JPH0756433B2 - Heat storage - Google Patents

Heat storage

Info

Publication number
JPH0756433B2
JPH0756433B2 JP2207258A JP20725890A JPH0756433B2 JP H0756433 B2 JPH0756433 B2 JP H0756433B2 JP 2207258 A JP2207258 A JP 2207258A JP 20725890 A JP20725890 A JP 20725890A JP H0756433 B2 JPH0756433 B2 JP H0756433B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
substance
accumulator according
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2207258A
Other languages
Japanese (ja)
Other versions
JPH0490499A (en
Inventor
宜之 阿部
耕太郎 田中
明 根岸
正行 神本
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2207258A priority Critical patent/JPH0756433B2/en
Publication of JPH0490499A publication Critical patent/JPH0490499A/en
Publication of JPH0756433B2 publication Critical patent/JPH0756433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は蓄熱器に関し、特に伝熱性能が高く、かつ蓄
熱、放熱を高い効率で行うことができる蓄熱器に関する
ものである。
The present invention relates to a heat storage device, and more particularly to a heat storage device having high heat transfer performance and capable of performing heat storage and heat dissipation with high efficiency.

[従来の技術] 蓄熱器は化学反応を生じる物質、相変化に伴う潜熱を利
用する物質、顕熱を利用する物質等の蓄熱物質を、何ら
かの形で蓄熱器内に充填し、伝熱媒体によって間接的あ
るいは直接的に蓄熱物質と熱交換するものである。
[Prior Art] A heat storage device is filled with a heat storage substance such as a substance that causes a chemical reaction, a substance that uses latent heat associated with a phase change, a substance that uses sensible heat, etc. It indirectly or directly exchanges heat with the heat storage material.

第4図は従来の蓄熱器の一例を示す概略断面図である。
蓄熱物質1は容器2内に均一な分布状態で充填されてい
る。熱媒体3は蓄熱器ケース4に設けられた入口5から
ケース内に入り、容器2の壁面と接触して熱交換を行い
ながら出口6から出て行く。
FIG. 4 is a schematic sectional view showing an example of a conventional heat storage device.
The heat storage substance 1 is filled in the container 2 in a uniformly distributed state. The heat medium 3 enters the case through the inlet 5 provided in the heat accumulator case 4, contacts the wall surface of the container 2 and exchanges heat, and then exits through the outlet 6.

一般に、上述のような蓄熱器では蓄熱物質における熱伝
導が良好でないため、熱交換が十分に行われず、従って
蓄・放熱の効率が低い。この点を改善するため、伝熱促
進手段としてフィンの設置、熱伝導のよいマトリクス
(例えば金属繊維等)の充填が行われ、さらに最近では
蓄熱物質とセラミクスや炭素繊維との複合化が試みられ
たりしている。
Generally, in the above-mentioned heat accumulator, the heat conduction in the heat accumulating substance is not good, so that the heat exchange is not sufficiently performed, and therefore the efficiency of the storage / heat dissipation is low. In order to improve this point, fins are installed as a heat transfer accelerating means, and a matrix (for example, metal fiber) having good heat conduction is installed, and more recently, it has been attempted to combine a heat storage substance with ceramics or carbon fiber. I am.

しかしながら、従来の蓄熱器では蓄熱器の構造上の問題
から、また蓄・放熱条件等によって、蓄熱物質の加熱、
冷却は均一に行われることはまずなく、その結果充填し
ている蓄熱物質のうち十分に蓄・放熱に寄与できない部
分が多く、蓄熱器の本来の伝熱性能、蓄熱密度を示すこ
とができない場合が大半であった。
However, in the conventional heat accumulator, due to the structural problem of the heat accumulator, and depending on the storage and heat radiation conditions, heating of the heat storage substance,
Cooling is rarely performed uniformly, and as a result, there are many parts of the filled heat storage material that cannot fully contribute to storage and heat dissipation, and the original heat transfer performance and heat storage density of the heat storage device cannot be exhibited. Was the majority.

第5図(a),(b)は、典型例として伝熱管の周囲に
円環状に蓄熱物質が配置された蓄熱器の伝熱管を示した
ものである。こらの構造は、内管7と外管8との間に充
填された蓄熱物質を外側から一様に加熱して蓄熱し、内
側から熱媒体3によって冷却して放熱する構造である。
第5図(a)の例では軸方向の熱伝導が悪いために、熱
媒体入口付近と出口付近では蓄・放熱状態が著しく異な
り、蓄・放熱に寄与しない蓄熱物質が、図中斜線で示す
ように分布している。一方第5図(b)は径方向の熱伝
導が悪い場合の例を示し、斜線で示す外周部の蓄熱物質
は蓄・放熱に寄与しない。
FIGS. 5 (a) and 5 (b) show a heat transfer tube of a heat storage device in which a heat storage material is annularly arranged around the heat transfer tube as a typical example. In this structure, the heat storage substance filled between the inner pipe 7 and the outer pipe 8 is uniformly heated from the outside to store heat, and is cooled from the inside by the heat medium 3 to radiate heat.
In the example of FIG. 5 (a), since the heat conduction in the axial direction is poor, the heat storage / heat radiation state is significantly different near the heat medium inlet and the heat outlet, and the heat storage substance that does not contribute to the heat storage / heat radiation is shown by the diagonal lines in the figure. Are distributed as follows. On the other hand, FIG. 5 (b) shows an example in which the heat conduction in the radial direction is poor, and the heat storage substance in the outer peripheral portion shown by the diagonal lines does not contribute to the storage and heat dissipation.

[発明が解決しようとする課題] このように、従来の蓄熱器は蓄熱物質の熱伝導が低いた
めに、蓄熱物質のうち約50%は蓄・放熱に寄与できなか
った。本発明はこの様な従来の問題を解決し、蓄・放熱
効率の高い蓄熱器を提供することを目的とする。
[Problems to be Solved by the Invention] As described above, in the conventional heat storage device, about 50% of the heat storage substances could not contribute to the storage and heat dissipation because the heat conduction of the heat storage substances was low. An object of the present invention is to solve such a conventional problem and to provide a heat accumulator with high storage / heat dissipation efficiency.

[課題を解決するための手段] かかる目的を達成するために、本発明にもとづく第一の
蓄熱器は、熱媒体が流る伝熱管と、蓄熱物質の充填密度
が所定の方向に沿って勾配をなす蓄熱体とを有すること
を特徴とする。
[Means for Solving the Problems] In order to achieve such an object, a first heat storage device according to the present invention is a heat transfer tube through which a heat medium flows, and a packing density of a heat storage substance is gradient along a predetermined direction. And a heat storage body forming

好ましくは、上記所定の方向は、伝熱管の軸方向または
径方向である。
Preferably, the predetermined direction is the axial direction or the radial direction of the heat transfer tube.

好ましくは、上記蓄熱体は、上記蓄熱物質とともに伝熱
物質が充填されたものである。
Preferably, the heat storage material is filled with a heat transfer material together with the heat storage material.

好ましくは、上記伝熱物質は、炭素材料およびセラミク
ス材料からなる群から選択される物質である。
Preferably, the heat transfer substance is a substance selected from the group consisting of carbon materials and ceramics materials.

好ましくは、上記蓄熱物質は、化学反応を伴う熱の吸収
・放出を行う物質または相変化を伴う熱の吸収・放出を
行う物質である。
Preferably, the heat storage substance is a substance that absorbs / releases heat accompanied by a chemical reaction or a substance that absorbs / releases heat accompanied by a phase change.

本発明にもとづく第二の蓄熱器は、熱媒体が流る伝熱管
と、蓄熱物質および伝熱物質からなる複合材からなり、
かつ上記伝熱物質の組成、充填密度、または組成および
充填密度が所定の方向に沿って勾配をなす蓄熱体とを有
することを特徴とする。
The second heat accumulator according to the present invention comprises a heat transfer tube through which a heat medium flows, and a composite material composed of a heat storage material and a heat transfer material,
The heat transfer material has a composition, a packing density, or a heat storage material in which the composition and the packing density form a gradient along a predetermined direction.

好ましくは、上記所定の方向は、伝熱管の軸方向または
径方向である。
Preferably, the predetermined direction is the axial direction or the radial direction of the heat transfer tube.

好ましくは、伝熱物質は、炭素材料およびセラミクス材
料からなる群から選択される物質である。
Preferably, the heat transfer substance is a substance selected from the group consisting of carbon materials and ceramic materials.

好ましくは、上記蓄熱物質は、化学反応を伴う熱の吸収
・放出を行う物質または相変化を伴う熱の吸収・放出を
行う物質である。
Preferably, the heat storage substance is a substance that absorbs / releases heat accompanied by a chemical reaction or a substance that absorbs / releases heat accompanied by a phase change.

好ましくは、上記蓄熱物質は、所定の方向に沿って勾配
をなすもので、さらに好ましくは上記所定の方向は、伝
熱管の軸方向または径方向である。
Preferably, the heat storage substance forms a gradient along a predetermined direction, and more preferably, the predetermined direction is an axial direction or a radial direction of the heat transfer tube.

ここで蓄熱体は蓄熱物質と炭素あるいはセラミクスの複
合材料であってもよい。蓄熱物質としては、例えばNiCl
−6NH3,NiCl−2NH3,CaBr2・2H2O,CaCl2・2CH3HN2,CaCl2
・6CH3NH2等の化学反応を伴う熱の吸収・放出を行う物
質あるいは、例えばLiF,MgF2,CaF2,Be,KFあるいはそれ
らの混合物などの相変化を伴う熱の吸収・放出を行う物
質を用いることができる。
Here, the heat storage body may be a composite material of a heat storage material and carbon or ceramics. Examples of heat storage substances include NiCl
-6NH 3, NiCl-2NH 3, CaBr 2 · 2H 2 O, CaCl 2 · 2CH 3 HN 2, CaCl 2
・ 6CH 3 NH 2 etc. that absorb or release heat accompanied by a chemical reaction, or absorb or release heat accompanied by a phase change such as LiF, MgF 2 , CaF 2 , Be, KF or a mixture thereof. A substance can be used.

[作 用] 本発明においては、蓄・放熱に寄与できない部分が生じ
ないように、予め蓄熱物質の分布のしかたを蓄熱器の場
所ごとに変化させ、または組成、分布の状態を蓄熱器の
場所ごとに変化させた炭素材料、セラミクスを始めとし
たセラミクスと蓄熱物質との複合材料を用いている。
[Operation] In the present invention, the distribution method of the heat storage material is changed in advance for each location of the heat storage device, or the composition and distribution state is changed to the location of the heat storage device so that a portion that cannot contribute to storage and heat dissipation does not occur. It uses a carbon material that has been changed for each case, and a composite material of ceramics, including ceramics, and a heat storage substance.

その結果、例えば円環状に配置さた蓄熱体の軸方向、あ
るいは径方向の熱伝導を高めたり、軸方向あるいは径方
向の蓄熱物質の充填率を変化させることによって従来の
問題の解決を図ることができる。さらに、蓄熱物質中に
設けたフィンのピッチ、厚さ等を変えることによって
も、同様の効果を得ることができる。
As a result, for example, the conventional problem can be solved by increasing the heat transfer in the axial direction or the radial direction of the heat storage body arranged in an annular shape or changing the filling rate of the heat storage substance in the axial direction or the radial direction. You can Further, the same effect can be obtained by changing the pitch, the thickness, etc. of the fins provided in the heat storage substance.

要するに、本発明に係る蓄熱器においては、蓄熱体中の
蓄熱物質、マトリクス、伝熱促進材料等の分布状態、形
状、特性等を任意に制御し、蓄熱物質における見かけの
熱伝導率、蓄熱密度を局所的に制御することによって、
蓄熱物質が蓄・放熱特性に十分寄与する効果が得られ
る。
In short, in the heat storage device according to the present invention, the distribution state, shape, characteristics, etc. of the heat storage substance in the heat storage body, the matrix, the heat transfer promoting material, etc. are arbitrarily controlled, and the apparent thermal conductivity and the heat storage density of the heat storage substance are set. By locally controlling
The effect that the heat storage substance sufficiently contributes to the storage and heat dissipation characteristics is obtained.

このように本発明は、特に熱交換部分での温度分野が大
きい高温ににおける蓄・放熱や、熱負荷の変動が激しい
応用分野において、特に顕著な効果を得ることができ
る。
As described above, the present invention can obtain a particularly remarkable effect particularly in an application field in which the heat exchange part stores and dissipates heat at a high temperature where the temperature field is large and the heat load varies greatly.

[実施例] 以下、この発明を図示の実施例に基づいて説明する。[Embodiment] Hereinafter, the present invention will be described based on an illustrated embodiment.

第1図(a),(b)はそれぞれ本発明の実施例を示す
図である。これらの実施例は、第5図(a),(b)に
示した伝熱管における蓄熱物質を炭素繊維と蓄熱物質と
の複合材料で置き換えた例である。第1図(a)は複合
材料のマトリクスである炭素繊維9を繊維の方向が軸方
向に沿う様に配置して軸方向の熱伝導性を高め、かつ蓄
熱物質1の軸方向の充填率を変えている。図示するよう
に、炭素繊維9の密度を熱媒体3の下流側で高く、従っ
て蓄熱物質1の充填率を下流側で低くするとよい。第1
図(b)は炭素繊維9を繊維の方向が径方向に並ぶ様に
配置した例である。この場合は蓄熱物質1の充填率を外
周側で低くするとよい。充填する蓄熱物質の組成を場所
に応じて変化させてもよい。
1 (a) and 1 (b) are diagrams showing an embodiment of the present invention. These examples are examples in which the heat storage substance in the heat transfer tube shown in FIGS. 5A and 5B is replaced with a composite material of carbon fiber and the heat storage substance. FIG. 1 (a) shows that the carbon fibers 9 which are a matrix of the composite material are arranged so that the fiber directions are along the axial direction to enhance the thermal conductivity in the axial direction and the filling rate of the heat storage substance 1 in the axial direction. Changing. As shown in the figure, the density of the carbon fibers 9 should be high on the downstream side of the heat medium 3, and therefore the filling rate of the heat storage substance 1 should be low on the downstream side. First
FIG. 2B shows an example in which the carbon fibers 9 are arranged such that the fiber directions are aligned in the radial direction. In this case, the filling rate of the heat storage substance 1 may be lowered on the outer peripheral side. The composition of the heat storage material to be filled may be changed depending on the location.

このような炭素繊維と蓄熱物質との複合材料は、有機繊
維を炭化して炭素繊維とする際に蓄熱物質を予め混合し
ておいても、炭素繊維に蓄熱物質を含浸または注入させ
ても、作ることができる。溶融状態の蓄熱物質に炭素繊
維を含浸して蓄熱物質を含浸させる時は、炭素繊維の表
面にSiCを化学気相堆積法によって堆積させておくとよ
い。こうすると溶融状態の蓄積物質に対する濡れ性が改
善さ、含浸率を高めることができる。
Such a composite material of a carbon fiber and a heat storage material, even if the heat storage material is premixed when carbonizing the organic fiber into a carbon fiber, even if the carbon fiber is impregnated or injected with the heat storage material, Can be made. When impregnating the molten heat storage substance with the carbon fiber to impregnate the heat storage substance, it is preferable to deposit SiC on the surface of the carbon fiber by the chemical vapor deposition method. This improves the wettability of the accumulated substance in the molten state and increases the impregnation rate.

蓄熱物質としては先に述べた化学反応を伴う熱の吸収・
放出を行う各種の物質または相変化を伴う熱の吸収・放
出を伴う各種の物質を用いることができる。蓄熱物質と
してLiFを用いたC/LiF蓄熱体の吸収・放熱特性を第2図
に示す。約860℃における吸熱ピークおよび約820℃にお
ける放熱ピークが顕著である。
As a heat storage material, it absorbs heat that accompanies the chemical reactions described above.
Various substances that emit heat or various substances that absorb and release heat with a phase change can be used. Figure 2 shows the absorption and heat dissipation characteristics of a C / LiF heat storage body that uses LiF as the heat storage material. The endothermic peak at about 860 ° C and the heat dissipation peak at about 820 ° C are remarkable.

第1図(a)および(b)に示した構造において、蓄熱
物質としてLiFを用い、周期的な加熱冷却を繰り返した
場合、蓄・放熱に寄与する蓄熱物質の比は、計算によれ
ば80〜90%であった。これは従来の蓄熱器において、蓄
熱物質としてLiF単独を用いた場合の寄与率が約50%で
あり、炭素繊維とLiFとの複合材料を均一に充填した場
合の寄与率が60〜65%であるのと比較すると大きな改善
である。
In the structure shown in FIGS. 1 (a) and 1 (b), when LiF is used as the heat storage material and periodic heating / cooling is repeated, the ratio of the heat storage material contributing to storage / heat dissipation is 80 It was ~ 90%. This is because in the conventional heat storage unit, the contribution rate when using LiF alone as the heat storage material is about 50%, and the contribution rate when the composite material of carbon fiber and LiF is evenly filled is 60 to 65%. This is a big improvement when compared with the existing one.

複合材料のマトリクスとしては、炭素繊維以外に炭化ケ
イ素,酸化アルミニウムなどのセラミクスを用いること
もできる。
As the matrix of the composite material, besides carbon fibers, ceramics such as silicon carbide and aluminum oxide may be used.

第3図(a)および(b)はそれぞれ本発明の他の実施
例を示した図である。これらの実施例は蓄熱物質1中
に、例えばグラファイト,銅などからなる熱伝導性の高
いフィン10を設けたものである。第3図(a)の例は軸
方向にフィン10を設けた例である。この場合はフイン10
の厚さを熱媒体3の下流方向が厚くなるように、軸方向
に沿って変化させ、軸方向の熱伝導および軸方向の蓄熱
物質の分布状態を制御するとよい。第3図(b)の例は
径方向にフイン10を設けた例である。この場合は、図示
するようにフイン10の厚さおよび間隔を軸方向に沿って
変化させるとよい。例えば熱媒体3の上流側で薄いフイ
ンを粗に、下流側では厚いフインを密に配列することに
よって第5図(b)に示した様な径方向の不均一な蓄・
放熱特性を改善することができた。
3 (a) and 3 (b) are views showing other embodiments of the present invention. In these embodiments, the heat storage material 1 is provided with fins 10 made of, for example, graphite, copper or the like and having high thermal conductivity. The example of FIG. 3A is an example in which the fin 10 is provided in the axial direction. In this case, fin 10
The thickness may be changed along the axial direction so that the downstream side of the heat medium 3 becomes thicker, and the heat conduction in the axial direction and the distribution state of the heat storage substance in the axial direction may be controlled. The example of FIG. 3B is an example in which the fin 10 is provided in the radial direction. In this case, the thickness and spacing of the fins 10 may be varied along the axial direction as shown. For example, by arranging thin fins coarsely on the upstream side of the heat medium 3 and thick fins densely on the downstream side, uneven storage in the radial direction as shown in FIG.
The heat dissipation characteristics could be improved.

[発明の効果] 以上説明した様に、本発明によれば、従来の蓄熱器で生
じていた十分に蓄・放熱に寄与しない部分の蓄熱物質
が、十分に蓄・放熱に寄与できるようになり、蓄熱特性
が良好で、蓄熱密度の高い蓄熱器が可能となった。特
に、不均一な温度場の生じやすい高温での利用、熱負荷
変動の激しい場所での応用においてその効果が著しい。
[Advantages of the Invention] As described above, according to the present invention, the heat storage substance in the portion that does not sufficiently contribute to the storage and heat dissipation, which has occurred in the conventional heat storage device, can sufficiently contribute to the storage and heat dissipation. A heat accumulator with good heat storage characteristics and high heat storage density has become possible. In particular, the effect is remarkable when used at a high temperature where a non-uniform temperature field is likely to occur and in an application where the heat load changes drastically.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)および(b)はそれぞ本発明の実施例の模
式的断面図、 第2図は本発明に用いた蓄熱体の吸・放熱特性の一例を
示す図、 第3図(a)および(b)はそれぞれ本発明の他の実施
例の模式的斜視図および断面図、 第4図は従来の蓄熱器構造を示す断面図、 第5図(a)および(b)はそれぞれ従来例における蓄
熱物質の蓄・放熱に寄与する部分を示す模式的断面図で
ある。 1……蓄熱物質、 2……容器、 3……熱媒体、 4……蓄熱器ケース、 9……炭素繊維マトリクス、 10……フイン。
1 (a) and 1 (b) are schematic cross-sectional views of an embodiment of the present invention, FIG. 2 is a diagram showing an example of absorption / heat dissipation characteristics of a heat storage material used in the present invention, and FIG. 3 ( a) and (b) are schematic perspective views and cross-sectional views of another embodiment of the present invention, FIG. 4 is a cross-sectional view showing a conventional heat storage structure, and FIGS. 5 (a) and (b) are respectively. It is a schematic cross section which shows the part which contributes to the storage and heat dissipation of the heat storage substance in a prior art example. 1 ... Heat storage substance, 2 ... Container, 3 ... Heat medium, 4 ... Heat storage case, 9 ... Carbon fiber matrix, 10 ... Fin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神本 正行 茨城県つくば市梅園1丁目1番4 電子技 術総合研究所内 (56)参考文献 特開 昭56−155390(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayuki Kamimoto 1-4-1 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute (56) Reference JP-A-56-155390 (JP, A)

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】熱媒体が流れる伝熱管と、蓄熱物質の充填
密度が所定の方向に沿って勾配をなす蓄熱体とを有する
ことを特徴とする蓄熱器。
1. A heat storage device comprising: a heat transfer tube through which a heat medium flows; and a heat storage body in which a packing density of a heat storage material has a gradient along a predetermined direction.
【請求項2】前記所定の方向は、前記伝熱管の軸方向で
あることを特徴とする請求項1記載の蓄熱器。
2. The heat accumulator according to claim 1, wherein the predetermined direction is an axial direction of the heat transfer tube.
【請求項3】前記所定の方向は、前記伝熱管の径方向で
あることを特徴とする請求項1記載の蓄熱器。
3. The heat accumulator according to claim 1, wherein the predetermined direction is a radial direction of the heat transfer tube.
【請求項4】前記蓄熱体は、前記蓄熱物質とともに伝熱
物質が充填されたことを特徴とする請求項1ないし3の
いずれか一項記載の蓄熱器。
4. The heat accumulator according to claim 1, wherein the heat storage material is filled with a heat transfer material together with the heat storage material.
【請求項5】前記伝熱物質は、炭素材料およびセラミク
ス材料からなる群から選択される物質であることを特徴
とする請求項4記載の蓄熱器。
5. The heat accumulator according to claim 4, wherein the heat transfer substance is a substance selected from the group consisting of a carbon material and a ceramics material.
【請求項6】前記蓄熱物質は、化学反応を伴う熱の吸収
・放出を行う物質であることを特徴とする請求項1ない
し5のいずれか一項記載の蓄熱器。
6. The heat storage device according to claim 1, wherein the heat storage substance is a substance that absorbs and releases heat accompanied by a chemical reaction.
【請求項7】前記蓄熱物質は、相変化を伴う熱の吸収・
放出を行う物質であることを特徴とする請求項1ないし
5のいずれか一項記載の蓄熱器。
7. The heat storage material absorbs heat accompanied by phase change.
The heat accumulator according to any one of claims 1 to 5, which is a substance that emits heat.
【請求項8】熱媒体が流れる伝熱管と、 蓄熱物質および伝熱物質からなる複合材からなり、かつ
前記伝熱物質の組成、充填密度、または組成および充填
密度が所定の方向に沿って勾配をなす蓄熱体とを有する
ことを特徴とする蓄熱器。
8. A heat transfer tube through which a heat medium flows, and a composite material comprising a heat storage substance and a heat transfer substance, wherein the heat transfer substance has a composition, a packing density, or a gradient in the composition and the packing density along a predetermined direction. And a heat storage body that forms
【請求項9】前記所定の方向は、前記伝熱管の軸方向で
あることを特徴とする請求項8記載の蓄熱器。
9. The heat accumulator according to claim 8, wherein the predetermined direction is an axial direction of the heat transfer tube.
【請求項10】前記所定の方向は、前記伝熱管の径方向
であることを特徴とする請求項8記載の蓄熱器。
10. The heat accumulator according to claim 8, wherein the predetermined direction is a radial direction of the heat transfer tube.
【請求項11】前記伝熱物質は、炭素材料およびセラミ
クス材料からなる群から選択される物質であることを特
徴とする請求項8ないし11のいずれか一項記載の蓄熱
器。
11. The heat accumulator according to claim 8, wherein the heat transfer substance is a substance selected from the group consisting of a carbon material and a ceramics material.
【請求項12】前記蓄熱物質は、化学反応を伴う熱の吸
収・放出を行う物質であることを特徴とする請求項8な
いし11のいずれか一項記載の蓄熱器。
12. The heat storage device according to claim 8, wherein the heat storage substance is a substance that absorbs and releases heat accompanied by a chemical reaction.
【請求項13】前記蓄熱物質は、相変化を伴う熱の吸収
・放出を行う物質であることを特徴とする請求項8ない
し11のいずれか一項記載の蓄熱器。
13. The heat accumulator according to claim 8, wherein the heat storage material is a material that absorbs and releases heat accompanied by a phase change.
【請求項14】前記蓄熱物質は、所定の方向に沿って勾
配をなすことを特徴とする請求項8ないし13のいずれか
一項記載の蓄熱器。
14. The heat accumulator according to claim 8, wherein the heat storage substance forms a gradient along a predetermined direction.
【請求項15】前記所定の方向は、前記伝熱管の軸方向
であることを特徴とする請求項14記載の蓄熱器。
15. The heat accumulator according to claim 14, wherein the predetermined direction is an axial direction of the heat transfer tube.
【請求項16】前記所定の方向は、前記伝熱管の径方向
であることを特徴とする請求項14記載の蓄熱器。
16. The heat accumulator according to claim 14, wherein the predetermined direction is a radial direction of the heat transfer tube.
JP2207258A 1990-08-03 1990-08-03 Heat storage Expired - Lifetime JPH0756433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207258A JPH0756433B2 (en) 1990-08-03 1990-08-03 Heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207258A JPH0756433B2 (en) 1990-08-03 1990-08-03 Heat storage

Publications (2)

Publication Number Publication Date
JPH0490499A JPH0490499A (en) 1992-03-24
JPH0756433B2 true JPH0756433B2 (en) 1995-06-14

Family

ID=16536819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207258A Expired - Lifetime JPH0756433B2 (en) 1990-08-03 1990-08-03 Heat storage

Country Status (1)

Country Link
JP (1) JPH0756433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2008261584A (en) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd Heat accumulator
WO2015093051A1 (en) * 2013-12-18 2015-06-25 株式会社デンソー Adsorber and adsorption refrigerator

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296676A (en) * 1992-04-15 1993-11-09 Ntc Kogyo Kk Heat accumulator
JP2008020177A (en) * 2006-06-15 2008-01-31 Matsushita Electric Ind Co Ltd Heat storage system
JP2009030912A (en) * 2007-07-30 2009-02-12 Dainichi Co Ltd Heat storage device
JP5374683B2 (en) * 2008-03-14 2013-12-25 株式会社豊田中央研究所 Chemical heat storage material molded body and manufacturing method thereof
JP5327729B2 (en) * 2008-04-18 2013-10-30 株式会社豊田中央研究所 Chemical heat storage material and manufacturing method thereof
WO2012108343A1 (en) * 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
JP6136673B2 (en) * 2013-07-09 2017-05-31 株式会社豊田自動織機 Method for producing chemical heat storage molded body and chemical heat storage device
JP2015081758A (en) * 2013-10-24 2015-04-27 株式会社豊田自動織機 Chemical heat storage device
WO2015060199A1 (en) * 2013-10-24 2015-04-30 株式会社豊田自動織機 Chemical heat storage device
JP6079557B2 (en) * 2013-10-24 2017-02-15 株式会社豊田自動織機 Chemical heat storage device
FR3013104B1 (en) * 2013-11-12 2018-11-09 Valeo Systemes Thermiques DEVICE FOR THERMALLY CONDITIONING AN AIR FLOW, IN PARTICULAR FOR A MOTOR VEHICLE
JP5662545B1 (en) * 2013-11-13 2015-01-28 多田 禮子 High performance total heat exchanger
JP2015124940A (en) * 2013-12-26 2015-07-06 パナホーム株式会社 Heat storage structure and house using the same
JP6149001B2 (en) * 2014-05-14 2017-06-14 株式会社デンソー Heat storage device
CN109489461B (en) * 2018-12-06 2023-10-13 重庆大学 Dust removal and heat exchange integrated device and method based on gradient honeycomb body and three-dimensional ribbed tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155390A (en) * 1980-05-06 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Latent heat accumulating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2008261584A (en) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd Heat accumulator
WO2015093051A1 (en) * 2013-12-18 2015-06-25 株式会社デンソー Adsorber and adsorption refrigerator
JP2015117877A (en) * 2013-12-18 2015-06-25 株式会社デンソー Adsorber and adsorption refrigerating machine

Also Published As

Publication number Publication date
JPH0490499A (en) 1992-03-24

Similar Documents

Publication Publication Date Title
JPH0756433B2 (en) Heat storage
JP3124118U (en) Built-in heat transfer tube
US7898079B2 (en) Nanotube materials for thermal management of electronic components
US6132823A (en) Superconducting heat transfer medium
US20100172101A1 (en) Thermal interface material and method for manufacturing the same
US6916430B1 (en) Superconducting heat transfer medium
Yao et al. An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator
EP2440873A1 (en) High temperature graphite heat exchanger
CN108993324A (en) A kind of metal hydride reactor of gradient filling expanded graphite
JPH11503816A (en) Heat exchanger consisting of parallel plates made of carbon-carbon composite
JPH0682036B2 (en) Heat storage
CN216650312U (en) Heat dissipation plate and electronic device
CN209641357U (en) Coolant-free first wall part of fusion reactor based on heat conduction of carbon nano tube
CN109887616A (en) Coolant-free first wall part of fusion reactor based on heat conduction of carbon nano tube
CN209857721U (en) Efficient radiator based on graphene coating
JPH10238973A (en) Thin composite plate heat pipe
CN210004836U (en) reinforced heat pipe for gas-liquid separation
CN114750490A (en) Alkene-carbon composite material with efficient heat dissipation capacity
JPH01111197A (en) Heat transfer device
JP4048423B2 (en) Fabric with excellent heat conductivity
CN109152298B (en) Light temperature control device and manufacturing method thereof
US4213311A (en) Superleak
TW201010585A (en) Heat-dissipation structure and manufacturing method thereof
CN216218437U (en) Quick radiating display screen power
CA1146113A (en) Metal-plated foam heat transfer surface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term