JPH03199981A - System for spotting fault section of transmission line - Google Patents

System for spotting fault section of transmission line

Info

Publication number
JPH03199981A
JPH03199981A JP33671589A JP33671589A JPH03199981A JP H03199981 A JPH03199981 A JP H03199981A JP 33671589 A JP33671589 A JP 33671589A JP 33671589 A JP33671589 A JP 33671589A JP H03199981 A JPH03199981 A JP H03199981A
Authority
JP
Japan
Prior art keywords
transmission line
phase
current
ground
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33671589A
Other languages
Japanese (ja)
Other versions
JPH0736032B2 (en
Inventor
Takayuki Iwama
岩間 貴行
Kimiharu Kanamaru
金丸 公春
Junichi Minafuji
皆藤 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP33671589A priority Critical patent/JPH0736032B2/en
Publication of JPH03199981A publication Critical patent/JPH03199981A/en
Publication of JPH0736032B2 publication Critical patent/JPH0736032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To judge a section wherein a fault occurs when the phase differences of neighboring two points are largely different by providing a plurality of detecting points along transmission lines, and detecting the phase difference between a voltage with respect to the ground and a current with respect to each phase of the transmission line at each detecting point. CONSTITUTION:A plurality of sensors 2 for spotting a faulty section are provided at a specified interval along transmission lines 1 for the phases of R, S and T of the transmission lines 1. The sensors 2 are suspended from the transmission lines in the vicinity of a steel tower 3. The phase difference between the voltages with respect to the ground in the transmission line 1 to which the sensor belongs and the current with respect to the voltage is detected. The information of the current phase is transmitted to a receiving device 4 on the side of a ground-potential part by radio. The device 4 evaluates the presence or absence of a fault in the transmission line with a part between the sensors 2 and 2 as a unit. The result of the evaluation is transmitted to the upper part of the steel tower 3 through an approach optical fiber 5 and further transmitted to a remote point through a composite overhead earth wire 6 of an optical fiber. The results are collected at a central monitoring station.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送電線に発生する短絡事故、地絡事故等の発
生区間を検出する故障区間標定方式、特に各相の電線の
電圧、電流情報を利用するようにした送電線故障区間標
定方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fault section locating method for detecting sections where short circuit accidents, ground faults, etc. occur in power transmission lines, and in particular, a fault section locating method for detecting sections where short circuit accidents, ground faults, etc. occur in power transmission lines, and in particular, a fault section locating method for detecting sections where short circuit accidents, ground faults, etc. The present invention relates to a method for locating faulty sections of power transmission lines that utilizes information.

[従来の技術] 送電線は、今日の電力供給業務上必要且つ不可欠な設備
であり、この設備の事故又は故障は高度に電化した現代
社会に極めて重大な影響を及ぼし、場合によってはあら
ゆる方面での社会機能が麻痺することも有り得る。
[Prior Art] Power transmission lines are necessary and indispensable equipment for today's power supply operations, and accidents or failures of this equipment can have an extremely serious impact on today's highly electrified society, and in some cases can cause damage in all directions. It is possible that the social functions of people may be paralyzed.

このため、落雷事故等から送電線を保護するため、架空
地線が敷設され、また閃絡事故を防止するべく極めて信
頼性の高い絶縁支持方法が採用されているが、なお落雷
事故や閃絡事故を全く無くするまでには至っていない。
For this reason, to protect power transmission lines from lightning strikes, etc., overhead ground wires have been laid, and extremely reliable insulation support methods have been adopted to prevent flash faults. We have not yet reached the point of completely eliminating accidents.

そこで、万一これらの事故が送電線に発生した場合、そ
の発生位置を速やかに確立することが次善の課題となっ
ている。
Therefore, in the event that such an accident occurs on a power transmission line, the next best challenge is to quickly establish the location of the accident.

送電線の事故発生位置を検出する方法として、従来、例
えばサージ受信方式、パルスレーダ一方式等のいわゆる
フォールトロゲータ(FL)が採用されている。これら
は変電所等の送電線の両端において、故障サージ等の到
達時間を計測し、故障点までの距離を算出するものであ
る。
Conventionally, so-called fault rogators (FL), such as a surge reception method or a pulse radar type, have been employed as a method for detecting the location of an accident on a power transmission line. These measures the arrival time of a fault surge, etc. at both ends of a power transmission line such as a substation, and calculate the distance to the fault point.

「発明が解決しようとする課題] ところが、これらの従来採用されているPLでは、多分
岐線路を有する送電線においては、正確な故障点の標定
か難しいという難点があった。
[Problems to be Solved by the Invention] However, these conventionally employed PLs have a drawback in that it is difficult to accurately locate failure points in power transmission lines having multi-branch lines.

本発明の目的は、前記した従来技術の欠点を解消し、複
雑な構成の送電線においても正確な故障位置の標定を可
能とする送電線故障区間標定方式を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a power transmission line fault section locating method that eliminates the drawbacks of the prior art described above and enables accurate fault position location even in a power transmission line with a complicated configuration.

[課題を解決するための手段] 本発明は、送電線に発生する短絡事故、地絡事故等の発
生区間を検出する送電線故障区間標定方式において、送
電線に沿って複数の検出地点を設け、各検出地点におい
ては送電線の各相について対地電圧と電流の位相差を検
出し、各相の隣接2地点の位相差の差が大きく異なる場
合に、当該区間に故障が発生したと判定するものである
[Means for Solving the Problems] The present invention provides a power transmission line failure section locating method for detecting sections where short circuit accidents, ground faults, etc. occur on power transmission lines, and a plurality of detection points are provided along the power transmission line. At each detection point, the phase difference between ground voltage and current is detected for each phase of the power transmission line, and if the phase difference between two adjacent points of each phase is significantly different, it is determined that a failure has occurred in that section. It is something.

本方式は、上記複数の検出地点において、各相の電線上
の当該相の対地電圧に対する電流の位相差を検出するセ
ンサを設置し、各センサの検出結果を無線又は光ファイ
バ伝送により大地電位部に送る方式とするのが好ましい
This method installs sensors that detect the phase difference of the current with respect to the ground voltage of each phase on the electric wire at the plurality of detection points mentioned above, and transmits the detection results of each sensor to the ground potential by wireless or optical fiber transmission. It is preferable to send the information to

[作用] 送電線路に沿った複数の各検出地点においては、送電線
の各相全ての電線につき、同一電線上の隣接2地点間の
電流の相対的な位相差が監視される6ある1相の送電線
に地絡故障が発生した場合、この事故点を挾む両側の検
出地点においては、それぞれ流れる方向が逆向き(即ち
、逆位相)の故障電流が検出され、相対的な位相差が大
きく異なって来る。従って、この相対的位相差から当該
区間に故障が発生したと判定することができる。
[Operation] At each of the plurality of detection points along the power transmission line, the relative phase difference of the current between two adjacent points on the same wire is monitored for all the wires of each phase of the power transmission line. When a ground fault occurs in a power transmission line, fault currents flowing in opposite directions (that is, opposite phases) are detected at the detection points on both sides of the fault point, and the relative phase difference is It's going to be very different. Therefore, it can be determined from this relative phase difference that a failure has occurred in the section.

各相の隣接2地点間の電流の位相差を検出するためには
、基準となる共通の位相情報あるいは時間情報が必要と
なるが、各相の対地電圧の位相を基準として使用するの
が簡便である。従って、本発明の具体的な形態における
各センサは、各相の電線上の当該相の対地電圧に対する
電流の位相差を検出する。この各センサの検出結果は、
送電線が常時高電圧に充電されていることを考慮し、無
線又は光ファイバ伝送により大地電位部に送られ、評価
されることになる。
In order to detect the phase difference of current between two adjacent points of each phase, common phase information or time information is required as a reference, but it is convenient to use the phase of the ground voltage of each phase as a reference. It is. Therefore, each sensor in a specific embodiment of the present invention detects the phase difference of the current on the electric wire of each phase with respect to the ground voltage of that phase. The detection results of each sensor are
Considering that the power transmission line is always charged at a high voltage, it will be sent to the ground potential section by wireless or optical fiber transmission and evaluated.

[実施例] 以下、本発明の送電線故障区間標定方式を、実施例を示
す図を用いて詳細に説明する。
[Example] Hereinafter, the power transmission line failure section locating method of the present invention will be described in detail using figures showing examples.

第1図は、本発明送電線故障区間標定方式の一実施例を
示す構成図であり、第2図は、その動作を示す対地電圧
、電流波形の説明図である。
FIG. 1 is a block diagram showing an embodiment of the power transmission line failure section locating method of the present invention, and FIG. 2 is an explanatory diagram of ground voltage and current waveforms showing the operation thereof.

送電線1のR,S、T各相には、故障区間標定用の複数
のセンサ2が送電線1に沿って所定の間隔を隔てて設置
されている。これらのセンサ2は、この実施例では鉄塔
3の付近にて送電線1に吊り下げられおり、自己が所属
する送電線1の対地電圧と該電圧に対する電流の位相差
とを検出し、その電流位相情報を無線により大地電位部
側の受信装置4に送信する機能を有する。受信装置4は
、受信した情報を基に、各センサ2,2間を単位とする
送電線の故障の有無を評価する。この評価結果は、アプ
ローチ光ケーブル5により鉄塔3の上部まで伝送され、
更に光ファイバ複合架空地線(OPGW>6を通して遠
隔地点に光伝送され、図示してない中央監視局で収集さ
れる。
In each of the R, S, and T phases of the power transmission line 1, a plurality of sensors 2 for locating a fault area are installed at predetermined intervals along the power transmission line 1. In this embodiment, these sensors 2 are suspended from the power transmission line 1 near the steel tower 3, and detect the ground voltage of the power transmission line 1 to which they belong and the phase difference of the current with respect to this voltage, and calculate the current. It has a function of wirelessly transmitting phase information to the receiving device 4 on the ground potential side. The receiving device 4 evaluates whether or not there is a failure in the power transmission line between each sensor 2 based on the received information. This evaluation result is transmitted to the top of the steel tower 3 via the approach optical cable 5,
Further, the data is optically transmitted to a remote point through an optical fiber composite overhead ground wire (OPGW>6) and collected at a central monitoring station (not shown).

いま、第1図中のT相の送電線1における0点に地絡故
障が発生した場合、0点を挾むA及びBのセンサ2,2
には、それぞれ、第2図の如く、流れる方向が逆向き(
即ち、逆位相)の故障電流I 1. I 2が流れる。
Now, if a ground fault occurs at the 0 point on the T-phase power transmission line 1 in Figure 1, the sensors A and B that sandwich the 0 point
As shown in Figure 2, the flow direction is opposite (
That is, the fault current I (in opposite phase) 1. I2 flows.

従って、送電線1のR,S。Therefore, R and S of the power transmission line 1.

T各相の個々のセンサ2で測定される位相差(絶対的位
相差)を中央監視局で収集し、同じ相の送電線1に属す
る隣接センサ2,2間の相対的な電流位相差Δφを常時
監視することによって、故障区間を標定することができ
る。
The phase difference (absolute phase difference) measured by each sensor 2 of each phase is collected at a central monitoring station, and the relative current phase difference Δφ between adjacent sensors 2 belonging to the transmission line 1 of the same phase is calculated. By constantly monitoring the fault area, it is possible to locate the fault area.

本実施例の場合、上記A、Bのセンサ2,2が、それぞ
れ第2図に示す故障時の対地電圧Vl、V2及び電流I
 1. I 2を計測すると共に、各々のセンサ2は独
自に計測した電圧V1.V2に対する電流I i、 I
 2の位相差φ^、φBをも算出する。A、Bのセンサ
2,2で測定される対地電圧v1とv2は等しいことか
ら、受信装置4側では、Aのセンサで測定される電流の
位相差φ八とBのセンサで測定される電流の位相差φB
との差(φB−φA)を計算することにより、電流■1
と12の位相差Δφ(Δφ−φB−φ八)を検出し、Δ
φか大きい区間を故障発生区間と標定する。
In the case of this embodiment, the sensors 2, 2 of A and B are connected to ground voltages Vl, V2 and current I at the time of failure, respectively, as shown in FIG.
1. I2, each sensor 2 also measures an independently measured voltage V1. Current I i, I for V2
2 phase differences φ^ and φB are also calculated. Since the ground voltages v1 and v2 measured by the sensors 2 and 2 of A and B are equal, on the receiving device 4 side, the phase difference φ8 between the current measured by the sensor A and the current measured by the sensor B The phase difference φB
By calculating the difference (φB - φA), the current ■1
The phase difference Δφ (Δφ − φB − φ8) between and 12 is detected, and Δ
The section where φ is larger is designated as the section where the failure occurs.

第3図は、上記送電線故障区間標定方式のセンサ1の構
成例を示したものである。
FIG. 3 shows an example of the configuration of the sensor 1 of the above-mentioned power transmission line failure section locating method.

送電線1に吊り下げられなセンサ・ケース21内には、
送電線1に挿着したロゴスキーコイル22に接続された
電流検出回路23と、センサ・ケース21の大地に対す
る浮遊容量C×に流入する充電電流lxから対地電圧を
検出する電圧検出回路24が設けられている。また、セ
ンサ・ケース21内には、これら電圧検出回路24から
の電圧情報及び電流検出回路23からの電流情報をもと
に、電圧に対する電流の絶対的位相差(φA。
Inside the sensor case 21 that is suspended from the power transmission line 1,
A current detection circuit 23 connected to the Rogowski coil 22 inserted into the power transmission line 1 and a voltage detection circuit 24 for detecting the ground voltage from the charging current lx flowing into the stray capacitance Cx of the sensor case 21 with respect to the ground are provided. It is being Also, inside the sensor case 21, based on the voltage information from the voltage detection circuit 24 and the current information from the current detection circuit 23, an absolute phase difference (φA) between the current and the voltage is determined.

φB)を検出する位相差検出回路25と、該位相差検出
回路25から得られた結果を送信するための無線送信8
126及び送信アンテナ27が設けられている。
a phase difference detection circuit 25 for detecting φB), and a wireless transmission 8 for transmitting the results obtained from the phase difference detection circuit 25.
126 and a transmitting antenna 27 are provided.

センサ・ケース21内部の各構成回路の電源は、送電線
1に装着した電源用電流トランス28及びこれに接続さ
れなセンサ・ケース21内の直流電源回路29により、
送電線1に流れる常時の負荷電流から取得している。直
流電源回路29は蓄電池を内蔵しており、これに充電し
ながらケース内の各構成回路へ給電しているため、電池
交換等の保守は不要となっている。
The power supply for each component circuit inside the sensor case 21 is provided by a power supply current transformer 28 attached to the power transmission line 1 and a DC power supply circuit 29 inside the sensor case 21 that is not connected to this.
It is obtained from the constant load current flowing through the power transmission line 1. The DC power supply circuit 29 has a built-in storage battery, and since it supplies power to each component circuit in the case while charging the battery, maintenance such as battery replacement is not required.

電圧検出回路24からの換算対地電圧及び電流検出回路
23からの検出電流は、それぞれ位相差検出回路25に
入力され、該回路で電圧に対する電流の位相差(φA、
φB)が検出される。位相差検出回路25からの位相差
情報は、無線送信機26及び送信アンテナ27によって
受信装置4に伝送され、ここでφ^、φBの相対的位相
差Δφが算出される。この計算結果は、更に受信装置4
からアプローチ光ケーブル5及び光ファイバ複合架空地
線6を通して遠隔地点の中央監視局に光伝送される。
The converted ground voltage from the voltage detection circuit 24 and the detected current from the current detection circuit 23 are input to a phase difference detection circuit 25, which calculates the phase difference between the current and the voltage (φA,
φB) is detected. The phase difference information from the phase difference detection circuit 25 is transmitted to the receiving device 4 by the radio transmitter 26 and the transmitting antenna 27, where the relative phase difference Δφ between φ^ and φB is calculated. This calculation result is further applied to the receiving device 4.
From there, it is optically transmitted to a central monitoring station at a remote location via an approach optical cable 5 and an optical fiber composite overhead ground wire 6.

上記実施例では電線1の対地電圧を基準に各センサの電
流位相を検出しているが、その理由は、センサ2は第3
図に示した通り電流を単独に測定し、無線によって伝送
するなめにセンサ相互の時間的対応を取る必要があるな
めである。従って、センサ相互の共通の基準として時間
情報を利用することもできる。
In the above embodiment, the current phase of each sensor is detected based on the ground voltage of the electric wire 1. The reason for this is that the sensor 2
As shown in the figure, since the current is measured individually and transmitted wirelessly, it is necessary to take time correspondences between the sensors. Therefore, time information can also be used as a common reference between sensors.

また、上記実施例では、無線によりセンサ2から受信装
置4へ検出結果を伝送しているが、光ファイバにより伝
送することもできる。
Further, in the above embodiment, the detection results are transmitted wirelessly from the sensor 2 to the receiving device 4, but the detection results may also be transmitted using an optical fiber.

[発明の効果] 以上説明した通り、本発明の送電線故障区間標定方式に
よれば、送電線の途中に検出センサを設置し、故障情報
をきめ細かく入手可能であり、しかも送電線の各招電線
上に直接検出センサを設置しているなめに、従来採用さ
れているFLでは正確な故障点の標定か難しい多分岐線
路を有する送電線においても、正確な標定が可能である
という極めて顕著な効果を有するものである。
[Effects of the Invention] As explained above, according to the power transmission line failure section locating method of the present invention, it is possible to install a detection sensor in the middle of a power transmission line, obtain detailed failure information, and also Because the direct detection sensor is installed above the cable, it has the extremely remarkable effect of being able to accurately locate the fault point even on power transmission lines with multi-branch lines, where it is difficult to locate fault points using conventional FLs. It has the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の送電線故障区間標定方式の一実施例を
示す構成図、第2図は第1図の動作を説明する電圧、電
流波形の説明図、第3図は本発明の送電線故障区間標定
方式に使用可能な故障区間標定用のセンサの構成例を示
す図である。 図中、1は送電線、2は故障区間標定用のセンサ、3は
鉄塔、4は受信装置、5はアプローチ光ケーブル、6は
光ファイバ複合架空地線、21はセンサ・ケース、22
はロゴスキーコイル、23は電流検出回路、24は電圧
検出回路、25は位相差検出回路、26は無線送信機、
27は送信アンテナ、28は電源用電流トランス、29
は直流電源回路を示す。  0
FIG. 1 is a block diagram showing an embodiment of the power transmission line failure section locating method of the present invention, FIG. 2 is an explanatory diagram of voltage and current waveforms to explain the operation of FIG. 1, and FIG. FIG. 2 is a diagram illustrating a configuration example of a sensor for locating a faulty section that can be used in the electric wire faulty section locating method. In the figure, 1 is a power transmission line, 2 is a sensor for fault area location, 3 is a steel tower, 4 is a receiving device, 5 is an approach optical cable, 6 is an optical fiber composite overhead ground wire, 21 is a sensor case, 22
is a Rogowski coil, 23 is a current detection circuit, 24 is a voltage detection circuit, 25 is a phase difference detection circuit, 26 is a wireless transmitter,
27 is a transmitting antenna, 28 is a power supply current transformer, 29
indicates a DC power supply circuit. 0

Claims (1)

【特許請求の範囲】 1、送電線に発生する短絡事故、地絡事故等の発生区間
を検出する方式において、送電線に沿って複数の検出地
点を設け、各検出地点においては送電線の各相について
対地電圧と電流の位相差を検出し、各相の隣接2地点の
位相差の差が大きく異なる場合に、当該区間に故障が発
生したと判定することを特徴とする送電線故障区間標定
方式。 2、上記複数の検出地点において、各相の電線上の当該
相の対地電圧と電流の位相差を検出するセンサを設置し
、各センサの検出結果を無線又は光ファイバ伝送により
、大地電位部に送ることを特徴とする請求項1記載の送
電線故障区間標定方式。
[Claims] 1. In a method for detecting sections where short circuit accidents, ground faults, etc. occur on power transmission lines, a plurality of detection points are provided along the power transmission line, and each detection point Transmission line fault section locating, which detects the phase difference between ground voltage and current for each phase, and determines that a fault has occurred in the section if the phase difference between two adjacent points of each phase is significantly different. method. 2. At the multiple detection points mentioned above, install sensors that detect the phase difference between the ground voltage and current of each phase on the wire, and transmit the detection results of each sensor to the ground potential section by wireless or optical fiber transmission. 2. The transmission line fault section locating method according to claim 1, wherein:
JP33671589A 1989-12-27 1989-12-27 Transmission line fault section location method Expired - Lifetime JPH0736032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33671589A JPH0736032B2 (en) 1989-12-27 1989-12-27 Transmission line fault section location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33671589A JPH0736032B2 (en) 1989-12-27 1989-12-27 Transmission line fault section location method

Publications (2)

Publication Number Publication Date
JPH03199981A true JPH03199981A (en) 1991-08-30
JPH0736032B2 JPH0736032B2 (en) 1995-04-19

Family

ID=18302043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33671589A Expired - Lifetime JPH0736032B2 (en) 1989-12-27 1989-12-27 Transmission line fault section location method

Country Status (1)

Country Link
JP (1) JPH0736032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220981A (en) * 2013-04-30 2014-11-20 ケーエイチバテック カンパニー リミテッド Transmission line tower power supply system and method employing optical power transmission device, and data transmission/reception method employing optical power transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220981A (en) * 2013-04-30 2014-11-20 ケーエイチバテック カンパニー リミテッド Transmission line tower power supply system and method employing optical power transmission device, and data transmission/reception method employing optical power transmission device

Also Published As

Publication number Publication date
JPH0736032B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US9823637B2 (en) Fault detection and isolation using a common reference clock
US8861155B2 (en) High-impedance fault detection and isolation system
US7518529B2 (en) Monitoring device for a medium voltage overhead line
US7191074B2 (en) Electric power monitoring and response system
RU2372624C1 (en) Method for detection of single-phase earth fault location in ramified overhead power transmission line, method for detection of phase-to-phase short circuit in ramified overhead power transmission line and device for current and voltage monitoring for their realisation
KR101766633B1 (en) Leakage current detection system for overhead transmission and distribution line
KR20150059103A (en) Mobile Apparatus And Method For Locating Earth Leaking Point
KR100594778B1 (en) Tester for detection of 3-phase information, method of the detection and system thereof
CN103487725A (en) Overhead distributing line ground fault indicating device based on zero-sequence component method
JPH03199981A (en) System for spotting fault section of transmission line
KR100506009B1 (en) Electric supply automation system
JPH10170589A (en) In-substation failure point locating device
RU2455654C1 (en) Method for identification of damaged section and nature of damage within electric power grid of ramified topology
JP3844757B2 (en) Feeder fault location system
JP2866172B2 (en) Transmission line fault direction locating method
RU108637U1 (en) DEVICE FOR DETERMINING THE DISTANCE FROM THE POWER SUPPLY TO THE PLACE OF TERMINATION OF THE INSULATED CONNECTOR OF THE THREE-PHASE AIR LINE WITH A VOLTAGE OVER 1000 V LOCATED ON THE SUPPLIES OF THE CONTACT AC NETWORK
US6859025B2 (en) Measurement of quantities of electric line
JPS6215473A (en) Locating method for fault point of transmission line
JP2721567B2 (en) Transmission line fault location method
KR200338379Y1 (en) Fault Pinpointing Transceiver for Overhead Transmission Line
JPH03199903A (en) Apparatus for detecting looseness of transmission line
JP2891695B1 (en) Failure detection device for switching switches for AC electric railways
Zaitsev et al. Faults Indicators in Electric Distribution Network: Review, Indicator Architecture and Measuring Elements
WO2019190170A1 (en) Device and method for detecting high-voltage power distribution line path having improved stability
JPH02262073A (en) Apparatus for detecting accident point of transmission line