JPH075639Y2 - Junction isolation structure between semiconductor regions in an integrated circuit device - Google Patents

Junction isolation structure between semiconductor regions in an integrated circuit device

Info

Publication number
JPH075639Y2
JPH075639Y2 JP12381588U JP12381588U JPH075639Y2 JP H075639 Y2 JPH075639 Y2 JP H075639Y2 JP 12381588 U JP12381588 U JP 12381588U JP 12381588 U JP12381588 U JP 12381588U JP H075639 Y2 JPH075639 Y2 JP H075639Y2
Authority
JP
Japan
Prior art keywords
layer
separation layer
impurity concentration
integrated circuit
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12381588U
Other languages
Japanese (ja)
Other versions
JPH0244335U (en
Inventor
充男 笠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12381588U priority Critical patent/JPH075639Y2/en
Publication of JPH0244335U publication Critical patent/JPH0244335U/ja
Application granted granted Critical
Publication of JPH075639Y2 publication Critical patent/JPH075639Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は集積回路装置においてその回路要素をそれぞれ
作り込むべき半導体領域を相互に接合分離する構造、す
なわち一方の導電形の半導体基板上に設けられた他方の
導電形の半導体領域ないしはエピタキシャル層を、一方
の導電形の分離層によって、相互に接合分離された複数
個の半導体領域に分割するための構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention provides a structure in which semiconductor regions in which integrated circuit devices are to be formed are bonded and separated from each other, that is, provided on one conductivity type semiconductor substrate. The present invention relates to a structure for dividing a semiconductor region or epitaxial layer having the other conductivity type into a plurality of semiconductor regions which are junction-separated from each other by a separation layer having one conductivity type.

〔従来の技術〕[Conventional technology]

集積回路装置では、それを構成する回路要素の全てを共
通の半導体領域ないしはエピタキシャル層内に作り込ん
でしまうと、その内部で回路要素間に無用な干渉が発生
して回路が満足に動作しなくなることが多いので、周知
のように半導体領域を複数個に分割して相互間を絶縁な
いしは電位的に分離し、これらの半導体領域内にそれぞ
れ回路要素を作り込んだ上で回路要素間に所定の接続を
施すことが一般に行なわれる。この複数半導体領域への
分離手段には、大別して誘電体分離法と接合分離法とが
あり、前者の方が分離性能面で優るものの、後者の方が
経済性に優れるのでより一般的に採用されている。本考
案はこの接合分離構造に関するもので、よく知られてい
ることではあるが、第3図にその基本的な構造例を示
す。
In an integrated circuit device, if all of the circuit elements that compose the integrated circuit device are formed in a common semiconductor region or an epitaxial layer, unnecessary interference occurs between the circuit elements and the circuit does not operate satisfactorily. It is often the case that, as is well known, the semiconductor region is divided into a plurality of regions to insulate or electrically isolate them from each other, and circuit elements are respectively formed in these semiconductor regions, and then a predetermined distance is provided between the circuit elements. It is common to make connections. There are roughly two types of means for separating into the multiple semiconductor regions, a dielectric separation method and a junction separation method. The former is superior in terms of separation performance, but the latter is more economical and is generally used. Has been done. The present invention relates to this joint separation structure, and as is well known, FIG. 3 shows an example of the basic structure.

第3図において、1が半導体基板であってふつうはp形
とされ、まずその表面の所定の範囲にそれぞれn形の埋
込層4を高い不純物濃度で拡散した上で、その上に半導
体領域としてエピタキシャル層5をn形で全面成長させ
る。つぎに、このエピタキシャル層5の表面から、p形
の高不純物濃度をもつ分離層8を枠状ないしは綱状のパ
ターンで半導体基板1に達するまで深く拡散することに
より、エピタキシャル層5を複数個の半導体領域10に分
割する。集積回路を構成する回路要素ないしは回路要素
群は、この分割された半導体領域10内にそれぞれ作り込
まれる。
In FIG. 3, reference numeral 1 denotes a semiconductor substrate, which is usually p-type. First, an n-type buried layer 4 is diffused in a predetermined range on its surface at a high impurity concentration, and then a semiconductor region is formed thereon. Then, the epitaxial layer 5 is grown over the entire surface as an n-type. Next, the separation layer 8 having a high p-type impurity concentration is deeply diffused from the surface of the epitaxial layer 5 in a frame-like or rope-like pattern until it reaches the semiconductor substrate 1 to form a plurality of epitaxial layers 5. Divide into semiconductor regions 10. A circuit element or a circuit element group forming an integrated circuit is built in each of the divided semiconductor regions 10.

各半導体領域10には集積回路の動作中電源電圧またはそ
れに近い正の電圧が掛かり、半導体基板1は接地された
状態で使用されるので、n形の半導体領域10および埋込
層4とp形の半導体基板1および分離層8との間のpn接
合には逆バイアス方向に電圧が掛かり、これによって各
半導体領域5が半導体基板1および分離層8からいわば
電位的に浮かされた状態で接合分離され、同時に半導体
領域10の相互間も接合分離される。
A power supply voltage or a positive voltage close to the power supply voltage is applied to each semiconductor region 10 during operation of the integrated circuit, and the semiconductor substrate 1 is used in a grounded state. Therefore, the n-type semiconductor region 10 and the buried layer 4 and the p-type semiconductor region 10 are used. A voltage is applied to the pn junction between the semiconductor substrate 1 and the separation layer 8 in the reverse bias direction, whereby each semiconductor region 5 is separated from the semiconductor substrate 1 and the separation layer 8 in a so-called potential floating state. At the same time, the junctions of the semiconductor regions 10 are separated from each other.

第4図の接合分離構造は、集積回路の動作電圧が高くエ
ピタキシャル層5ないしは半導体領域10の厚みを大きく
する要がある場合によく用いられる構造で、p形の埋込
分離層3を埋込層4と同様にあらかじめ半導体基板1の
表面に拡散して置いた上でエピタキシャル層5を所望の
厚みに成長させ、その表面からp形の分離層8を拡散し
て下側から上方に拡散されて来る埋込分離層3と連結す
るものである。これにより、半導体領域5の厚みが大な
ときにも、第3図のように分離層8の幅wが広がるのを
抑えて半導体領域5の表面積を有効利用でき、かつ分離
層8の拡散深さを浅くしてその熱拡散に要する時間を短
縮できる。
The junction isolation structure of FIG. 4 is often used when the operating voltage of the integrated circuit is high and it is necessary to increase the thickness of the epitaxial layer 5 or the semiconductor region 10. The p-type embedded isolation layer 3 is embedded in the junction isolation structure. Similar to the layer 4, after being diffused and placed on the surface of the semiconductor substrate 1 in advance, the epitaxial layer 5 is grown to a desired thickness, and the p-type separation layer 8 is diffused from the surface and diffused upward from the lower side. It is connected to the buried separation layer 3 that comes. As a result, even when the thickness of the semiconductor region 5 is large, the width w of the separation layer 8 can be prevented from expanding as shown in FIG. By making it shallower, the time required for the thermal diffusion can be shortened.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述の接合分離構造では、各半導体領域10は半導体基板
1および分離層8から電位的に浮かされているのである
から、その中にそれぞれ作り込まれる回路要素間に干渉
が発生することはないはずなのであるが、実際には集積
回路の動作に伴って各半導体領域10の電位が互いに独立
に変動しうるので、この電位変動の過程で接合分離用の
pn接合がもつ接合容量を介して若干の干渉が発生する問
題がある。これを第2図の等価回路を参照して説明す
る。
In the above-described junction isolation structure, since each semiconductor region 10 is electrically floating from the semiconductor substrate 1 and the isolation layer 8, there should be no interference between the circuit elements respectively built therein. However, in reality, the potential of each semiconductor region 10 can vary independently of each other with the operation of the integrated circuit.
There is a problem that some interference occurs through the junction capacitance of the pn junction. This will be described with reference to the equivalent circuit of FIG.

第2図の左右に示されたトランジスタ20および21は例え
ば図示のように電界効果トランジスタであって、第3図
の左右の半導体領域10にそれぞれ作り込まれており、両
半導体領域10の相互間にある分離層8の表面は電極膜14
を介して接地電位Eに接続されているものとする。第2
図の等価回路に示すように、両電界効果トランジスタ20
および21の例えば各ドレイン電極Dと接地点Eとの間に
は、図示のように1対の抵抗R1およびR2と1対のキャパ
シタCと1個の抵抗R3とからなる一種のフィルタ回路が
形成されている。第2図と第4図を対比すればわかるよ
うに、抵抗R1は半導体領域10の内部抵抗、キャパシタC
は埋込分離層3および分離層8と半導体領域10との間の
pn接合の接合容量、抵抗R2は埋込分離層3および分離層
8の内部抵抗、抵抗R3は分離層8と接地電極膜14との間
の接続抵抗である。
Transistors 20 and 21 shown on the left and right of FIG. 2 are field effect transistors as shown, for example, and are formed in the left and right semiconductor regions 10 of FIG. 3, respectively. The surface of the separation layer 8 at is the electrode film 14
It is assumed to be connected to the ground potential E via. Second
As shown in the equivalent circuit of the figure, both field effect transistors 20
Between each drain electrode D and the grounding point E of 21 and 21, for example, a kind of filter circuit composed of a pair of resistors R1 and R2, a pair of capacitors C and a resistor R3 is formed as shown. Has been done. As can be seen by comparing FIGS. 2 and 4, the resistor R1 is the internal resistance of the semiconductor region 10 and the capacitor C.
Between the buried isolation layer 3 and the isolation layer 8 and the semiconductor region 10.
A junction capacitance of the pn junction, a resistance R2 is an internal resistance of the buried separation layer 3 and the separation layer 8, and a resistance R3 is a connection resistance between the separation layer 8 and the ground electrode film 14.

容易にわかるように、両トランジスタ20および21のドレ
イン端子D間について見ると、このフィルタ回路は抵抗
値R1+R2とキャパシタンス値Cとの積の時定数で周波数
特性が決まるハイパスフィルタであって、両ドレイン端
子Dの電位つまり半導体領域10の電位が独立に変動した
とき、このハイパスフィルダ回路を介して両トランジス
タ間に相互干渉が発生し、その程度はトランジスタの動
作周波数ないしは動作速度が高くなるに従って大きくな
る。また例え接地抵抗R3を減少させても、隣合う半導体
領域10間に電位差が存在しその値が時間的に変動する限
り、両半導体領域間の相互干渉を避けることはできな
い。
As can be easily seen, looking at between the drain terminals D of both transistors 20 and 21, this filter circuit is a high-pass filter whose frequency characteristic is determined by the time constant of the product of the resistance value R1 + R2 and the capacitance value C. When the potential of the terminal D, that is, the potential of the semiconductor region 10 changes independently, mutual interference occurs between both transistors via this high-pass filter circuit, and the degree thereof increases as the operating frequency or operating speed of the transistor increases. . Even if the ground resistance R3 is reduced, mutual interference between the semiconductor regions cannot be avoided as long as there is a potential difference between the adjacent semiconductor regions 10 and the value fluctuates with time.

本考案は集積回路装置内のかかる回路要素間の相互干渉
を軽減できる分離性能の良好な半導体領域間接合分離構
造を得ることを目的とする。
An object of the present invention is to obtain a junction isolation structure between semiconductor regions with good isolation performance capable of reducing mutual interference between such circuit elements in an integrated circuit device.

〔課題を解決するための手段〕[Means for Solving the Problems]

この目的は本考案によれば、冒頭記載のように一方の導
電形の半導体基板上に設けられた他方の導電形の半導体
領域を一方の導電形の分離層によって相互に接合分離さ
れ集積回路を構成する回路要素をそれぞれ作り込むべき
複数個の半導体領域に分割するために、分離層を一方の
導電形の外側分離層とこの外側分離層の中に作り込まれ
た高不純物濃度をもつ一方の導電形の内側分離層とによ
り構成し、外側分離層の不純物濃度が同じ導電形の内側
分離層の不純物濃度よりは低く、かつ、異なる導電形の
半導体領域の不純物濃度の空乏層の広がりに対して実質
的に等価な不純物濃度値であることによって達成され
る。
According to the present invention, an object of the present invention is to form an integrated circuit in which a semiconductor region of the other conductivity type provided on a semiconductor substrate of one conductivity type is joined and separated from each other by a separation layer of the one conductivity type as described in the beginning. In order to divide the constituent circuit elements into a plurality of semiconductor regions to be respectively formed, the separation layer is formed of one conductivity type outer separation layer and one of the one having a high impurity concentration formed in the outer separation layer. An inner separation layer of a conductivity type, the impurity concentration of the outer separation layer is lower than the impurity concentration of the inner separation layer of the same conductivity type, and the depletion layer of the impurity concentration of the semiconductor regions of different conductivity types is spread. And a substantially equivalent impurity concentration value.

上記の本考案による分離層を構成する外側分離層と内側
分離層は、さらにそれぞれ埋込拡散層と表面拡散層とか
らなる2段構造とするのが、とくに半導体領域の厚みが
大きい場合に分離層の拡散幅を狭めてチップ面積の利用
効率を上げ、かつ拡散時間を短縮する上で望ましい。
The outer separation layer and the inner separation layer constituting the separation layer according to the present invention have a two-step structure composed of a buried diffusion layer and a surface diffusion layer, respectively, which is separated especially when the thickness of the semiconductor region is large. This is desirable for narrowing the diffusion width of the layer to improve the utilization efficiency of the chip area and shortening the diffusion time.

〔作用〕[Action]

本考案は、半導体領域と分離層との間のpn接合がもつ前
述の接合容量を減少させることにより隣合う半導体領域
間のハイパスフィルタ回路の集積回路の使用周波数帯域
におけるその実効インピーダンス値を増加させるのが干
渉を軽減させる上で非常に有効なことに着目したもので
ある。このため、本考案では上記構成にいうように分離
層を内外両分離層からなる二重構造とし、その内側分離
層は従来どおりの高不純物濃度層とするが、外側分離層
の不純物濃度が同じ導電形の内側分離層の不純物濃度よ
りは低く、かつ、異なる導電形の半導体領域の不純物濃
度の空乏層の広がりに対して実質的に等価な不純物濃度
値とする。
The present invention increases the effective impedance value in the operating frequency band of the integrated circuit of the high-pass filter circuit between adjacent semiconductor regions by reducing the aforementioned junction capacitance of the pn junction between the semiconductor region and the isolation layer. Focuses on that it is very effective in reducing interference. Therefore, in the present invention, as described above, the separation layer has a double structure composed of both inner and outer separation layers, and the inner separation layer is a high impurity concentration layer as in the conventional case, but the impurity concentration of the outer separation layer is the same. The impurity concentration value is lower than the impurity concentration of the conductivity type inner isolation layer and is substantially equivalent to the spread of the depletion layer of the impurity concentration of the semiconductor regions of different conductivity types.

これにより、従来は空乏層がもっぱら半導体領域内に広
がっていたものが外側分離層の方にも広がるようになる
ので、半導体領域と分離層との間のpn接合の前述の接合
容量Cが半分以下に減少され、上述のハイパスフィルタ
回路のインピーダンス中の容量成分が倍増される。ま
た、外側分離層の不純物濃度が低いので分離層の内部抵
抗である前述の抵抗値R2が従来よりも大きくなり、イン
ピーダンス中の抵抗成分もこれに応じて増加する。従っ
て、本考案による接合分離構造では、半導体領域間のハ
イパスフィルタ回路の集積回路が動作する周波数帯域に
おける実効インピーダンス値が従来よりも大きくなり、
各半導体領域内に作り込まれる回路要素間の相互干渉を
有効に軽減することができる。
As a result, the depletion layer, which has conventionally spread exclusively in the semiconductor region, also spreads to the outer isolation layer, so that the aforementioned junction capacitance C of the pn junction between the semiconductor region and the isolation layer is reduced to half. The capacitance component in the impedance of the above-mentioned high-pass filter circuit is doubled, which is reduced below. Further, since the impurity concentration of the outer separation layer is low, the above-mentioned resistance value R2, which is the internal resistance of the separation layer, becomes larger than in the conventional case, and the resistance component in the impedance also increases accordingly. Therefore, in the junction isolation structure according to the present invention, the effective impedance value in the frequency band in which the integrated circuit of the high-pass filter circuit between the semiconductor regions operates becomes larger than the conventional one,
Mutual interference between circuit elements formed in each semiconductor region can be effectively reduced.

なお、上述のように抵抗値R1は増加するが、前述の抵抗
値R1+R2とキャパシタンス値Cとの積である前述の時定
数は減少するので、ハイパスフィルタ回路の実効インピ
ーダンス値がもつ周波数特性はこれに応じて高い周波数
の方にずれないしは延びることになり、従って本考案に
より集積回路が干渉に影響されずに安全に動作できる周
波数帯域を従来よりも拡大することができる。
Although the resistance value R1 increases as described above, the time constant, which is the product of the resistance value R1 + R2 and the capacitance value C, decreases, so the frequency characteristic of the effective impedance value of the high-pass filter circuit is Accordingly, the present invention can expand the frequency band in which the integrated circuit can safely operate without being affected by interference by the present invention.

〔実施例〕〔Example〕

以下、第1図を参照しながら本考案の実施例を説明す
る。この実施例では、同図(d)の完成時の状態に示す
DMOS形または縦形の電界効果トランジスタ20や21を作り
込むために、半導体領域10が通常より厚く例えば20μm
以上にされる。従って、分離層は本考案に基づき内側分
離層と外側分離層からなる二重構造とされるほか、これ
らの内外両分離層がさらにそれぞれ埋込拡散層と表面拡
散層とからなる上下2段構造とされる。同図(a)〜
(c)にはこの完成状態に至るまでの状態が主な工程ご
とに示されているので、以下この順を追って説明するこ
ととする。
An embodiment of the present invention will be described below with reference to FIG. In this embodiment, the state at the time of completion of FIG.
In order to form the DMOS type or vertical type field effect transistors 20 and 21, the semiconductor region 10 is thicker than usual, for example, 20 μm.
That is all. Therefore, according to the present invention, the separation layer has a double structure including an inner separation layer and an outer separation layer, and the inner and outer separation layers further include a buried diffusion layer and a surface diffusion layer, respectively. It is said that Same figure (a) ~
Since the state up to the completed state is shown for each main step in (c), this order will be described below.

第1図(a)は半導体基板1の単独の状態を示す。図示
のように基板1は通例のようにp形とされ、この実施例
ではその表面にいずれもp形の外側埋込分離層2と高不
純物濃度の内側埋込分離層3とを図示のように二重構造
に通常のように綱状パターンで拡散し、さらにその網の
目の中に半導体領域下用の埋込層4をn形の高不純物濃
度で島状に拡散する。同図(b)はこの上にn形のエピ
タキシャル層5を成長させた状態を示す。このエピタキ
シャル層5は例えばその厚みが25μmとされ、その不純
物濃度は1014原子/cm3程度とされる。このエピタキシ
ャル成長時の高温により、上述の外側埋込分離層2,内側
埋込分離層3および半導体領域下の埋込層4は、図示の
ようにエピタキシャル層5内にそれぞれ数μm程度上方
に拡散されていわゆる上がり込みが生じる。なお本考案
では、内外埋込分離層2および3用のp形不純物として
拡散係数の大きいボロンを用いるのが有利である。
FIG. 1A shows the semiconductor substrate 1 alone. As shown in the figure, the substrate 1 is p-type as usual, and in this embodiment, the p-type outer buried isolation layer 2 and the high impurity concentration inner buried isolation layer 3 are both provided on the surface thereof. Then, the double layer structure is diffused in a usual manner in a rope-like pattern, and further, the buried layer 4 for the lower semiconductor region is diffused in an island shape with a high n-type impurity concentration in the mesh. FIG. 2B shows a state in which the n-type epitaxial layer 5 is grown on this. The epitaxial layer 5 has a thickness of 25 μm and an impurity concentration of about 10 14 atoms / cm 3 . Due to the high temperature during the epitaxial growth, the outer buried isolation layer 2, the inner buried isolation layer 3 and the buried layer 4 below the semiconductor region are diffused upward in the epitaxial layer 5 by several μm as shown in the figure. This causes a so-called rise. In the present invention, it is advantageous to use boron having a large diffusion coefficient as the p-type impurity for the inner and outer buried separation layers 2 and 3.

第1図(c)は分離層の完成工程であるが、この例では
縦形電界効果トランジスタを各半導体領域内に作り込む
ので、例えばその前のこのトランジスタのドレインコン
タクト層6用にn形の不純物を高不純物濃度で導入ない
しは拡散する。分離層用には外側分離層7および高不純
物濃度の内側分離層8用にp形不純物として例えばボロ
ンを二重構造に導入して置き、高温下で図示のように外
側分離層7が外側埋込分離層2に,内側分離層8が内側
埋込分離層3にそれぞれ接続するように、この例では15
μm程度の深さに熱拡散させる。この熱拡散と同時に、
ドレインコンタクト層6も埋込層4と接続されるように
拡散される。
FIG. 1 (c) shows a step of completing the separation layer. In this example, since a vertical field effect transistor is formed in each semiconductor region, for example, an n-type impurity is used for the drain contact layer 6 of this transistor before that. Is introduced or diffused at a high impurity concentration. For the separation layer, for example, boron is introduced as a p-type impurity into the double structure for the outer separation layer 7 and the inner separation layer 8 having a high impurity concentration, and the outer separation layer 7 is buried under high temperature as shown in the figure. 15 in this example so that the inner separation layer 8 is connected to the inner separation layer 2 respectively.
Heat is diffused to a depth of about μm. At the same time as this heat diffusion,
The drain contact layer 6 is also diffused so as to be connected to the buried layer 4.

この工程によって、図示のように内側埋込分離層3およ
び内側分離層8が外側埋込分離層2および外側分離層7
で囲まれた接合分離層が完成し、これによってエピタキ
シャル層5がそれぞれ接合分離された複数個の半導体領
域10に分割される。なお、この内外二重構造のP形の分
離層中の内側埋込分離層3および内側分離層8の不純物
濃度は従来と同様1018原子/cm3以上の高濃度とする
が、外側埋込分離層2および外側分離層7の不純物濃度
は、n形のエピタキシャル層5の不純物濃度が前述の10
14原子/cm3程度のとき、1016原子/cm3ないしそれを若
干下回る程度にするのが本考案を実施する上で妥当であ
る。n形のエピタキシャル層5ないしは半導体領域10の
不純物濃度とp形の外側埋込分離層2および外側埋込層
7の不純物濃度がこのように協調されたとき、両者間の
pn接合面からはn形領域にもp形領域にもほぼ均等に空
乏層が広がることができ、その接合容量を有効に減少さ
せることができる。
By this step, the inner buried separation layer 3 and the inner separation layer 8 become the outer buried separation layer 2 and the outer separation layer 7 as shown in the figure.
A junction separation layer surrounded by is completed, and the epitaxial layer 5 is divided into a plurality of semiconductor regions 10 each having junction separation. The impurity concentration of the inner buried separation layer 3 and the inner separation layer 8 in the P-type separation layer having the inner-outer double structure is set to a high concentration of 10 18 atoms / cm 3 or more as in the conventional case. The impurity concentration of the separation layer 2 and the outer separation layer 7 is the same as that of the n-type epitaxial layer 5 described above.
When it is about 14 atoms / cm 3 , it is appropriate to implement the present invention at 10 16 atoms / cm 3 or slightly lower. When the impurity concentration of the n-type epitaxial layer 5 or the semiconductor region 10 and the impurity concentration of the p-type outer buried isolation layer 2 and the outer buried layer 7 are coordinated in this way, the
From the pn junction surface, the depletion layer can spread almost uniformly in the n-type region and the p-type region, and the junction capacitance can be effectively reduced.

第1図(d)のように半導体領域10内に縦形の電界効果
トランジスタ20および21を作り込むには、半導体領域10
の表面からp形のチャネル形成層11を例えば環状のパタ
ーンで拡散し、多結晶シリコン等のゲート12をその上に
設けた後、通例のようにそれをマスクとしてn形のソー
ス層13を高不純物濃度でイオン注入法により同じく環状
のパターンで拡散する。よく知られているように、ゲー
ト12の下のいずれもn形のソース層13と半導体領域10と
に挟まれたp形のチャネル形成層11の表面がn形チャネ
ルの形成面になる。
To form the vertical field effect transistors 20 and 21 in the semiconductor region 10 as shown in FIG.
After the p-type channel forming layer 11 is diffused from the surface of, for example, in an annular pattern and the gate 12 of polycrystalline silicon or the like is provided thereon, the n-type source layer 13 is raised by using it as a mask as usual. The impurity concentration is also diffused in an annular pattern by the ion implantation method. As is well known, the surface of the p-type channel formation layer 11 sandwiched between the n-type source layer 13 and the semiconductor region 10 below the gate 12 serves as the n-type channel formation surface.

ソース層13とチャネル形成層11の表面は電極膜14で短絡
され、それから図示のようにソース端子Sが導出され
る。ドレイン側はいずれもn形の半導体領域10,埋込層
4およびドレインコンタクト層6を介してその上の電極
膜14からドレイン端子Dが図示のように導出され、これ
によってゲート端子Gで制御可能な縦形のnチャネル電
界効果トランジスタ20および21が完成される。なお、内
側埋込分離層8の表面に導電接触する電極膜14からは図
示のように接地端子Eが取られる。
The surface of the source layer 13 and the surface of the channel forming layer 11 are short-circuited by the electrode film 14, and then the source terminal S is led out as shown in the figure. On the drain side, the drain terminal D is led out from the electrode film 14 thereon via the n-type semiconductor region 10, the buried layer 4 and the drain contact layer 6 as shown in the drawing, and can be controlled by the gate terminal G. Complete vertical n-channel field effect transistors 20 and 21 are completed. The ground terminal E is taken from the electrode film 14 which is in conductive contact with the surface of the inner buried separation layer 8 as shown in the figure.

これからわかるように、この第1図(d)の等価回路は
前に説明した第2図で表すことができる。第2図のキャ
パシタCは、第1図(d)からわかるように本考案によ
る二重構造の接合分離層と半導体基板1および半導体領
域10との間のpn接合の接合容量であって、前述のように
従来構造の場合よりもキャパシタンス値が小さく、外側
埋込分離層2および外側分離層7の厚みを多少大きい目
にすることにより、容易に従来の半分以下に減少させる
ことができる。第2図の抵抗R1は前述のように半導体領
域10のもつ抵抗なので従来と変わらないが、抵抗R2は分
離層の内部抵抗であって、本考案の場合外側埋込分離層
2および外側分離層7の不純物濃度が低いので従来より
かなり大きくなる。
As can be seen, the equivalent circuit of FIG. 1 (d) can be represented by the previously described FIG. As shown in FIG. 1 (d), the capacitor C in FIG. 2 is the junction capacitance of the pn junction between the junction separation layer having the double structure according to the present invention and the semiconductor substrate 1 and the semiconductor region 10. As described above, the capacitance value is smaller than in the case of the conventional structure, and the thickness of the outer buried separation layer 2 and the outer separation layer 7 is made slightly larger, so that it can be easily reduced to half or less of the conventional case. The resistor R1 in FIG. 2 is the same as the conventional one because it is the resistance of the semiconductor region 10 as described above, but the resistor R2 is the internal resistance of the separation layer, and in the case of the present invention, the outer buried separation layer 2 and the outer separation layer. Since the impurity concentration of No. 7 is low, it becomes considerably higher than the conventional one.

従ってすでに作用の項で述べたように、集積回路が動作
する周波数帯域での半導体領域間のハイパスフィルタ回
路の実効インピーダンス値が従来よりも大きくなって、
各半導体領域内に作り込まれる回路要素間の相互干渉が
軽減され、かつ抵抗値R1+R2とキャパシタンス値Cとの
積である時定数はふつう減少するので、ハイパスフィル
タ回路の実効インピーダンス値がもつ周波数特性が高い
周波数の方にずれて、集積回路が干渉に影響されずに安
全に動作できる周波数帯域が従来よりも拡大される。
Therefore, as already mentioned in the section of action, the effective impedance value of the high-pass filter circuit between the semiconductor regions in the frequency band in which the integrated circuit operates becomes larger than the conventional one,
Mutual interference between circuit elements formed in each semiconductor region is reduced, and the time constant, which is the product of the resistance value R1 + R2 and the capacitance value C, usually decreases, so the frequency characteristic of the effective impedance value of the high-pass filter circuit is reduced. Is shifted toward higher frequencies, and the frequency band in which the integrated circuit can safely operate without being affected by interference is expanded as compared with the conventional case.

以上説明した実施例に限らず本考案は種々の態様で実施
をすることができる。例えば、実施例では本考案による
二重構造の分離層をさらに埋込拡散層と表面拡散層との
2段構造にするようにしたが、エピタキシャル層が浅く
てよい場合にはもちろん1段構造で充分である。エピタ
キシャル層を実施例のように厚くする必要がある場合に
は、実施例のように2段構造とすれば、上段側の表面拡
散層の幅を狭めてチップ面積の利用効率を上げ、かつそ
の拡散に要する時間を短縮する上で非常に有効である。
The present invention can be implemented in various modes, not limited to the above-described embodiments. For example, in the embodiment, the separation layer having a double structure according to the present invention is further made to have a two-step structure of a buried diffusion layer and a surface diffusion layer. However, when the epitaxial layer may be shallow, it is of course a one-step structure. Is enough. When the epitaxial layer needs to be thick as in the embodiment, if the two-step structure is used as in the embodiment, the width of the surface diffusion layer on the upper side is narrowed to improve the utilization efficiency of the chip area, and It is very effective in reducing the time required for diffusion.

またこの2段構造についても、実施例のように下段側の
埋込拡散層を内外二重構造とする必要は必ずしもなく、
上段側のみを二重構造とすることにより工程を簡単化す
ることも可能である。
Also in this two-stage structure, it is not always necessary that the embedded diffusion layer on the lower stage side has an internal / external double structure as in the embodiment.
It is also possible to simplify the process by forming a double structure only on the upper side.

〔考案の効果〕[Effect of device]

以上の記載からも明らかなように本考案では、一方の導
電形の半導体基板上に設けられた他方の導電形の半導体
領域を一方の導電形の分離層によって相互に接合分離さ
れ集積回路を構成する回路要素をそれぞれ作り込むべき
複数個の半導体領域に分割するに際し、分離層を一方の
導電形の外側分離層とこの外側分離層の中に作り込まれ
た高不純物濃度をもつ一方の導電形の内側分離層とで構
成し、外側分離層の不純物濃度が同じ導電形の内側分離
層の不純物濃度よりは低く、かつ、異なる導電形の半導
体領域の不純物濃度の空乏層の広がりに対して実質的に
等価な不純物濃度値としたので、空乏層が半導体領域内
と外側分離層の双方に広がって両者間のpn接合の接合容
量値が減少し、かつ分離層内の内部抵抗値が外側分離層
の不純物濃度が低い分だけ従来より高くなる。従って本
考案により隣合う半導体領域間のハイパスフィルタ回路
の実効インピーダンス値を従来のほぼ2倍に増加させ
て、各半導体領域内に作り込まれる回路要素間の相互干
渉を有効に軽減することができる。
As is clear from the above description, in the present invention, the semiconductor region of the other conductivity type provided on the semiconductor substrate of the one conductivity type is bonded and separated by the separation layer of the one conductivity type to form an integrated circuit. When dividing the circuit element to be formed into a plurality of semiconductor regions to be respectively formed, the separation layer is formed as an outer separation layer of one conductivity type and one conductivity type having a high impurity concentration formed in the outer separation layer. Of the inner separation layer, the impurity concentration of the outer separation layer is lower than the impurity concentration of the inner separation layer of the same conductivity type, and the impurity concentration of the semiconductor regions of different conductivity types is substantially equal to the spread of the depletion layer. Since the impurity concentration values are set to be equivalent to each other, the depletion layer spreads in both the semiconductor region and the outer isolation layer, the junction capacitance value of the pn junction between them decreases, and the internal resistance value in the isolation layer separates to the outer isolation layer. Low layer impurity concentration Minute only becomes higher than the conventional. Therefore, according to the present invention, the effective impedance value of the high-pass filter circuit between the adjacent semiconductor regions can be almost doubled as compared with the conventional one, and the mutual interference between the circuit elements formed in each semiconductor region can be effectively reduced. .

さらにハイパスフィルタ回路内の接合容量値と直列抵抗
値との積で決まる時定数が減少して、その実効インピー
ダンス値の周波数特性が周波数の高い方にずれるので、
この実効インピーダンス値の増加との相乗効果により、
集積回路がその回路要素間の干渉なしに安全に動作する
周波数帯域を従来の約2倍に拡大することができる。
Furthermore, the time constant determined by the product of the junction capacitance value and the series resistance value in the high-pass filter circuit decreases, and the frequency characteristic of the effective impedance value shifts to the higher frequency side.
Due to the synergistic effect with this increase in effective impedance value,
The frequency band in which the integrated circuit operates safely without interference between its circuit elements can be expanded to about twice that of the conventional one.

本考案を実施しても、各半導体領域内にそれぞれ作り込
まれる回路要素の特性はもちろん従来となんら変わら
ず、また実施例からもわかるように集積回路装置用チッ
プの面積を増加させる必要もとくにないので、本考案に
よる接合分離構造の採用により従来と同じコストで集積
回路装置の動作信頼性を向上し、その動作可能周波数な
いしは動作速度を高めることができる。
Even if the present invention is carried out, the characteristics of the circuit elements respectively built in the respective semiconductor regions are of course no different from the conventional ones, and it is also necessary to increase the area of the integrated circuit device chip as seen from the examples. Therefore, by adopting the junction separation structure according to the present invention, it is possible to improve the operational reliability of the integrated circuit device and increase its operable frequency or operating speed at the same cost as the conventional one.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図が本考案に関し、第1図は本考案に
よる半導体領域間接合分離構造の実施例を主な工程ごと
の状態で示す集積回路装置の一部拡大断面図、第2図は
その等価回路図である。第3図および第4図はそれぞれ
異なる従来の接合分離構造を例示する集積回路装置の一
部拡大断面図である。図において、 1:半導体基板、2:外側埋込分離層、3:内側埋込分離層、
4:半導体領域下の埋込層、5:エピタキシャル層、6:ドレ
インコンタクト層、7:外側分離層、8:内側分離層、10:
半導体領域、11:チャネル形成層、12:ゲート、13:ソー
ス層、14:電極膜、20,21:DMOS形ないし縦形電界効果ト
ランジスタ、C:キャパシタないし接合容量、D:ドレイン
端子、E:接地端子ないしは接地電位、G:ゲート端子、R1
〜R3:抵抗、S:ソース端子、w:分離層の幅、である。
1 and 2 relate to the present invention, and FIG. 1 is a partially enlarged cross-sectional view of an integrated circuit device showing an embodiment of a junction isolation structure between semiconductor regions according to the present invention in a state of each main process. Is an equivalent circuit diagram thereof. FIG. 3 and FIG. 4 are partially enlarged cross-sectional views of an integrated circuit device exemplifying different conventional junction separation structures. In the figure, 1: semiconductor substrate, 2: outer buried separation layer, 3: inner buried separation layer,
4: buried layer under semiconductor region, 5: epitaxial layer, 6: drain contact layer, 7: outer isolation layer, 8: inner isolation layer, 10:
Semiconductor region, 11: channel forming layer, 12: gate, 13: source layer, 14: electrode film, 20, 21: DMOS type or vertical field effect transistor, C: capacitor or junction capacitance, D: drain terminal, E: ground Terminal or ground potential, G: Gate terminal, R1
~ R3: resistance, S: source terminal, w: separation layer width.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一方の導電形の半導体基板上に設けられた
他方の導電形の半導体領域を一方の導電形の分離層によ
って相互に接合分離され集積回路を構成する回路要素を
それぞれ作り込むべき複数個の半導体領域に分割する領
域であって、分離層を一方の導電形の外側分離層とこの
外側分離層の中に作り込まれた高不純物濃度をもつ一方
の導電形の内側分離層とで構成し、外側分離層の不純物
濃度が同じ導電形の内側分離層の不純物濃度よりは低
く、かつ、異なる導電形の半導体領域の不純物濃度の空
乏層の広がりに対して実質的に等価な不純物濃度値であ
ることを特徴とする集積回路における半導体領域間接合
分離構造。
1. A circuit element constituting an integrated circuit is formed by joining and separating a semiconductor region of another conductivity type provided on a semiconductor substrate of one conductivity type from each other by a separation layer of one conductivity type. A region which is divided into a plurality of semiconductor regions, the isolation layer being an outer isolation layer of one conductivity type and an inner isolation layer of one conductivity type having a high impurity concentration formed in the outer isolation layer. The impurity concentration of the outer isolation layer is lower than that of the inner isolation layer of the same conductivity type, and the impurity concentration of the semiconductor regions of different conductivity types is substantially equivalent to the expansion of the depletion layer. A junction isolation structure between semiconductor regions in an integrated circuit characterized by a concentration value.
JP12381588U 1988-09-21 1988-09-21 Junction isolation structure between semiconductor regions in an integrated circuit device Expired - Lifetime JPH075639Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12381588U JPH075639Y2 (en) 1988-09-21 1988-09-21 Junction isolation structure between semiconductor regions in an integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12381588U JPH075639Y2 (en) 1988-09-21 1988-09-21 Junction isolation structure between semiconductor regions in an integrated circuit device

Publications (2)

Publication Number Publication Date
JPH0244335U JPH0244335U (en) 1990-03-27
JPH075639Y2 true JPH075639Y2 (en) 1995-02-08

Family

ID=31373014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12381588U Expired - Lifetime JPH075639Y2 (en) 1988-09-21 1988-09-21 Junction isolation structure between semiconductor regions in an integrated circuit device

Country Status (1)

Country Link
JP (1) JPH075639Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623923B2 (en) * 2002-10-01 2011-02-02 三洋電機株式会社 Junction FET and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0244335U (en) 1990-03-27

Similar Documents

Publication Publication Date Title
US3500139A (en) Integrated circuit utilizing dielectric plus junction isolation
JP2835116B2 (en) Power IC and method of manufacturing the same
JP2991489B2 (en) Semiconductor device
US4988639A (en) Method of manufacturing semiconductor devices using trench isolation method that forms highly flat buried insulation film
JPS6159852A (en) Manufacture of semiconductor device
JP2700180B2 (en) pnp vertical isolated collector transistor
US3964941A (en) Method of making isolated complementary monolithic insulated gate field effect transistors
JPH075639Y2 (en) Junction isolation structure between semiconductor regions in an integrated circuit device
US3584266A (en) Depletion layer capacitor in particular for monolithic integrated circuits
JP2979554B2 (en) Method for manufacturing semiconductor device
US6960797B2 (en) Semiconductor device
JP2000277621A (en) Semiconductor device
US3482152A (en) Semiconductor devices having a field effect transistor structure
JPS59188935A (en) Dielectric isolation type semiconductor device and manufacture thereof
JPS61172346A (en) Semiconductor integrated circuit device
JP2635762B2 (en) Integrated circuit with varicap diode structure
JPH0250475A (en) Manufacturing process of insulated vertical super beta bipolar transistor
KR100247281B1 (en) Junction capacitor using bipolar transistor structure and manufacturing method thereof
JPS6055995B2 (en) Junction field effect transistor
JPH03155659A (en) Semiconductor device
JPS6394667A (en) Semiconductor integrated circuit
JPH01220856A (en) Semiconductor device
JPS604250A (en) Semiconductor integrated circuit device
JPS6124825B2 (en)
JPS6022358A (en) Semiconductor integrated circuit device