JPH0755991A - Reprocessing method for spent fuel - Google Patents

Reprocessing method for spent fuel

Info

Publication number
JPH0755991A
JPH0755991A JP19837893A JP19837893A JPH0755991A JP H0755991 A JPH0755991 A JP H0755991A JP 19837893 A JP19837893 A JP 19837893A JP 19837893 A JP19837893 A JP 19837893A JP H0755991 A JPH0755991 A JP H0755991A
Authority
JP
Japan
Prior art keywords
salt
metal
actinide
fuel
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19837893A
Other languages
Japanese (ja)
Inventor
Koji Mizuguchi
浩司 水口
Yuichi Shoji
裕一 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19837893A priority Critical patent/JPH0755991A/en
Publication of JPH0755991A publication Critical patent/JPH0755991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To safely and easily process radioactive waste products by reducing fission products in salt after electrolytic refining to metal compound, contacting with molten metal and extracting actinide mixture. CONSTITUTION:Spent oxide fuel after chrolination dissolution is precipitated as oxide of U and Pu from a salt mixture on a cathode by electrolysis refining and recovered as reactor fuel. As molten salt electrolytic solution after the electrolysis includes actinide, such reducer as Ca is added to this molten salt electrolytic solution to change the solved oxide ion to metal ion or metal. Then, reduction-processed molten salt electrolytic solution 24 is filled in a crucible 23 and such a molten metal 25 as Cd is contacted to this, the actinide and rare-earth are exchange-reacted with the metal 25 by stiring with an impeller 26 and the actinide is separated from the salt waste. The separation-recovered actinide is recycled in a reactor to be consumed by fission.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所から発生す
る使用済燃料を再処理して、使用済燃料中に含まれる有
用な金属を精製回収し、且つ不要な核分裂生成物を分離
するための溶融塩電解精製法による使用済燃料の再処理
方法に関する。
The present invention relates to reprocessing spent fuel generated from a nuclear power plant, refining and recovering useful metals contained in the spent fuel, and separating unnecessary fission products. The present invention relates to a method for reprocessing spent fuel by the molten salt electrolytic refining method of.

【0002】[0002]

【従来の技術】従来、原子力発電所から発生する使用済
酸化物燃料を再処理して、使用済酸化物燃料から原子燃
料成分などの有用な金属を酸化物のまま精製し回収する
技術としては、例えばハンフォード研究所で開発された
塩サイクルプロセスが知られている。
2. Description of the Related Art Conventionally, as a technique for reprocessing spent oxide fuel generated from a nuclear power plant to purify and recover useful metals such as nuclear fuel components from the spent oxide fuel as oxides. , For example, the salt cycle process developed at the Hanford Institute is known.

【0003】この塩サイクルプロセスは、使用済酸化物
燃料を機械的に脱被覆した後、適当な溶融塩電解質中、
ガスと反応させて、脱被覆された使用済酸化物燃料を
(1)式のように酸化し酸化物イオンとして溶融塩電解質
中に溶かす。 UO2 +Cl2 →UO2 2++2Cl- …(1)
This salt cycle process involves mechanically decoating spent oxide fuel and then in a suitable molten salt electrolyte.
React with gas to deoxidize spent oxide fuel
It is oxidized as in formula (1) and dissolved in the molten salt electrolyte as oxide ions. UO 2 + Cl 2 → UO 2 2+ + 2Cl - ... (1)

【0004】これを電解することにより、 (2)式のよう
にウランとプルトニウムのカソード上に酸化物として析
出された物を再生利用することができる。 UO2 2++2e- →UO2 PuO2 2++2e- →PuO2 …(2)
By electrolyzing this, the substance deposited as an oxide on the cathode of uranium and plutonium can be recycled as shown in the formula (2). UO 2 2+ + 2e - → UO 2 PuO 2 2+ + 2e - → PuO 2 ... (2)

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このプ
ロセスによると、電解精製後の溶融塩電解質中にアクチ
ニドを含有しているため、溶融塩電解質の放射性廃棄物
処理は、その長半減期による極めて長期的な監視が必要
となり困難となる課題がある。そのため、アクチニドを
溶融塩電解質から分離回収する方法の開発が望まれる。
However, according to this process, since the molten salt electrolyte after electrolytic refining contains actinide, the radioactive waste treatment of the molten salt electrolyte is extremely long due to its long half-life. There is a problem that it becomes difficult because of the need for dynamic monitoring. Therefore, it is desired to develop a method for separating and collecting actinide from the molten salt electrolyte.

【0006】本発明は、上記課題を解決するためになさ
れたもので、電解精製後、溶融塩電解質中に含まれるア
クチニドを溶融塩電解質から分離回収することによっ
て、溶融塩電解質の放射性廃棄物処理を容易にできる使
用済燃料の再処理方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and after electrolytic refining, the actinide contained in the molten salt electrolyte is separated and recovered from the molten salt electrolyte to treat the radioactive waste of the molten salt electrolyte. It is an object of the present invention to provide a method for reprocessing spent fuel that can facilitate the process.

【0007】[0007]

【課題を解決するための手段】本発明は使用済酸化物燃
料を機械的に脱被覆する脱被覆工程と、前記燃料酸化物
を溶融塩中に塩素化溶解する塩素化溶解工程と、この塩
素化溶解工程の塩混合物からウランおよびプルトニウム
をカソード上に酸化物として電着させる電解精製工程
と、この電解精製工程の電解析出物を燃料として再生す
る酸化物燃料製造工程と、前記電解精製工程後の塩中の
核分裂生成物を金属化合物に還元する還元工程と、前記
塩混合物を溶融金属と接触させ、アクチニド混合物を金
属抽出させる抽出工程とを具備したことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention comprises a decoating step of mechanically decoating a spent oxide fuel, a chlorination dissolution step of chlorinating and dissolving the fuel oxide in a molten salt, and this chlorine Electrolysis step of electrodepositing uranium and plutonium as oxides on the cathode from the salt mixture of the chemical dissolution step, oxide fuel production step of regenerating the electrolytic deposit of this electrorefining step as fuel, and the electrorefining step The method is characterized by further comprising a reduction step of reducing fission products in the salt to a metal compound, and an extraction step of bringing the salt mixture into contact with molten metal and extracting the actinide mixture with metal.

【0008】[0008]

【作用】本発明では使用済酸化物燃料を塩素化溶解して
電解精製後に発生した使用済溶融塩を還元剤で還元し、
溶融金属抽出および電解析出する。このようにして、電
解精製工程後の溶融塩電解質を非アクチニド化して、放
射性廃棄物処理を容易にすることができる。
In the present invention, the spent oxide fuel is chlorinated and dissolved to reduce the spent molten salt generated after electrolytic refining with a reducing agent,
Molten metal extraction and electrolytic deposition. In this way, the molten salt electrolyte after the electrolytic refining step can be deactinized to facilitate the treatment of radioactive waste.

【0009】[0009]

【実施例】図1から図3を参照しながら本発明に係る使
用済燃料の再処理方法の一実施例を説明する。なお、図
1は本発明の使用済燃料の再処理方法のブロックフロー
チャートを示す。図2は図1における電解槽を、図3は
図1における抽出槽を概略的に示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the spent fuel reprocessing method according to the present invention will be described with reference to FIGS. 1. FIG. 1 shows a block flow chart of the spent fuel reprocessing method of the present invention. 2 schematically shows the electrolytic cell in FIG. 1, and FIG. 3 schematically shows the extraction vessel in FIG.

【0010】図1において使用済酸化物燃料1中には、
劣化ウランの他に核分裂生成物であるアルカリ金属、ア
ルカリ土類金属、希土類、アクチニド等が存在する。
In the spent oxide fuel 1 shown in FIG.
Besides depleted uranium, there are fission products such as alkali metals, alkaline earth metals, rare earths, and actinides.

【0011】使用済酸化物燃料1を脱被覆工程2で機械
的に脱被覆し、溶融塩電解質中に投入し、塩素等のガス
と反応させることによって、酸化物イオンの形で塩素化
溶解3する。この塩素化溶解工程で使用する電解槽を模
式的に図2に示す。
The spent oxide fuel 1 is mechanically decoated in the decoating step 2, charged into a molten salt electrolyte, and reacted with a gas such as chlorine to chlorinate and dissolve 3 in the form of oxide ions. To do. The electrolytic cell used in this chlorination dissolution step is schematically shown in FIG.

【0012】図2中符号18はルツボで、回路が閉じた状
態ではアノードになり、電解精製工程4で用いる。塩素
化溶解工程3では電解は行わないため回路は開いた状態
で行う。
Reference numeral 18 in FIG. 2 is a crucible, which serves as an anode when the circuit is closed and is used in the electrolytic refining step 4. In the chlorination dissolution step 3, electrolysis is not performed, so the circuit is performed in an open state.

【0013】このルツボ18内には溶融塩電解質浴19が満
たされており、その溶融塩電解質浴19中にガス吹き込み
管20と図1で示す電解精製工程4で用いるカソード21が
挿入されている。さらに電解精製工程4での電解のため
の電源22が設けられている。
A molten salt electrolyte bath 19 is filled in the crucible 18, and a gas blowing pipe 20 and a cathode 21 used in the electrolytic refining step 4 shown in FIG. 1 are inserted into the molten salt electrolyte bath 19. . Further, a power source 22 for electrolysis in the electrolytic refining step 4 is provided.

【0014】脱被覆工程2、塩素化溶解工程3に続く、
次のステップは電解精製工程4であり、それは電解的に
実施されて、酸化物のままで精製される。
Following the decoating step 2 and the chlorination dissolution step 3,
The next step is electrorefining process 4, which is carried out electrolytically and purified as-oxide.

【0015】図2の電解槽の回路を閉じることによって
電解が始まり、塩素化溶解工程3で溶融塩電解質浴19内
に溶解した使用済酸化物燃料1の中でウラニル(UO2
2+)とプルトニル(PuO2 2+)だけがカソード21上で
電気化学的に還元されて二酸化ウラン(UO2 )、二酸
化プルトニウム(PuO2 )の形で同時電着され、他の
使用済酸化物燃料1中の核分裂生成物は溶融塩電解質浴
19に溶解したままである。
Electrolysis is started by closing the circuit of the electrolytic cell of FIG. 2, and uranyl (UO 2 ) is used in the spent oxide fuel 1 dissolved in the molten salt electrolyte bath 19 in the chlorination dissolution step 3.
2+ ) and plutonium (PuO 2 2+ ) are electrochemically reduced on the cathode 21 and co-deposited in the form of uranium dioxide (UO 2 ), plutonium dioxide (PuO 2 ), other spent oxidation Fission products in solid fuel 1 are molten salt electrolyte baths
It remains dissolved in 19.

【0016】この析出物(電着物)5のUO2 とPuO
2 は酸化物燃料製造工程(システム)6へ転送し、そこ
で原子炉用のリサイクル燃料を製造する。
UO 2 and PuO of this precipitate (electrodeposit) 5
2 is transferred to the oxide fuel manufacturing process (system) 6 where the recycled fuel for the nuclear reactor is manufactured.

【0017】電解精製工程4に続く工程である還元工程
8では上記電解精製工程4で発生したアクチニドを含有
する使用済溶融塩浴7に還元剤を添加することにより、
溶解している酸化物イオンは金属イオンまたは金属、あ
るいは金属イオンは金属に化学的に還元する。例えば還
元剤にCaを使用した場合、このときCaは酸化されて
CaO(Ca2+)として溶融塩電解質中に存在してい
る。
In the reduction step 8 which is a step following the electrolytic refining step 4, by adding a reducing agent to the spent molten salt bath 7 containing the actinide generated in the electrolytic refining step 4,
Dissolved oxide ions are metal ions or metals, or metal ions are chemically reduced to metals. For example, when Ca is used as the reducing agent, at this time, Ca is oxidized and exists in the molten salt electrolyte as CaO (Ca 2+ ).

【0018】したがって、この還元工程8により酸化物
イオンは金属イオンあるいは金属に変換される。このC
aを還元剤として使用した場合の還元工程の主反応を次
式に示す。 (FP酸化物イオン)+Ca→(FP金属イオン)+CaO …(3)
Therefore, in this reduction step 8, oxide ions are converted into metal ions or metals. This C
The main reaction of the reduction step when a is used as the reducing agent is shown in the following formula. (FP oxide ion) + Ca → (FP metal ion) + CaO (3)

【0019】還元工程8に続く次のステップは抽出工程
9で、溶融塩浴10のアルカリ金属およびアルカリ土類金
属12と溶融金属浴11によるアクチニドおよび希土類13の
抽出を行って分離する。このとき使用する抽出槽を模式
的に図3に示す。
The next step following the reduction step 8 is an extraction step 9, in which the alkali metal and alkaline earth metal 12 in the molten salt bath 10 and the actinide and rare earth 13 in the molten metal bath 11 are extracted and separated. The extraction tank used at this time is schematically shown in FIG.

【0020】図3中符号23はルツボで、このルツボ23中
に還元工程8で処理された溶融塩電解質浴で満たし、こ
の溶融塩電解質24に溶融金属25を接触させ、このとき例
えば26のようなインペラで撹拌し接触面積を大きくさせ
る。
Reference numeral 23 in FIG. 3 is a crucible, and the crucible 23 is filled with the molten salt electrolyte bath treated in the reduction step 8, and the molten metal electrolyte 24 is brought into contact with the molten metal electrolyte bath 24. Use a different impeller to increase the contact area.

【0021】溶融金属25としてCdを例にとって説明す
ると、この溶融塩電解質24とCd(溶融金属25)の接触
により、塩化物生成自由エネルギーの絶対値がCd塩化
物よりも小さい、すなわちCdの塩化物よりも塩化物と
して存在しにくい物質、例えばアクチニド、希土類は次
式のようにCdと交換反応する形で還元されて、金属状
態で溶融塩電解質24からCd浴(溶融金属25)に移行
し、溶解分散する。 (FP酸化物イオン)・Cl- +Cd→Fp金属+Cd2+・Cl- …(4)
Taking Cd as an example of the molten metal 25, the absolute value of the free energy for chloride formation is smaller than that of Cd chloride due to the contact between the molten salt electrolyte 24 and Cd (molten metal 25). Substances that are less likely to exist as chlorides than substances, such as actinides and rare earths, are reduced in the form of exchange reaction with Cd as shown in the following formula, and are transferred from the molten salt electrolyte 24 to the Cd bath (molten metal 25) in the metallic state. , Dissolve and disperse. (FP oxide ion) · Cl + Cd → Fp metal + Cd 2 + · Cl (4)

【0022】したがって、アクチニドが使用済溶融塩浴
7から溶融金属浴11に化学還元によって転送されるの
で、塩廃棄物からアクチニドを分別することが可能とな
り、塩廃棄物の放射性廃棄物処理を容易にすることがで
きる。ここで、分離回収したアクチニドは原子炉へリサ
イクルさせて核分裂によって消費させる。
Therefore, since actinide is transferred from the spent molten salt bath 7 to the molten metal bath 11 by chemical reduction, the actinide can be separated from the salt waste, and the radioactive waste treatment of the salt waste can be facilitated. Can be Here, the actinides separated and collected are recycled to the nuclear reactor and consumed by nuclear fission.

【0023】一方、塩化物生成自由エネルギーの絶対値
がCd塩化物よりも大きい、すなわちCd塩化物よりも
塩化物になり易い物質、例えばアルカリ金属、アルカリ
土類金属などは還元されず、溶融塩浴10中に塩化物、す
なわち金属イオンとして残留するが、アルカリ金属およ
びアルカリ土類金属12等は電気遊動法等により、選択的
に取り除くことができるので、塩を再生して再処理する
ことができる。
On the other hand, a substance having an absolute value of chloride formation free energy larger than that of Cd chloride, that is, a substance which is more liable to become a chloride than Cd chloride, such as an alkali metal or an alkaline earth metal, is not reduced and a molten salt is obtained. Chlorides, i.e., metal ions, remain in the bath 10, but the alkali metal and alkaline earth metal 12 and the like can be selectively removed by an electric floating method or the like, so that the salt can be regenerated and reprocessed. it can.

【0024】このことから溶融塩浴10は従来の未処理で
ある使用済溶融塩浴7に比して塩廃棄物としての量を低
減することができる。
Therefore, the molten salt bath 10 can reduce the amount of salt waste as compared with the conventional untreated used molten salt bath 7.

【0025】なお、本実施例において抽出工程で溶融金
属の例としてCdを用いたが、アクチニドを溶解するこ
とのできる溶融MgやCd−Li、Cd−Mg、Zn−
Mg、Cu−Mg等の溶融金属を用いることも可能であ
る。
Although Cd was used as an example of molten metal in the extraction step in this example, molten Mg, Cd-Li, Cd-Mg, Zn- capable of dissolving actinides.
It is also possible to use a molten metal such as Mg or Cu-Mg.

【0026】また、この抽出工程は上述した化学的還元
の代りに電気化学的還元を用いることも可能であり、こ
のとき使用する電解槽を模式的に図4に示す。
In this extraction step, electrochemical reduction can be used instead of the above-mentioned chemical reduction, and the electrolytic cell used at this time is schematically shown in FIG.

【0027】図4中符号14は電解槽で、この電解槽14内
には塩浴として溶融塩電解質15が満たされており、その
塩浴中にCdカソード16が挿入されている。さらに電解
のため電源17が設けられている。さらに還元工程8と抽
出工程9との順序を入れ換えることもできる。
In FIG. 4, reference numeral 14 is an electrolytic cell. The electrolytic cell 14 is filled with a molten salt electrolyte 15 as a salt bath, and a Cd cathode 16 is inserted in the salt bath. Further, a power supply 17 is provided for electrolysis. Furthermore, the order of the reduction step 8 and the extraction step 9 can be exchanged.

【0028】[0028]

【発明の効果】本発明によれば電解精製で発生する塩廃
棄物からアクチニドを分離回収したので、これらの廃棄
生成物を安全に且つ容易に処置することを可能とし、ま
たアクチニド、希土類等が分離されたことにより、使用
済塩の再生が可能となり、廃棄物量を低減することがで
きる。
EFFECTS OF THE INVENTION According to the present invention, actinides are separated and recovered from the salt waste generated by electrolytic refining, so that these waste products can be treated safely and easily, and actinides, rare earths, etc. By separating the used salt, it is possible to regenerate the used salt and reduce the amount of waste.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る使用済燃料の再処理方法の一実施
例を示すブロックフロー図。
FIG. 1 is a block flow diagram showing an embodiment of a spent fuel reprocessing method according to the present invention.

【図2】図1における電解槽を概略的に示す縦断面図。FIG. 2 is a vertical sectional view schematically showing the electrolytic cell in FIG.

【図3】図1における抽出槽を概略的に示す縦断面図。FIG. 3 is a vertical sectional view schematically showing the extraction tank in FIG.

【図4】本発明に係る使用済燃料の再処理方法における
応用例を説明するための概略的断面図。
FIG. 4 is a schematic cross-sectional view for explaining an application example of the spent fuel reprocessing method according to the present invention.

【符号の説明】[Explanation of symbols]

1…使用済酸化物燃料、2…脱被覆工程、3…塩素化溶
解工程、4…電解精製工程、5…電解析出物、6…酸化
物燃料製造工程、7…使用済溶融塩浴、8…還元工程、
9…抽出工程、10…溶融塩浴、11…溶融金属浴、12…ア
ルカリ金属およびアルカリ土類金属、13…アクチニドお
よび希土類、14…電解槽、15…溶融塩電解質、16…Cd
カソード、17…電源、18…ルツボ(アノード)、19…溶
融塩電解質浴、20…ガス吹き込み管、21…カソード、22
…電源、23…ルツボ、24…溶融塩電解質、25…溶融金
属、26…インペラ。
DESCRIPTION OF SYMBOLS 1 ... Spent oxide fuel, 2 ... Decoating process, 3 ... Chlorination | dissolution process, 4 ... Electrorefining process, 5 ... Electrolytic deposit, 6 ... Oxide fuel manufacturing process, 7 ... Spent molten salt bath, 8 ... Reduction process,
9 ... Extraction step, 10 ... Molten salt bath, 11 ... Molten metal bath, 12 ... Alkali metal and alkaline earth metal, 13 ... Actinide and rare earth, 14 ... Electrolyzer, 15 ... Molten salt electrolyte, 16 ... Cd
Cathode, 17 ... Power supply, 18 ... Crucible (anode), 19 ... Molten salt electrolyte bath, 20 ... Gas blowing tube, 21 ... Cathode, 22
… Power supply, 23… Crucible, 24… Molten salt electrolyte, 25… Molten metal, 26… Impeller.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 使用済酸化物燃料を機械的に脱被覆する
脱被覆工程と、前記燃料酸化物を溶融塩中に塩素化溶解
する塩素化溶解工程と、この塩素化溶解工程の塩混合物
からウランおよびプルトニウムをカソード上に酸化物と
して電着させる電解精製工程と、この電解精製工程の電
解析出物を燃料として再生する酸化物燃料製造工程と、
前記電解精製工程後の塩中の核分裂生成物を金属化合物
に還元する還元工程と、前記塩混合物を溶融金属と接触
させ、アクチニド混合物を金属抽出させる抽出工程とを
具備したことを特徴とする使用済燃料の再処理方法。
1. A decladding step of mechanically decoating a spent oxide fuel, a chlorination dissolution step of chlorinating and dissolving the fuel oxide in a molten salt, and a salt mixture of this chlorination dissolution step. An electrolytic refining step of electrodepositing uranium and plutonium as oxides on the cathode, and an oxide fuel manufacturing step of regenerating electrolytic deposits of this electrolytic refining step as fuel,
Use comprising a reduction step of reducing fission products in the salt after the electrolytic refining step to a metal compound, and an extraction step of contacting the salt mixture with molten metal and extracting the actinide mixture with a metal. Reprocessing method of spent fuel.
【請求項2】 前記溶融金属はCd、Mg、Cd−L
i、Cd−Mg、Zn−Mg、Cu−Mgから選択され
ることを特徴とする請求項1記載の使用済燃料の再処理
方法。
2. The molten metal is Cd, Mg, Cd-L
The method for reprocessing spent fuel according to claim 1, wherein the method is selected from i, Cd-Mg, Zn-Mg, and Cu-Mg.
【請求項3】 前記塩中の酸化物を金属化合物に還元す
る還元工程は化学的還元により行い、また前記塩は塩化
物、フッ化物または塩化物とフッ化物の混合塩を用いる
ことを特徴とする請求項1記載の使用済燃料の再処理方
法。
3. The reduction step of reducing the oxide in the salt to a metal compound is performed by chemical reduction, and the salt is chloride, fluoride or a mixed salt of chloride and fluoride. The method for reprocessing spent fuel according to claim 1,
【請求項4】 前記化学的還元の代りに電気化学的還元
を用いることを特徴とする請求項3記載の使用済燃料の
再処理方法。
4. The method for reprocessing spent fuel according to claim 3, wherein electrochemical reduction is used instead of the chemical reduction.
JP19837893A 1993-08-10 1993-08-10 Reprocessing method for spent fuel Pending JPH0755991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19837893A JPH0755991A (en) 1993-08-10 1993-08-10 Reprocessing method for spent fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19837893A JPH0755991A (en) 1993-08-10 1993-08-10 Reprocessing method for spent fuel

Publications (1)

Publication Number Publication Date
JPH0755991A true JPH0755991A (en) 1995-03-03

Family

ID=16390127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19837893A Pending JPH0755991A (en) 1993-08-10 1993-08-10 Reprocessing method for spent fuel

Country Status (1)

Country Link
JP (1) JPH0755991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990089A (en) * 1995-09-20 1997-04-04 Toshiba Corp Method and device for reprocessing spent oxide fuel
JP2005315790A (en) * 2004-04-30 2005-11-10 Toshiba Corp Reprocessing method for spent oxide fuel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990089A (en) * 1995-09-20 1997-04-04 Toshiba Corp Method and device for reprocessing spent oxide fuel
JP2005315790A (en) * 2004-04-30 2005-11-10 Toshiba Corp Reprocessing method for spent oxide fuel
JP4679070B2 (en) * 2004-04-30 2011-04-27 株式会社東芝 Method for reprocessing spent oxide fuel

Similar Documents

Publication Publication Date Title
JP2641533B2 (en) Method for purifying spent nuclear fuel containing uranium and plutonium
US5156722A (en) Decontamination of radioactive metals
US5183541A (en) Decontamination of radioactive metals
EP1481401B1 (en) Electrochemical cell for metal production
JPH03123896A (en) Recovery of actinides
US4701246A (en) Method for production of decontaminating liquid
EP1240647B1 (en) Actinide production
JP3763980B2 (en) Spent oxide fuel reduction device and reduction method thereof
EP1393324B1 (en) Actinide production
JP2000284090A (en) Method for reprocessing spent nuclear fuel
JP3519557B2 (en) Reprocessing of spent fuel
JPH0755991A (en) Reprocessing method for spent fuel
JP4679070B2 (en) Method for reprocessing spent oxide fuel
US3857763A (en) Recovery of electrolytic deposits of rhodium
JP4025125B2 (en) How to reprocess spent fuel
JP2997266B1 (en) Method for separating and recovering platinum group elements, technetium, tellurium and selenium
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
JP5238546B2 (en) Spent oxide fuel processing method, metal oxide processing method and processing apparatus
JPH05188186A (en) Separation and recovery of depleted uranium from spent nuclear fuel
US2834722A (en) Electrochemical decontamination and recovery of uranium values
JP2000155193A (en) Reprocessing method and device of spent oxide fuel
JP3030372B2 (en) How to separate fission-generated noble metals
JP2941740B2 (en) Recovery method of plutonium in waste salt generated by dry reprocessing of spent nuclear fuel
JP2002131472A (en) Reprocessing method for spent nuclear fuel oxide
JP2004361417A (en) Melted salt electrolytic re-treatment method of spent fuel