JPH04120478A - Determining method of direction of fault of trans mission line - Google Patents

Determining method of direction of fault of trans mission line

Info

Publication number
JPH04120478A
JPH04120478A JP23903090A JP23903090A JPH04120478A JP H04120478 A JPH04120478 A JP H04120478A JP 23903090 A JP23903090 A JP 23903090A JP 23903090 A JP23903090 A JP 23903090A JP H04120478 A JPH04120478 A JP H04120478A
Authority
JP
Japan
Prior art keywords
ground wire
fault
overhead ground
current
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23903090A
Other languages
Japanese (ja)
Other versions
JP2866172B2 (en
Inventor
Isao Sato
功 佐藤
Kimiharu Kanamaru
金丸 公春
Riyouji Matsubara
亮滋 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP23903090A priority Critical patent/JP2866172B2/en
Publication of JPH04120478A publication Critical patent/JPH04120478A/en
Application granted granted Critical
Publication of JP2866172B2 publication Critical patent/JP2866172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To enable exact determeination of the direction of an electrical fault of a transmisson line that shows in which of the section on the right or an the left of a specified pylon thosen, as a boundaly, the fault occurs, by providing a current sensor for an overhead ground wire in a load-side span of the specified pylon. CONSTITUTION:A pylon 32 is made to be a boundary pylon serving as a boundary point in the direction of a fault of a transmission line to be discriminated, and an overhead ground wire 21 between it and the adjacent pylon 31 on the power source side is insulated in an anchor part to the pylon 32 by an insulating part 23. Now, no current due to induction from transmisson lines 1 flows through the overhead ground wire 21, and no overhead ground wire current on the right or the left section of the pylon 32 is shunted. Therefore, a current only by the induction from the trans-mission line 1 on the load side of the pylon 32 flows through an overhead ground wire 22. A current sensor 4 constructed of a dividable through- type current transformer is provided for this overhead ground wire 22 and thereby the current flowing through the overhead ground wire 22 is detected. An output of the sensor is sent to a determination circuit 7 and the position of occurrence of the fault is determined to be on the power source side of the pylon 32 when no current is derected, while it is determined to be on the load side of the pylon 32 when the current is detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送電線の故障方向標定方法、特に送電線の中
間の特定鉄塔を境界として左右いずれかの区間に、送電
線の電気故障が発生したかを判定する方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for locating the direction of a fault in a power transmission line, and in particular, to a method for locating the direction of a fault in a power transmission line, in particular a method for locating an electrical fault in a power transmission line on either the left or right side of a specified pylon in the middle of the power line. This article relates to a method for determining whether a problem has occurred.

[従来の技術] 送電線は、今日の電力供給業務上必要且つ不可欠な設備
であり、この設備の故障又は故障は高度に電化した現代
社会に極めて重大な影響を及ぼし、場合によってはあら
ゆる方面での社会機能か麻痺することも有り得る。
[Prior Art] Power transmission lines are necessary and indispensable equipment for today's power supply operations, and breakdowns or malfunctions of this equipment can have an extremely serious impact on today's highly electrified society, and in some cases can cause damage in all directions. It is possible that the social functions of children may be paralyzed.

このため、落雷故障等から送電線を保護するため、架空
地線か敷設され、また閃絡故障を防止すべく極めて信頼
性の高い絶縁支持方法が採用されているが、落雷故障や
閃絡故障を全く無くするまでには至っていない。
For this reason, to protect power transmission lines from lightning strikes, etc., overhead ground wires are installed, and extremely reliable insulation support methods are adopted to prevent flash faults. We have not yet reached the point of completely eliminating it.

そこで、万一これらの故障か送電線に発生した場合、そ
の発生位置を速やかに確定することが次善の課趙となっ
ている。
Therefore, in the event that such a failure occurs in a power transmission line, the next best task is to quickly determine the location of the failure.

送電線の故障発生位置を検出する方法として、従来、例
えばサージ受信方式、パルスレーダ方式等のいわゆるフ
ォールトロケータ(FL)が採用されている。これらは
変電所等の送電線の両端において故障サージ等の到達時
間を計測し、故障点までの距離を算出するものである。
As a method for detecting the location of a fault in a power transmission line, a so-called fault locator (FL) such as a surge reception method, a pulse radar method, etc., has conventionally been employed. These measures the arrival time of a fault surge, etc. at both ends of a power transmission line such as a substation, and calculate the distance to the fault point.

また最近では、送電端で計測した故障直後の電圧、電流
から故障点までのインピーダンスを算出して距離に換算
するいわゆるディジタルPLも開発されている。
Recently, so-called digital PL has also been developed, which calculates the impedance to the fault point from the voltage and current measured at the power transmission end immediately after the fault and converts it into a distance.

:発明か解決しようとする課駈1 ところが、これらの従来採用されているフォールトロゲ
ータでは、装置規模か大きく高価なものとなると共に、
基本的に変電所等の検出端から故障点までの距離を標定
するものであるため、例えば保守業務上の担当境界点の
どちら側に発生した故障であるかといった厳密な精度は
得誼いのが現状である。即ち、万一送電線故障が発生し
た場合は、先ず最初にどの事業所の担当区間であるかを
知ることが、事後の応動及び対応作業上必要不可欠であ
るにも拘らず、前記した従来技術では、特に境界点近傍
に発生した故障に対して必要な区間判別精度が得られな
いという雑煮があった。
: Problem to be solved by invention 1 However, these conventional fault rogators are large and expensive, and
Basically, it is used to locate the distance from the detection end of a substation, etc. to the fault point, so it is not advantageous to have exact accuracy, such as determining on which side of the boundary point in charge of maintenance work a fault occurred. is the current situation. In other words, in the unlikely event that a power transmission line failure occurs, it is essential to first know which section of the business is in charge, in order to respond and respond to the incident. However, there was a problem that the necessary section discrimination accuracy could not be obtained especially for failures occurring near boundary points.

この理由は、変電所等の送電線の端部で計測し得る情報
のみを使用して、長距離に及ぶ送電線の途中に発生した
故障地点を検知しようとするためであり、送電線の途中
の情報を使用していないことに起因している。
The reason for this is that only the information that can be measured at the end of the power transmission line, such as at a substation, is used to detect the point of failure that has occurred in the middle of a long-distance power transmission line. This is due to the fact that the information is not used.

本発明の目的は、前記した従来技術の欠点を解消し、特
定鉄塔を境界として左右いずれかの区間で送電線の電気
故障が発生したかという故障方向を正確に標定可能な送
電線故障方向標定方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a power transmission line fault direction locating method that can accurately locate the direction of a fault, i.e., whether an electrical fault has occurred in a section on either the left or right side of a specific steel tower as a boundary. The purpose is to provide a method.

[課Uを解決するための手段] 本発明の送電線故障方向標定方法は、各鉄塔部で接地さ
れた架空地線を有する送電線路において、中間部の特定
鉄塔と電源側に隣接する鉄塔とに挟まれた径間に敷設さ
れた架空地線の少なくとも片側端を絶縁して非接地とす
ると共に、該特定鉄塔の負荷側径間の架空地線に電流セ
ンサを設置して、送電線路に短絡故障、地絡故障等の電
気故障が発生した場合に前記電流センサにより架空地線
に流れる電流が検出されるか否かにより、当該電気故障
の発生位置が前記特定鉄塔よりも電源側か負荷側かの故
障方向を標定するものである。
[Means for Solving Section U] The power transmission line failure direction locating method of the present invention provides a power transmission line having an overhead ground wire that is grounded at each tower section. At least one end of the overhead ground wire laid in the span between the two is insulated and ungrounded, and a current sensor is installed on the overhead ground wire in the load-side span of the specific tower to connect it to the power transmission line. When an electrical fault such as a short circuit fault or ground fault occurs, depending on whether or not the current sensor detects the current flowing through the overhead ground wire, it is determined whether the electrical fault is located closer to the power source than the specific tower or the load. This is to locate the direction of failure on either side.

この場合、前記電流センサの出力を前記特定鉄塔に設置
した信号変換回路で光信号に変換し、光ファイバによっ
て前記特定鉄塔上に設置した前記故障方向の標定を行う
判定回路に伝達することが、測定の安全上好ましい。
In this case, the output of the current sensor may be converted into an optical signal by a signal conversion circuit installed on the specific steel tower, and transmitted via an optical fiber to a determination circuit installed on the specific steel tower for locating the failure direction. Preferable for measurement safety.

前記故障方向の標定結果は有線又は無線により遠隔地点
に伝送することかできる6また、前記少なくとも片側端
を絶縁して非接地とした架空地線に誘起する誘導電圧か
ら前記信号変換回路及び判定回路の電源を作成すること
ができる。
The result of locating the fault direction can be transmitted to a remote point by wire or wirelessly.6 Also, the signal converting circuit and the determining circuit can detect the induced voltage induced in the overhead ground wire, which has at least one end insulated and ungrounded. can create a power supply.

U作用コ 送電線路の途中の特定鉄塔の電源側径間の架空地線(G
W)は、その少なくとも片端が絶縁して非接地とされて
いる。従って、電流センサを設置した特定鉄塔より電源
側において送電線路に電気故障が発生した場合、特定鉄
塔より電源側の架空地線には本線電流の誘導による電流
が流れるが、負荷側の架空地線には電流が流れない、一
方、特定鉄塔よりも負荷側において電気故障が発生した
場合には、負荷側の架空地線に本線電流の誘導による大
きな電流が流れる。
Overhead ground wire (G
W) has at least one end insulated and ungrounded. Therefore, if an electrical failure occurs in the power transmission line on the power source side from the specified steel tower where the current sensor is installed, current will flow through the overhead ground wire on the power source side from the specified steel tower due to the induction of the main line current, but the overhead ground wire on the load side will flow. On the other hand, if an electrical failure occurs on the load side of a specific tower, a large current will flow in the overhead ground wire on the load side due to the induction of the main line current.

従って、負荷側径間の架空地線に設置されている電流セ
ンサで監視される架空地線電流には、電気故障が電源側
であるか又は負荷側であるかにより顕著な相違かあり、
特定鉄塔を境界に左右いずれの方向で故障か発生したか
を、極めて正確且つ容易に判定することができる。
Therefore, there is a noticeable difference in the overhead ground wire current monitored by the current sensor installed on the overhead ground wire in the load side span depending on whether the electrical fault is on the power supply side or the load side.
It is possible to extremely accurately and easily determine whether a failure has occurred in the left or right direction with respect to a specific steel tower as a boundary.

本発明の方法を実施する際には、送電線路上の境界点と
すべき特定の鉄塔上に、電流センサの検出信号を光信号
に変換する信号変換回路及び故障方向の標定を行う判定
回路を設置するが、標定結果は、光ファイバあるいは電
話回線等の伝送手段によって又は無線によって、遠隔地
点、例えば保守担当事務所等に伝送し表示することがで
きる。
When implementing the method of the present invention, a signal conversion circuit that converts the detection signal of the current sensor into an optical signal and a determination circuit that locates the fault direction are installed on a specific steel tower that is to be a boundary point on the power transmission line. However, the location results can be transmitted and displayed at a remote location, such as a maintenance office, by transmission means such as fiber optics or telephone lines, or by radio.

また鉄塔部に設置する装置の電源には、送電線の電源側
径間の絶縁した架空地線に誘起する誘導電圧を利用する
ことができる。
In addition, the induced voltage induced in the insulated overhead ground wire in the power supply side span of the power transmission line can be used as a power source for the device installed in the steel tower.

[実施例〕 以下、本発明の送電線故障方向標定方法の実施例につき
、図を用いて詳細に説明する。
[Example] Hereinafter, an example of the method for locating the direction of a fault in a power transmission line according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の送電線故障方向標定方法に従った標定
装置の概略図であり、第2図はその装置の構成を示すブ
ロック図である。
FIG. 1 is a schematic diagram of a locating device according to the power transmission line fault direction locating method of the present invention, and FIG. 2 is a block diagram showing the configuration of the device.

送電線1が多数の鉄塔3によって支持され、その送電線
1の上部に架空地線2か敷設されている。
A power transmission line 1 is supported by a large number of steel towers 3, and an overhead ground wire 2 is laid above the power transmission line 1.

これらの鉄塔3のうちの特定の1つの鉄塔32は、判別
すべき送電線故障方向の境界点にあたる境界鉄塔として
位置づけられており、送電線路の電源側の隣接鉄塔31
との間の架空地線21は、境界鉄塔32への引き留め部
において絶縁部23によって絶縁されている。従って、
電源側にあたる架空地線21は鉄塔及び大地を介した閉
回路を形成しないために送電線1からの誘導による電流
が流れず、また境界鉄塔32の左右の区間の架空地線電
流の分流かないため、負荷側にあたる架空地線22には
、境界鉄塔32よりも負荷側の送電線1からの誘導弁の
みの電流が流れることになる。
A specific steel tower 32 among these towers 3 is positioned as a boundary tower, which is the boundary point in the direction of the power transmission line fault to be determined, and is located at the boundary point of the transmission line failure direction, and is located at the border point of the adjacent tower 31 on the power source side of the power transmission line.
The overhead ground wire 21 is insulated by an insulating part 23 at the part where it is tied to the boundary steel tower 32. Therefore,
The overhead ground wire 21 on the power supply side does not form a closed circuit via the tower and the ground, so current induced from the power transmission line 1 does not flow, and the overhead ground wire current between the left and right sections of the boundary tower 32 does not flow. In the overhead ground wire 22 on the load side, only the current of the induction valve from the power transmission line 1 on the load side than the boundary steel tower 32 flows.

この架空地線22には、分割可能な貫通型電流トランス
(CT)から成る電流センサ4が設置されており、架空
地線22に流れる前記の電流を検出する。電流センサ4
の出力は、光信号変換回路5によって光信号に変換され
、光ファイバ61を通して判定回路7に送られる。
A current sensor 4 made of a splittable through-type current transformer (CT) is installed on the overhead ground wire 22, and detects the current flowing through the overhead ground wire 22. Current sensor 4
The output is converted into an optical signal by the optical signal conversion circuit 5 and sent to the determination circuit 7 through the optical fiber 61.

判定回路7は、送電線路に短絡故障、地絡故障等の電気
故障が発生した場合、電流センサ4により架空地線に流
れる電流が検出されるが否かにより、当該電気故障の発
生位置が境界鉄塔32よりも電源側か負荷側かという故
障方向の標定をなす。
When an electrical fault such as a short circuit fault or a ground fault occurs in the power transmission line, the determination circuit 7 determines whether the current sensor 4 detects a current flowing through the overhead ground wire or not, and determines whether the location of the electrical fault is the boundary. The failure direction is determined as to whether it is on the power supply side or the load side relative to the steel tower 32.

即ち、前記電流センサによる架空地線電流の検出が無い
ときは故障発生位置が境界鉄塔32より電源側であると
判定し、架空地線電流が検出されたときは故障発生位置
が負荷側であると判定する。
That is, when no overhead ground wire current is detected by the current sensor, it is determined that the fault occurrence location is on the power supply side from the boundary steel tower 32, and when overhead ground wire current is detected, the fault occurrence location is determined to be on the load side. It is determined that

判定回路7による判定結果は、別の光ファイバ62によ
り遠隔地点、例えば保守担当部署の事務所に設置された
遠方監視装置に送られ、結果が表示される。
The determination result by the determination circuit 7 is sent via another optical fiber 62 to a remote location, for example, a remote monitoring device installed in the office of the department in charge of maintenance, and the result is displayed.

鉄塔部に設置された各回路5.7の電源は、電源回路8
により、絶縁された架空地線21に誘起する電圧から取
得している。即ち、第2図に示すように、誘起電圧を降
圧トランス81により低電圧に変換し更に直流に変換し
た後、充電制御回路82により送電停止時に備えて充電
式バッテリー83を充電すると共に、電圧安定化回路8
4により安定化を図ってから各回#15.7に供給して
いるゆ 第3図は、本発明送電線故障方向標定装置の動作を示す
送電線に沿った電流分布の説明図である。
The power supply for each circuit 5.7 installed in the steel tower section is the power supply circuit 8.
It is obtained from the voltage induced in the insulated overhead ground wire 21. That is, as shown in FIG. 2, after converting the induced voltage to a low voltage by a step-down transformer 81 and further converting it to direct current, a charging control circuit 82 charges a rechargeable battery 83 in preparation for a power transmission stop and stabilizes the voltage. conversion circuit 8
FIG. 3 is an explanatory diagram of current distribution along a power transmission line showing the operation of the power transmission line fault direction locating device of the present invention.

今、第3図(a)に示すように、電流センサ4を設置し
た境界鉄塔32よりも電源側で、送電線路に短絡故障、
地絡故障等の電気故障が発生した場合、本線には電源側
から故障点まで故障電流か流れる。この故障電流による
誘導により、各鉄塔3により多点接地された架空地線2
には分布した架空地線(GW)を流が流れるか、境界鉄
塔32の直前の架空地線21は絶縁されているため、電
流センサ4の設!された架空地線22には電流が流れな
い。
Now, as shown in FIG. 3(a), there is a short-circuit failure in the power transmission line on the power source side of the boundary steel tower 32 where the current sensor 4 is installed.
When an electrical fault such as a ground fault occurs, fault current flows through the main line from the power supply side to the fault point. Due to the induction caused by this fault current, the overhead ground wire 2 is grounded at multiple points by each steel tower 3.
Because the current flows through the overhead ground wires (GW) distributed in No current flows through the overhead ground wire 22 that has been closed.

この結果は、境界鉄塔32より電源側であって且つ鉄塔
32寄りで故障が発生した場合を示す第3図(b)にお
いて、より顕著である。即ち、もし架空地線21が絶縁
されておらず、通常の鉄塔部と同様に鉄塔32に電気的
接続されている場合には、第3図(b)の図中に点線で
示す通り、架空地線22にも誘導電流が流れるなめ判定
が不明確となる。
This result is more noticeable in FIG. 3(b), which shows a case where a failure occurs on the power supply side and closer to the tower 32 than the boundary tower 32. That is, if the overhead ground wire 21 is not insulated and is electrically connected to the steel tower 32 like a normal steel tower section, the overhead ground wire 21 is An induced current also flows through the ground wire 22, making the lick determination unclear.

一方、境界鉄塔32よりも負荷側で上記電気故障が発生
した場合には、第3図(C)及び(d)に示すように、
電流センサ4の設置された架空地線22に、本線電流か
らの誘導による大きな架空地線電流が流れる。
On the other hand, if the electrical failure occurs on the load side of the boundary tower 32, as shown in FIGS. 3(C) and (d),
A large overhead ground wire current induced from the main line current flows through the overhead ground wire 22 where the current sensor 4 is installed.

従って、電源側又は負荷側のいずれで電気故障が発生す
る場合でも、電流センサ4で架空地線22の電流を監視
しておくことにより、境界鉄塔32を境にして、左右い
ずれの方向で故障が発生したかを、極めて正確且つ容易
に判定す・ることができる。
Therefore, even if an electrical failure occurs on either the power supply side or the load side, by monitoring the current in the overhead ground wire 22 with the current sensor 4, the failure can occur in either the left or right direction with the boundary steel tower 32 as the border. It is possible to determine very accurately and easily whether or not a problem has occurred.

以上説明した実施例では、判定口F!+7から遠方監視
装W9への伝送を光ファイバ62によって行ったが、そ
の他の伝送手段、例えば電話回線あるいは無線によって
伝送することもできる。
In the embodiment described above, the determination port F! Although the transmission from +7 to the remote monitoring device W9 is performed by optical fiber 62, it is also possible to transmit by other transmission means, such as a telephone line or wirelessly.

また上記実施例では、電源側と負荷側が固定された送電
線路についての適用例を示したが、潮流方向が変更され
る送電線路においては、隣接の鉄塔31にも鉄塔32と
同様の装置を設置し、潮流方向によって使い分ける方法
も可能である。
In addition, in the above embodiment, an application example was shown for a power transmission line in which the power source side and the load side are fixed, but in a power transmission line where the direction of power flow is changed, a device similar to that of the steel tower 32 is installed on the adjacent steel tower 31. However, it is also possible to use different methods depending on the direction of the current.

:発明の効果ユ 以上説明したように、本発明の送電線故障方向標定方法
によれば、特定鉄塔を境界点として、送電線の故障発生
区間が存在する方向を極めて正確に標定することができ
、しかも簡易且つ安価な構成において実施できるという
非常に顕著な効果を有するものである。
: Effects of the Invention As explained above, according to the method for locating the direction of a fault in a power transmission line of the present invention, it is possible to very accurately locate the direction in which a faulty section of a power transmission line exists, using a specific tower as a boundary point. Moreover, it has a very remarkable effect that it can be implemented with a simple and inexpensive structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の送電線故障方向標定方法の一実施例を
示す標定装置の概略図、第2図は第1図の標定装置の構
成を示すブロック図、第3図はその動作を示す送電線に
沿った電流分布の説明図である。 図中、1は送電線、2,2L 22は架空地線(GW)
、23は絶縁部、3は鉄塔、31は隣接鉄塔、32は境
界鉄塔(特定鉄塔)、4は分割式貫通型電流トランス(
CT)から成る電流センサ、5は光信号変換回路、61
.62は光ファイバ、7は判定回路、8は電源回路、8
1は降圧トランス、82は充電制御回路、83は充電式
バッテリー、84は電圧安定化回路、9は遠方監視装置
を示す。
Fig. 1 is a schematic diagram of a locating device showing an embodiment of the power transmission line fault direction locating method of the present invention, Fig. 2 is a block diagram showing the configuration of the locating device of Fig. 1, and Fig. 3 shows its operation. FIG. 3 is an explanatory diagram of current distribution along a power transmission line. In the diagram, 1 is the power transmission line, 2, 2L 22 is the overhead ground wire (GW)
, 23 is the insulation part, 3 is the steel tower, 31 is the adjacent steel tower, 32 is the boundary steel tower (specific steel tower), 4 is the split type through-type current transformer (
CT); 5 is an optical signal conversion circuit; 61
.. 62 is an optical fiber, 7 is a determination circuit, 8 is a power supply circuit, 8
1 is a step-down transformer, 82 is a charging control circuit, 83 is a rechargeable battery, 84 is a voltage stabilizing circuit, and 9 is a remote monitoring device.

Claims (1)

【特許請求の範囲】 1、各鉄塔部で接地された架空地線を有する送電線路に
おいて、中間部の特定鉄塔と電源側に隣接する鉄塔とに
挟まれた径間に敷設された架空地線の少なくとも片側端
を絶縁して非接地とすると共に、該特定鉄塔の負荷側径
間の架空地線に電流センサを設置して、送電線路に短絡
故障、地絡故障等の電気故障が発生した場合に前記電流
センサにより架空地線に流れる電流が検出されるか否か
により、当該電気故障の発生位置が前記特定鉄塔よりも
電源側か負荷側かの故障方向を標定することを特徴とす
る送電線故障方向標定方法。 2、請求項1記載の方法において、前記電流センサの出
力を前記特定鉄塔に設置した信号変換回路で光信号に変
換し、光ファイバによって前記特定鉄塔上に設置した前
記故障方向の標定を行う判定回路に伝達することを特徴
とする送電線故障方向標定方法。 3、請求項1、2記載の方法において、前記事故方向の
標定結果を有線又は無線により遠隔地点に伝送すること
を特徴とする送電線故障方向標定方法。 4、請求項2記載の方法において、前記少なくとも片側
端を絶縁して非接地とした架空地線に誘起する誘導電圧
から前記信号変換回路及び判定回路の電源を作成するこ
とを特徴とする送電線故障方向標定方法。
[Scope of Claims] 1. In a power transmission line having an overhead ground wire grounded at each tower section, an overhead ground wire installed in the span between a specific tower in the middle and a tower adjacent to the power supply side. At least one end of the transmission line is insulated and ungrounded, and a current sensor is installed on the overhead ground wire in the load side span of the specified tower to prevent electrical failures such as short circuits and ground faults from occurring on the power transmission line. In this case, depending on whether or not the current sensor detects a current flowing through the overhead ground wire, the direction of the electrical fault is determined as to whether the location of the electrical fault is on the power supply side or the load side of the specific steel tower. Transmission line fault direction locating method. 2. In the method according to claim 1, a determination is made that the output of the current sensor is converted into an optical signal by a signal conversion circuit installed on the specific steel tower, and the direction of the fault installed on the specific steel tower is determined by an optical fiber. A power transmission line fault direction locating method characterized by transmitting information to a circuit. 3. A power transmission line failure direction locating method according to claim 1 or 2, characterized in that the fault direction locating result is transmitted to a remote location by wire or wirelessly. 4. The method according to claim 2, wherein the power supply for the signal conversion circuit and the determination circuit is created from the induced voltage induced in the overhead ground wire, which has at least one end insulated and ungrounded. Fault direction locating method.
JP23903090A 1990-09-11 1990-09-11 Transmission line fault direction locating method Expired - Lifetime JP2866172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23903090A JP2866172B2 (en) 1990-09-11 1990-09-11 Transmission line fault direction locating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23903090A JP2866172B2 (en) 1990-09-11 1990-09-11 Transmission line fault direction locating method

Publications (2)

Publication Number Publication Date
JPH04120478A true JPH04120478A (en) 1992-04-21
JP2866172B2 JP2866172B2 (en) 1999-03-08

Family

ID=17038840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23903090A Expired - Lifetime JP2866172B2 (en) 1990-09-11 1990-09-11 Transmission line fault direction locating method

Country Status (1)

Country Link
JP (1) JP2866172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384352A (en) * 2021-12-06 2022-04-22 清华大学 Overhead line icing monitoring method and device based on ground wire electromagnetic signal
CN114396860A (en) * 2021-12-06 2022-04-26 清华大学 Sag monitoring method and device during capacity increase of power transmission line based on ground wire electromagnetic signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287298B1 (en) * 2019-12-26 2021-08-06 주식회사 씨앤유글로벌 Method for detecting leakage current through ground wire between electric poles and system for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384352A (en) * 2021-12-06 2022-04-22 清华大学 Overhead line icing monitoring method and device based on ground wire electromagnetic signal
CN114396860A (en) * 2021-12-06 2022-04-26 清华大学 Sag monitoring method and device during capacity increase of power transmission line based on ground wire electromagnetic signal
CN114384352B (en) * 2021-12-06 2023-09-19 清华大学 Overhead line icing monitoring method and device based on ground wire electromagnetic signals

Also Published As

Publication number Publication date
JP2866172B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
EP2510599B1 (en) Line fault detector
CN104502807B (en) Cable line fault localization method and device, system
US8102634B2 (en) Differential protection method, system and device
CN106877305A (en) New arc suppression coil earthing compensation device with grounding shunt function
JP4142608B2 (en) Tree contact monitoring device for distribution lines
US3581152A (en) Round protection and detecting for high voltage dc transmission system
CN108051693A (en) A kind of method of the raising earth fault judgment accuracy based on TAS devices
JPH04120478A (en) Determining method of direction of fault of trans mission line
Owen The historical development of neutral grounding practices
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
JPS6215473A (en) Locating method for fault point of transmission line
FI115093B (en) Protection relay arrangement for short circuit and earth fault protection of power distribution network
JP3226554B2 (en) Locating the accident section of the transmission line
JPS5946867A (en) Searching system of slight ground-fault point
JP3026055B2 (en) Transmission line accident aspect identification method and device
CN108267672A (en) A kind of application method of overhead transmission line fault-indicating system
CN207457410U (en) Detecting fault line for un-ground neutral power system
JPH0599976A (en) Specifying apparatus of direction of failure of aerial wire
KR200338379Y1 (en) Fault Pinpointing Transceiver for Overhead Transmission Line
JPH0283467A (en) Apparatus for detecting distribution line accident section
JPH0552467B2 (en)
JPH03199982A (en) System for spotting fault point in transmission line
JPS6127305Y2 (en)
JPH03199981A (en) System for spotting fault section of transmission line
JPS6212876A (en) Fault point standardization system for transmission line