JPH03199903A - Apparatus for detecting looseness of transmission line - Google Patents

Apparatus for detecting looseness of transmission line

Info

Publication number
JPH03199903A
JPH03199903A JP1336716A JP33671689A JPH03199903A JP H03199903 A JPH03199903 A JP H03199903A JP 1336716 A JP1336716 A JP 1336716A JP 33671689 A JP33671689 A JP 33671689A JP H03199903 A JPH03199903 A JP H03199903A
Authority
JP
Japan
Prior art keywords
transmission line
power transmission
ground
sensor
sag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1336716A
Other languages
Japanese (ja)
Other versions
JP2641780B2 (en
Inventor
Takayuki Iwama
岩間 貴行
Kimiharu Kanamaru
金丸 公春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP1336716A priority Critical patent/JP2641780B2/en
Publication of JPH03199903A publication Critical patent/JPH03199903A/en
Application granted granted Critical
Publication of JP2641780B2 publication Critical patent/JP2641780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To correctly monitor the looseness of a power line at all times by receiving the result of detection by each sensor at a potential part of the earth and obtaining the distance between the lowest point of the lowest phase of the power line and the surface of the ground. CONSTITUTION:A looseness sensor 3 hung in the vicinity of a supporting point 11 of a transmission line 1 of the lowest phase forms a stray capacitance C1 between a sensor casing 31 and the surface 5 of the ground. Similarly, a looseness sensor 4 hung at the lowest point 12 forms a stray capacitance C2 between the casing 31 and the surface 5. Charging current measuring circuits 32 in the sensors 3, 4 measure the stray capacitances C1, C2 in the form of charging currents I1, I2, respectively. The currents I1, I2 measured by the circuits 32 are sent to a looseness operating device 6 as a radio signal via a radio antenna 34 by a radio transmitter 33. The device 6 obtains the distance between the lowest point 12 of the transmission line 1 of the lowest phase and the surface 5 of the ground with use of the result of detection of stray capacitances to the ground which is fed from the sensors 3, 4, thereby presuming the looseness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は送電線の弛度を監視するための送電線弛度検知
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power transmission line sag detection device for monitoring the sag of a power transmission line.

[従来の技術] 送電線は、今日の送電線業務上必要な不可欠な設備であ
り、この設備の事故又は故障は高度に電化した現代社会
に極めて重大な影響を及ぼし、場合によってはあらゆる
方面での社会機能が麻痺することもありうる。従って、
送電線を絶えず健全な状態に保守することは極めて重要
である。
[Prior Art] Power transmission lines are indispensable equipment necessary for today's power transmission line operations, and accidents or failures of this equipment have an extremely serious impact on today's highly electrified society, and in some cases can cause damage in all directions. social functions may be paralyzed. Therefore,
It is extremely important to constantly maintain power transmission lines in a healthy condition.

送電線の保守上重要な項目の一つに、送電線の弛度の管
理が挙げられる。送電線の弛度は、送電線に流れる電流
の状況、周囲気温、日射の状況、風等により絶えず変化
しており、極端な弛度の増加は@物との離隔距離の減少
をもならし、閃絡事故等の重大事故を引き起こす危険が
ある。このため、従来は、弛度計算による管理と共に必
要に応じて保守員が現地に赴き、測量器具、絶縁棒等に
より離隔計測していた。
One of the important items in the maintenance of power transmission lines is the management of sag in the power lines. The sag of power transmission lines constantly changes depending on the current flowing through the transmission line, ambient temperature, solar radiation, wind, etc., and an extreme increase in sag leads to a decrease in the separation distance from objects. , there is a risk of causing serious accidents such as flashover accidents. For this reason, in the past, maintenance personnel were required to go to the site and perform measurements at a distance using surveying instruments, insulating rods, etc., in addition to management based on sag calculations.

[発明が解決しようとする課題] ところが、前記した従来技術では実際の現地の送電線の
状況を常時的確に把握することが難しく、しかも多大の
マンパワーを必要とするため、送電線の弛度を常時計測
可能なセンシング技術の開発が強く望まれていた。
[Problem to be solved by the invention] However, with the above-mentioned conventional technology, it is difficult to accurately grasp the actual situation of the power transmission line at all times, and it requires a large amount of manpower. There was a strong desire to develop sensing technology that could perform constant measurements.

本発明の目的は、前記した従来技術の欠点を解消し、常
時的確な送電線の弛度監視が可能な送電線弛度検知装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power transmission line sag detection device that eliminates the drawbacks of the prior art described above and is capable of constantly and accurately monitoring the sag of a power transmission line.

[課題を解決するための手段] 本発明の送電線弛度検知装置は、鉄塔に支持された架空
送電線における最下相の送電線の最下点及び鉄塔支持点
付近に、各々対地浮遊容量検出手段と該検出結果を大地
電位部に伝送する送信手段とを具備したセンサを取り付
け、大地電位部において各々のセンサからの検出結果を
受信し、両者の対地浮遊容量検出結果を用いて該送電線
の最下相の最下点と地表面との距離を求め弛度を推定す
る演算手段を設けたものである。
[Means for Solving the Problems] The power transmission line sag detection device of the present invention detects ground floating capacitance at the lowest point of the lowest phase power transmission line and near the tower support point in an overhead power transmission line supported by a steel tower. A sensor equipped with a detection means and a transmission means for transmitting the detection result to the earth potential section is installed, and the earth potential section receives the detection result from each sensor, and the ground potential section receives the detection result from each sensor, and transmits the detection result using the ground stray capacitance detection result of both. This system is equipped with calculation means for determining the distance between the lowest point of the lowest phase of the wire and the ground surface and estimating the sag.

上記対地浮遊容量検出手段としては、次の2つがある。There are two types of above-mentioned stray capacitance detection means as follows.

第1は、上記センサのケースを電極として該ケースと送
電線間が形成する静電容量及び該ケースと大地が形成す
る静電容量の直列回路につき、そのケースと送電線間の
電圧を測定して該ケースの対地浮遊容量を評価する回路
である。第2は、上記センサのケースを電極として該ケ
ースと大地間が形成する対地浮遊容量につき、その対地
浮遊容量に送電線から流れ込む充電電流を測定し、その
電流値によって該ケースと大地間の対地浮遊容量を評価
する充電電流測定回路である。
The first method is to measure the voltage between the case and the power transmission line using the case of the sensor as an electrode, and the capacitance formed between the case and the power transmission line, and the series circuit of the capacitance formed between the case and the ground. This circuit evaluates the ground stray capacitance of the case. The second method is to measure the stray capacitance to the ground formed between the case and the ground using the case of the sensor as an electrode, and measure the charging current that flows into the stray capacitance from the power transmission line. This is a charging current measurement circuit that evaluates stray capacitance.

上記センサと上記演算手段との間の伝送は、有線又は無
線のいずれでもよい。有線の場合には、上記センサと上
記演算手段との間に光ファイバを敷設し、該光ファイバ
によって上記各センサの検出結果を伝送することが好ま
しい。無線の場合には、上記センサの送信手段を、セン
サの検出結果を無線信号によって演算手段に伝送する無
線送信器とする。
Transmission between the sensor and the calculation means may be wired or wireless. In the case of a wired method, it is preferable to install an optical fiber between the sensor and the calculation means, and to transmit the detection results of each sensor through the optical fiber. In the case of wireless, the transmitting means of the sensor is a wireless transmitter that transmits the detection result of the sensor to the calculating means by a wireless signal.

また、上記センサは、送電線に流れる電流か電線周囲に
作る磁界から動作電源を抽出する電源回路を具備するこ
とが好ましい。
Preferably, the sensor includes a power supply circuit that extracts operating power from a current flowing through the power transmission line or a magnetic field created around the power line.

[作用] 本発明のの送電線弛度検知装置は、送電線の最下相の電
線において、弛度の最下点と鉄塔での支持点付近の2箇
所にセンサを取り付け、各々のセンサが計測する対地浮
遊容量により送電線の弛度を評価するものである。
[Function] The power transmission line sag detection device of the present invention has sensors installed at two locations on the lowest phase wire of the power transmission line, at the lowest point of sag and near the support point on the tower, and when each sensor This method evaluates the sag of power transmission lines based on the measured floating capacitance to the ground.

送電線の鉄塔支持点付近における大地との間の浮遊容量
は一定であるが、送電線の最下点における大地との間の
浮遊容量は、送電線の弛度に応じて変化し、それぞれ各
センサに設けた対地浮遊容量検出手段により検出される
。この検出結果は、各々のセンサの送信手段から有線又
は無線により大地電位部おける演算手段に伝送される。
The stray capacitance between the transmission line and the ground near the tower support point is constant, but the stray capacitance between the transmission line and the ground at the lowest point changes depending on the sag of the transmission line, and each It is detected by the ground stray capacitance detection means provided in the sensor. This detection result is transmitted from the transmitting means of each sensor to the calculating means in the earth potential section by wire or wirelessly.

演算手段は、受信した両センサからの対地浮遊容量検出
結果を用いて、送電線の最下相の最下点と地表面との距
離を求め、弛度を推定する。このため、送電線の弛度が
常時正確に監視できる。
The calculation means uses the received ground stray capacitance detection results from both sensors to determine the distance between the lowest point of the lowest phase of the power transmission line and the ground surface, and estimates the sag. Therefore, the slackness of the power transmission line can be accurately monitored at all times.

この電極と大地との浮遊容量の検出には、具体的には、
センサのケースを電極とし、送電線−電極−大地が形成
する静電容量分圧を利用して送電線−電極間の分圧電圧
を検出する方法と、電極大地間の浮遊容量に流れ込む充
電電流を送電線電極間に電流計測手段を接続して検出す
る方法とがある。
Specifically, to detect the stray capacitance between the electrode and the ground,
A method of detecting the partial voltage between the power transmission line and the electrode by using the sensor case as an electrode and using the capacitance partial pressure formed between the power transmission line, the electrode, and the earth, and the charging current that flows into the stray capacitance between the electrode and the earth. There is a method of detecting this by connecting a current measuring means between the electrodes of the power transmission line.

電線上に設置したセンサから大地電位部に計測結果を伝
送する方法としては、送電線は高電圧に充電されている
ため、有線による場合は、光ファイバによる伝送が好ま
しい。
As a method for transmitting measurement results from a sensor installed on an electric wire to a ground potential section, since the power transmission line is charged to a high voltage, transmission using an optical fiber is preferable.

また、送電線1に流れる電流自体から得る電源回路をセ
ンサに内蔵させると、電池交換等の保守が不必要となる
Furthermore, if the sensor has a built-in power supply circuit that derives from the current flowing through the power transmission line 1 itself, maintenance such as battery replacement becomes unnecessary.

[実施例] 以下、本発明の具体的内容を実態例によって詳細に説明
する。
[Example] Hereinafter, the specific contents of the present invention will be explained in detail by way of actual examples.

第1図は本発明の送電線弛度センサの動作を説明する原
理図である。絶縁碍子連を挿着した鉄塔2によって支持
された送電線のうち、最下相の送電線1には、鉄塔2で
の支持点付近11即ち引き止め部付近に、第2図に示す
構成の送電線弛度センサ3が取り付けられている。また
、この最下相の電線1の最下点12即ちいわゆるデツプ
底にも、同じ構成の送電線弛度センサ4が取り付けられ
ている。
FIG. 1 is a principle diagram illustrating the operation of the power transmission line sag sensor of the present invention. Among the power transmission lines supported by the steel tower 2 in which insulator chains are inserted, the lowest-phase power transmission line 1 has a transmission line with the configuration shown in FIG. A wire slackness sensor 3 is attached. Further, a power transmission line slack sensor 4 having the same configuration is also attached to the lowest point 12 of the lowest phase electric wire 1, that is, the so-called deep bottom.

第2図は、送電線弛度センサ3,4の具体的構成を示し
たもので、送電線1に吊下げたセンサケース31を有し
、このセンサケース31の内部において、センサケース
31と送電線1との間に低インビダンスの充電電流測定
回路32が接続されている。この充電電流測定回路32
は、センサケース31と大地表面5との間の対地浮遊容
量Cに流入する充電電流Iを測定するものであり、間接
的に対地浮遊容量検出手段として働く。何故なら、送電
線1の対地電圧をVとすると、この対地浮遊容量Cに流
入する充電電流Iは、次式で与えられるからである。
FIG. 2 shows the specific configuration of the power transmission line sag sensors 3 and 4, which have a sensor case 31 suspended from the power transmission line 1. Inside this sensor case 31, the sensor case 31 and the A low impedance charging current measuring circuit 32 is connected between the electric wire 1 and the electric wire 1 . This charging current measuring circuit 32
1 measures the charging current I flowing into the ground stray capacitance C between the sensor case 31 and the ground surface 5, and indirectly works as a ground stray capacitance detection means. This is because, assuming that the voltage to the ground of the power transmission line 1 is V, the charging current I flowing into this floating capacitance C to the ground is given by the following equation.

I=jωCXV       ・・・・・・ (1)更
に、センサケース31の内部には無線送信器33が設置
されており、充電電流測定回路32によって測定した充
電電流Iの値を、無線信号によって、センサケース31
の内部から外部へ現出させた無線アンテナ34から遠方
に送るようになっている。センサケース31内のこれら
各回路32゜33の電源は、送電線1に取付けた貫通型
電流トランス35と、センサケース31内に設けた電源
回路36とによって、送電線1に流れる電流自体から、
正確には電流が電線周囲に作る磁界かち得ている。その
ため、電池交換等の保守が不必要である。
I=jωCXV (1) Furthermore, a wireless transmitter 33 is installed inside the sensor case 31, and transmits the value of the charging current I measured by the charging current measuring circuit 32 by a wireless signal. Sensor case 31
The radio antenna 34 extends from the inside to the outside and transmits the signal to a long distance. The power source for each of these circuits 32 and 33 inside the sensor case 31 is derived from the current flowing through the power transmission line 1 by a through-type current transformer 35 attached to the power transmission line 1 and a power supply circuit 36 provided inside the sensor case 31.
To be precise, it is derived from the magnetic field created by the current around the wire. Therefore, maintenance such as battery replacement is unnecessary.

第1図に戻り、最下相の送電線1の支持点付近11に吊
下げた送電線弛度センサ3は、センサケース31と大地
表面5との間に浮遊容量C1を形成する。同様に、最下
点12に吊下げた送電線弛度センサ4は、センサケース
31と大地表面5との間に浮遊容量C2を形成する。送
電線弛度センサ3,4内の充電電流測定回路32は、こ
れら浮遊容量C1,C2を、それらの充電電流II。
Returning to FIG. 1, the power transmission line sag sensor 3 suspended near the support point 11 of the lowest phase power transmission line 1 forms a stray capacitance C1 between the sensor case 31 and the ground surface 5. Similarly, the power transmission line sag sensor 4 suspended at the lowest point 12 forms a stray capacitance C2 between the sensor case 31 and the ground surface 5. The charging current measurement circuit 32 in the power transmission line slackness sensors 3 and 4 measures these stray capacitances C1 and C2 using their charging current II.

I2の形で測定する。Measured in the form of I2.

支持点付近11の送電線弛度センサ3で計測される充電
電流11は、次式となる。
The charging current 11 measured by the power transmission line slack sensor 3 near the support point 11 is expressed by the following equation.

II =Jωci xv     ・・・・・・(2)
同様に、最下点12の送電線弛度センサ4で計測される
充電電流I2は、次式となる。
II = Jωci xv (2)
Similarly, the charging current I2 measured by the power transmission line slack sensor 4 at the lowest point 12 is expressed by the following equation.

I2 =JωC2XV     ・・・・・・(3)こ
れら電流計測回路32によって計測された充電電流11
.I2は、無線送信器33により無線アンテナ34から
無線信号として弛度演算装[6に送られる。
I2 = JωC2XV (3) Charging current 11 measured by these current measuring circuits 32
.. I2 is sent as a radio signal from the radio antenna 34 by the radio transmitter 33 to the sag calculation unit [6].

弛度演算装置6は、両送電線弛度センサ3,4から送ら
れて来た対地浮遊容量検出結果を用いて、最下相の送電
線1における最下点12と地表面5との間の距離を求め
、弛度を推定する演算を行う。
The sag calculation device 6 uses the ground stray capacitance detection results sent from both power transmission line sag sensors 3 and 4 to determine the distance between the lowest point 12 on the lowest phase power transmission line 1 and the ground surface 5. Find the distance and perform calculations to estimate the sag.

この実施例では、支持点11の送電線弛度センサ3の対
地浮遊容量C1は既知で且つ一定であることを利用し、
まず受信した充電電流値11 、12に基づいて他方の
対地浮遊容量C2を特定し、その結果に所定の関数を乗
算することによって、送0 電線1における最下点12と地表面5との間の距離を求
め、送電線1の弛度dを推定する。
In this embodiment, the ground stray capacitance C1 of the power transmission line slack sensor 3 at the support point 11 is known and constant, and
First, the other ground stray capacitance C2 is specified based on the received charging current values 11 and 12, and by multiplying the result by a predetermined function, the distance between the lowest point 12 on the transmission line 1 and the ground surface 5 is determined. , and estimate the sag d of the power transmission line 1.

即ち、弛度演算装置6は、まず上記(2)式及び(3)
式からVを消去し、次式により最下点12における送電
線弛度センサ4の対地浮遊容量C2を算出する。
That is, the sag calculation device 6 first calculates the above equations (2) and (3).
V is deleted from the equation, and the ground stray capacitance C2 of the power transmission line sag sensor 4 at the lowest point 12 is calculated using the following equation.

C2=C1xI2 /II   ・・・・・・ (4)
ここで、対地浮遊容量C1は一定であるため、11及び
■2が測定できれば、対地浮遊容量C2は計算できる。
C2=C1xI2/II (4)
Here, since the stray capacitance C1 to the ground is constant, if 11 and 2 can be measured, the stray capacitance C2 to the ground can be calculated.

次に、送電線1の最下点12における実際の地上高と、
その時のセンサケース31の対地浮遊容量C2との対応
関係は、事前に計算あるいは実験によって求めておくこ
とができ、また、その時の送電線1の弛度dは、成る関
数で示される。そこで、弛度演算装置6は、上記算出さ
れた対地浮遊容量C2を、この所定の関数に代入して送
電線1の弛度dを求める。
Next, the actual ground clearance at the lowest point 12 of the power transmission line 1,
The correspondence relationship with the ground stray capacitance C2 of the sensor case 31 at that time can be determined in advance by calculation or experiment, and the sag d of the power transmission line 1 at that time is expressed by a function. Therefore, the sag calculating device 6 calculates the sag d of the power transmission line 1 by substituting the above-described calculated stray capacitance to the ground C2 into this predetermined function.

今、送電線1の弛度dが増加し、送電線の最下相の最下
点12と大地表面5との距離が短くなる1 と、最下点12の送電線弛度センサ4の対地浮遊容量C
2は距離の短縮分に相当する容量だけ増加し、C2’と
なる。従って、弛度演算装置6に伝送される充電電流■
2の値も増加する。弛度演算装置6は、上記(4)式か
ら決定される対地浮遊容量C2°の値に基づき、当該送
電線1の最下点12における実際の地上高を算出し、当
該送電線1の現在の弛度dの値を求めて、現在の弛度d
の当否を判断する。
Now, the sag d of the power transmission line 1 increases, and the distance between the lowest point 12 of the lowest phase of the power transmission line and the earth surface 5 becomes shorter 1, and the distance between the transmission line sag sensor 4 at the lowest point 12 and the earth surface 5 decreases. Stray capacitance C
2 increases by the capacity corresponding to the shortened distance, and becomes C2'. Therefore, the charging current transmitted to the sag calculation device 6
The value of 2 also increases. The sag calculating device 6 calculates the actual ground clearance at the lowest point 12 of the power transmission line 1 based on the value of the floating capacitance C2° determined from the above equation (4), and calculates the current height of the power transmission line 1. Find the value of sag d and calculate the current sag d
judge whether it is appropriate or not.

このように、弛度演算装置6は対地浮遊容量C2の値を
監視するによって、送電線1の弛度dにつき、その適否
を評価することが可能である。
In this manner, the sag calculation device 6 can evaluate whether the sag d of the power transmission line 1 is appropriate by monitoring the value of the ground stray capacitance C2.

第2図に示した送電線弛度センサにおいては、対地浮遊
容量検出手段として電流計測回路32を設けたが、セン
サケース31を電極とすることによって、送電線1及び
センサケース31間に形成される静電容量と、センサケ
ース31及び大地表面5間に形成される静電容量(浮遊
容量)との直列回路を構成させておき、センサケース3
1内に送電線1とセンサケース31との間の電圧、即ち
 2 上記直列回路の分圧電圧を測定する電圧測定回路を設け
、これによってセンサケース31の対地浮遊容量を評価
することもできる。
In the power transmission line sag sensor shown in FIG. 2, a current measuring circuit 32 is provided as a ground stray capacitance detection means, but by using the sensor case 31 as an electrode, A series circuit is configured between the capacitance between the sensor case 31 and the capacitance (stray capacitance) formed between the sensor case 31 and the ground surface 5.
A voltage measurement circuit for measuring the voltage between the power transmission line 1 and the sensor case 31, that is, the divided voltage of the series circuit described above, is provided in the sensor case 1, and thereby the stray capacitance of the sensor case 31 to the ground can be evaluated.

上記実總例の送電線弛度検知装置においては、無線によ
って充電電流の計測結果を弛度演算装置6に伝送したが
、無線伝送によらず、有線によって光伝送することも可
能である。
In the above-described practical example of the power transmission line sag detection device, the measurement result of the charging current is transmitted to the sag calculation device 6 wirelessly, but it is also possible to optically transmit it by wire instead of wireless transmission.

例えば、送電線弛度センサ3と弛度演算装置6との間に
光ファイバを敷設すると共に、センサケース31内に有
線送信器として電気/光信号変換器を設け、充電電流測
定回路32の出力を電気/光信号変換器によって光信号
に変換し、上記光ファイバによって、地上の弛度演算装
置6に伝送することができる。
For example, an optical fiber is laid between the power transmission line sag sensor 3 and the sag calculation device 6, and an electric/optical signal converter is provided as a wired transmitter in the sensor case 31, and the charging current measurement circuit 32 outputs an optical fiber. can be converted into an optical signal by an electrical/optical signal converter and transmitted to the sag calculation device 6 on the ground via the optical fiber.

また、弛度演算装置6によって得られた結果を、鉄塔2
の光ファイバ複合架空地線(oPGW)に内蔵された光
ファイバを通して、遠隔の監視地点に光フアイバ伝送す
ることもできる。
In addition, the results obtained by the sag calculation device 6 are applied to the steel tower 2.
Fiber-optic transmission can also be carried out to remote monitoring points through optical fibers built into optical fiber composite overhead ground wires (oPGW).

[発明の効果] 以上説明した通り、本発明の送電線弛度検知装置3 置によれば、直接的に送電線の弛度が検出されるため、
送電線の弛度を常時的確に監視することが可能となる。
[Effects of the Invention] As explained above, according to the power transmission line sag detection device 3 of the present invention, the sag of the power transmission line is directly detected.
It becomes possible to constantly and accurately monitor the slackness of power transmission lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の送電線弛度検知装置の動作を説明する
原理図、第2図は本発明の送電線弛度検知装置のセンサ
の一実施例を示す構成図である。 図中、1は最下相の送電線、2は鉄塔、34は送電線弛
度センサ、5は大地表面、6は弛度演算装置、11は送
電線の支持点付近、12は送電線の最下点、31はセン
サケース、32は充電電流測定回路、33は無線送信器
、34は無線アンテナ、35貫通型電流トランス、36
は電源回路を示す。
FIG. 1 is a principle diagram illustrating the operation of the power transmission line sag detection device of the present invention, and FIG. 2 is a configuration diagram showing an embodiment of the sensor of the power transmission line sag detection device of the present invention. In the figure, 1 is the lowest phase transmission line, 2 is the steel tower, 34 is the transmission line sag sensor, 5 is the ground surface, 6 is the sag calculation device, 11 is the vicinity of the support point of the transmission line, and 12 is the transmission line sag sensor. The lowest point, 31 is a sensor case, 32 is a charging current measurement circuit, 33 is a wireless transmitter, 34 is a wireless antenna, 35 is a through-type current transformer, 36
indicates the power supply circuit.

Claims (1)

【特許請求の範囲】 1、鉄塔に支持された架空送電線における最下相の送電
線の最下点及び鉄塔支持点付近に、各々対地浮遊容量検
出手段と該検出結果を大地電位部に伝送する送信手段と
を具備したセンサを取り付け、大地電位部において各々
のセンサからの検出結果を受信し、両者の対地浮遊容量
検出結果を用いて該送電線の最下相の最下点と地表面と
の距離を求め弛度を推定する演算手段を設けたことを特
徴とする送電線弛度検知装置。 2、上記対地浮遊容量検出手段は、上記センサのケース
を電極として該ケースと送電線間が形成する静電容量及
び該ケースと大地が形成する静電容量の直列回路につき
、そのケースと送電線間の電圧を測定して該ケースの対
地浮遊容量を評価する回路であることを特徴とする請求
項1記載の送電線弛度検知装置。 3、上記対地浮遊容量検出手段は、上記センサのケース
を電極として該ケースと大地間が形成する対地浮遊容量
につき、その対地浮遊容量に送電線から流れ込む充電電
流を測定し、その電流値によって該ケースと大地間の対
地浮遊容量を評価する充電電流測定回路であることを特
徴とする請求項1記載の送電線弛度検知装置。 4、上記センサと上記演算手段との間に光ファイバを敷
設し、該光ファイバによって上記各センサの検出結果を
伝送することを特徴とする請求項1、2又は3記載の送
電線弛度検知装置。 5、上記センサの送信手段が該センサの検出結果を無線
信号によって上記演算手段に伝送する無線送信器である
ことを特徴とする請求項1、2又は3記載の送電線弛度
検知装置。6、上記センサが、送電線に流れる電流が電
線周囲に作る磁界から動作電源を抽出する電源回路を具
備することを特徴とする請求項1、2、3、4又は5記
載の送電線弛度検知装置。
[Scope of Claims] 1. Ground stray capacitance detection means and the detection results are transmitted to the ground potential section at the lowest point of the lowest phase power transmission line and near the tower support point in the overhead power transmission line supported by the steel tower, respectively. A sensor equipped with a transmitting means is installed, and the detection results from each sensor are received at the ground potential part, and the detection results of both ground stray capacitances are used to determine the lowest point of the lowest phase of the transmission line and the ground surface. A power transmission line sag detection device, characterized in that it is provided with a calculation means for determining the distance to the sag and estimating the sag. 2. The above ground stray capacitance detection means uses the case of the sensor as an electrode to detect a series circuit of capacitance formed between the case and the power transmission line, and a capacitance formed between the case and the ground. 2. The power transmission line sag detection device according to claim 1, wherein the circuit measures the voltage between the two and evaluates the ground stray capacitance of the case. 3. The ground stray capacitance detection means uses the case of the sensor as an electrode to measure the charging current flowing into the ground stray capacitance formed between the case and the ground from the power transmission line, and detects the ground based on the current value. 2. The power transmission line sag detection device according to claim 1, wherein the power transmission line sag detection device is a charging current measuring circuit that evaluates a ground stray capacitance between the case and the ground. 4. Transmission line sag detection according to claim 1, 2 or 3, characterized in that an optical fiber is laid between the sensor and the calculation means, and the detection results of each of the sensors are transmitted through the optical fiber. Device. 5. The power transmission line sag detection device according to claim 1, 2 or 3, wherein the transmitting means of the sensor is a wireless transmitter that transmits the detection result of the sensor to the calculating means by a wireless signal. 6. The power transmission line sag according to claim 1, 2, 3, 4, or 5, wherein the sensor includes a power supply circuit that extracts operating power from a magnetic field created around the wire by a current flowing through the power transmission line. Detection device.
JP1336716A 1989-12-27 1989-12-27 Transmission line sag detector Expired - Lifetime JP2641780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336716A JP2641780B2 (en) 1989-12-27 1989-12-27 Transmission line sag detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336716A JP2641780B2 (en) 1989-12-27 1989-12-27 Transmission line sag detector

Publications (2)

Publication Number Publication Date
JPH03199903A true JPH03199903A (en) 1991-08-30
JP2641780B2 JP2641780B2 (en) 1997-08-20

Family

ID=18302053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336716A Expired - Lifetime JP2641780B2 (en) 1989-12-27 1989-12-27 Transmission line sag detector

Country Status (1)

Country Link
JP (1) JP2641780B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289076A (en) * 2016-08-13 2017-01-04 哈尔滨理工大学 Power transmission line sag intelligent image on-line monitoring system
CN109115101A (en) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 Consider the method for the current field inverting conducting wire parameter of power transmission line sag
CN110906870A (en) * 2019-11-29 2020-03-24 河南送变电建设有限公司 Method for observing and adjusting lead through gear side sag with horizontal angle of 90 degrees

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213765A1 (en) * 2019-04-18 2020-10-22 주식회사 지오멕스소프트 System for measuring real-time vertical displacement of power transmission line by using barometer and thermometer
KR20220107456A (en) * 2021-01-25 2022-08-02 주식회사 엑사이트 Method for measuring dip of aerial power transmission line with Real Time Location Ssystem and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463394A (en) * 1977-10-31 1979-05-22 Showa Electric Wire & Cable Co Method of measuring slackness of aerial wire
JPS54140779U (en) * 1978-03-24 1979-09-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463394A (en) * 1977-10-31 1979-05-22 Showa Electric Wire & Cable Co Method of measuring slackness of aerial wire
JPS54140779U (en) * 1978-03-24 1979-09-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289076A (en) * 2016-08-13 2017-01-04 哈尔滨理工大学 Power transmission line sag intelligent image on-line monitoring system
CN109115101A (en) * 2018-07-05 2019-01-01 国网陕西省电力公司电力科学研究院 Consider the method for the current field inverting conducting wire parameter of power transmission line sag
CN110906870A (en) * 2019-11-29 2020-03-24 河南送变电建设有限公司 Method for observing and adjusting lead through gear side sag with horizontal angle of 90 degrees
CN110906870B (en) * 2019-11-29 2021-07-27 河南送变电建设有限公司 Method for observing and adjusting lead through gear side sag with horizontal angle of 90 degrees

Also Published As

Publication number Publication date
JP2641780B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
GB2345810B (en) Fault-detection apparatus
RU2003117020A (en) DEVICE AND METHOD FOR DETECTING A SHORT CIRCUIT TO THE EARTH AND CALCULATION OF ITS RESISTANCE
US9696367B2 (en) Apparatus and method of fault detection and location determination
CN206193087U (en) Non -contact overvoltage monitoring device based on electroluminescent effect
CN103412009A (en) Fluid conductivity sensor, and device and method for measuring fluid conductivity
CN110235004A (en) For detecting the waveform separator device and method of the leakage current in high voltage direct current Force system
CN104851581B (en) A kind of high accuracy number amount output electronic current mutual inductor
CN104267309A (en) Overhead transmission line distance measurement and fault diagnosis method based on magnetic field detection
JPH03199903A (en) Apparatus for detecting looseness of transmission line
JP2006304523A (en) Management system of power distribution facility and management method of power distribution facility
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
CN112985353A (en) Cable anti-settlement displacement monitoring method and system based on electromagnetic detection
KR20100037375A (en) Apparatus for measuring earth resistance
CN109444676A (en) Traveling wave fault positioning method based on touch Electric Field Mapping
US3491597A (en) Temperature monitored cable system and method
KR101527942B1 (en) Device For Measuring A Distance About Grounding Point Of The Control Cable In Railway Substation And Method Therefore
CN108169542B (en) Non-contact electricity testing device
CN106814294A (en) Based on bilateral bridge direct-current charging post insulation detecting circuit and detection method
JPH08103022A (en) Power system and monitor for electric facility
JPH0295130A (en) Transmission line abnormal approach detector for ground potential article
CN110617401A (en) Intelligent pipeline drainage system
US20220234632A1 (en) Broken rail detector
CN104654999B (en) For preventing engineering truck close to the apparatus and method of high-tension bus-bar
JPH04236111A (en) Device for monitoring accretion of snow on aerial power line
JP2921778B2 (en) Data transmission method near high-voltage charging section and abnormal approach warning system to high-voltage charging section