ics + IC2
+Icl, and the zero-sequence current at the point on the load side from the fault point F is I
ce'.

親局40は、子局36−1.36−2・・・36−〇か
らそれぞれその地点の零相電流に比例した電気信号を送
信する信号を受信し子局36−3と36−4の電気信号
が不連続となっていること全弁別しこの区間に微地絡が
発生していることを表示する。
The master station 40 receives signals from the slave stations 36-1, 36-2, . It detects all discontinuities in the electrical signal and indicates that a slight ground fault has occurred in this section.

上記したように一実施例によれば、非接地配電線路の任
意の点の零相電流を計測しその伝送されてくる電気信号
(零相電流の絶対値、零相電流の瞬時または短時間平均
値に比例した値)を比較し不連続となっている区間金地
絡点と弁別させているため、線路を無電圧とすることな
く軽微な地絡事故点でも容易にその区間を探査する効果
がある。
As described above, according to one embodiment, the zero-sequence current at any point on an ungrounded power distribution line is measured, and the transmitted electrical signal (absolute value of the zero-sequence current, instantaneous or short-term average of the zero-sequence current) is measured. Since the line is compared with the ground fault point (proportional to the value) and is distinguished from the ground fault point in a discontinuous section, it is effective to easily detect the point of a minor ground fault without making the line voltageless. be.

また、非接地系配電線路などで塩害による線路器具類の
絶縁劣化、碍子の不良、絶縁ケーブルのピンホール破壊
などの地絡故障は、当初は長時間間隔の間欠的な地絡(
断続的に地絡事故が発生すること)となり零相ン1叩流
は一般に釧状波となることが知られ、これが進行し永久
地絡事故に進展するのが多い。このため第3図にノ1;
す、計測回路34に、5針状波肛流をバス−jるフィル
ター回路を介し、零相電流を導入する手段を設け、4測
回路34iIi、零相電流の変化分全111側し、この
電流の最大値?または絶対値の最大値を記憶し、これに
比例した電気信号を導出する回hf; +i’j J戊
とすることで前記地絡事故を検出し地絡点を探・I’、
i’:できるため永久地絡事故を未然に防止できる効果
が・らる。
In addition, on ungrounded power distribution lines, ground faults such as deterioration of the insulation of line equipment due to salt damage, defective insulators, and pinhole breakage in insulated cables are initially caused by intermittent ground faults at long intervals.
It is known that the zero-phase-one overflow generally becomes a cylindrical wave, which often progresses and develops into a permanent ground fault. For this reason, No. 1 in Figure 3;
The measurement circuit 34 is provided with means for introducing a zero-sequence current through a filter circuit that passes the five-needle wave flow through the bus, and the four measurement circuits 34iIi and 4iIi absorb the total 111 side of the change in the zero-sequence current. Maximum value of current? Alternatively, the maximum absolute value is memorized and an electrical signal proportional to this is derived. By setting +i'j J, the ground fault is detected and the ground fault point is searched for.
i': This has the effect of preventing permanent ground faults.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれ&、l: 、配′【
0.線路の一部が絶縁劣化して、地絡事故が発生したと
き、線路を無電圧とせずに、線路の任、(1の点の零相
電流をt[測してこの値が不連続となった14間を地絡
点と判定するため、軽微々地絡−′J■故であっても確
実にその事故区間を探査できる。このだめ地絡事故を未
然に防止でき電力供給のサービス9上ができるなどの効
果がある。
As explained above, according to the present invention, &, l: , arrangement′[
0. When insulation deteriorates in a part of the line and a ground fault occurs, instead of leaving the line without voltage, measure the zero-sequence current at point 1 at t and find that this value is discontinuous. Since the area between 14 and 14 is determined to be the ground fault point, even if there is a slight ground fault, the fault area can be reliably searched. It has the effect of making you feel better.

なお本方式では、系統負荷のアンバランス・り、どで生
ずる残留零相1d流が常時計測されても前記原理より誤
判別しないことは轟然で高感度検出可能にできることは
言うまでもない。
It goes without saying that in this method, even if the residual zero-phase 1d flow that occurs due to system load imbalance is constantly measured, it will not be misjudged based on the above-mentioned principle, and it can be detected with high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の配電線の地絡保護方式を示す図、第2図
は非接地系配電線路の1線地絡事故時の零相電流分布図
、第3図は本発明の一実施例になる配電線の地絡保護方
式を示す図、第4図は1線地絡事故時の零相電流分布図
である。
Fig. 1 is a diagram showing a conventional ground fault protection method for distribution lines, Fig. 2 is a zero-sequence current distribution diagram in the event of a one-wire ground fault on an ungrounded distribution line, and Fig. 3 is an embodiment of the present invention. Figure 4 is a diagram showing the ground fault protection method for distribution lines, and is a zero-sequence current distribution diagram in the event of a one-line ground fault.

Claims (1)

【特許請求の範囲】[Claims] 1、配電線路に複数個設置され、配電線路の地絡故障に
関する電気量を計測し、この電気量に比例した電気信号
を送信する子局と、この子局からの送信電気信号を受信
し、電気信号を順次比較する親局と全備え、電気信号の
不連続点を微地絡点と判断するようにしたことを特徴と
する微地絡点探査方式。
1. A plurality of slave stations installed on the distribution line, which measure the quantity of electricity related to a ground fault in the distribution line, and transmit an electric signal proportional to this quantity of electricity, and receive the transmitted electric signal from the slave station, This micro-ground fault detection method is characterized by being fully equipped with a master station that sequentially compares electrical signals, and by determining discontinuous points in electrical signals as micro-ground fault points.
JP15656082A 1982-09-10 1982-09-10 Searching system of slight ground-fault point Granted JPS5946867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15656082A JPS5946867A (en) 1982-09-10 1982-09-10 Searching system of slight ground-fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15656082A JPS5946867A (en) 1982-09-10 1982-09-10 Searching system of slight ground-fault point

Publications (2)

Publication Number Publication Date
JPS5946867A true JPS5946867A (en) 1984-03-16
JPH0343593B2 JPH0343593B2 (en) 1991-07-03

Family

ID=15630457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15656082A Granted JPS5946867A (en) 1982-09-10 1982-09-10 Searching system of slight ground-fault point

Country Status (1)

Country Link
JP (1) JPS5946867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183974A (en) * 1984-09-29 1986-04-28 Takamatsu Electric Works Ltd Method for detecting ground fault point of distribution line
JPS62177461A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Deciding device for power distribution line fault section
JPS62177462A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Deciding device for power distribution line fault section
JPH0471488U (en) * 1990-05-08 1992-06-24
JP2010161865A (en) * 2009-01-07 2010-07-22 Chugoku Electric Power Co Inc:The System and method for protecting ground of distribution system and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183974A (en) * 1984-09-29 1986-04-28 Takamatsu Electric Works Ltd Method for detecting ground fault point of distribution line
JPS62177461A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Deciding device for power distribution line fault section
JPS62177462A (en) * 1986-01-30 1987-08-04 Mitsubishi Electric Corp Deciding device for power distribution line fault section
JPH0471488U (en) * 1990-05-08 1992-06-24
JP2010161865A (en) * 2009-01-07 2010-07-22 Chugoku Electric Power Co Inc:The System and method for protecting ground of distribution system and program

Also Published As

Publication number Publication date
JPH0343593B2 (en) 1991-07-03

Similar Documents

Publication Publication Date Title
Chamia et al. Ultra high speed relay for EHV/UHV transmission lines--Development, design and application
CA1208347A (en) Differential protective relay
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
US8102634B2 (en) Differential protection method, system and device
Yee et al. Ultra High Speed Relay for EHV/UHV Transmission Lines--Installation-Staged Fault Tests and Operational Experience
US5352983A (en) Method and apparatus for detecting flashover between conductors in power transmission lines of different voltage levels suspended in parallel from the same towers
CA2170383C (en) Method and device for identifying single ground faults
JPS5946867A (en) Searching system of slight ground-fault point
JP2992615B2 (en) Line constant measuring device and ground fault monitoring device for ungrounded electric circuit
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JP2003232827A (en) Accident point orientation system
JP3024348B2 (en) Distribution line fault section detection device
Hou Comparing Fault Resistance Coverage of Different Distribution System Grounding Methods
JPH0580109A (en) Troubled division sensing device for power distribution line
SU1580258A1 (en) Method and apparatus for fixing distances to places of short circuits for the mains with insulated neutral
RU2788519C1 (en) Method for disconnecting a damaged connection with a single-phase earth fault in networks with an isolated neutral
JPH04161023A (en) Detector of ground fault section of distribution line
JPH11308758A (en) Grounding detector
Nicorescu et al. A New Protection Function Based on Phasor Measurement Units
Agrawal Theoretical concept and digital simulation of the Pramod scheme for UHS protection of EHV transmission lines
SU978259A1 (en) Device for measuring operation time of protection system from ground leakage in ac network
JPH02236176A (en) Apparatus for gage marking failure point of high voltage distribution line
JPH04120478A (en) Determining method of direction of fault of trans mission line
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPS6145977A (en) Detecting and displaying method of earth point of distribution line