JP3030372B2 - How to separate fission-generated noble metals - Google Patents

How to separate fission-generated noble metals

Info

Publication number
JP3030372B2
JP3030372B2 JP7177291A JP7177291A JP3030372B2 JP 3030372 B2 JP3030372 B2 JP 3030372B2 JP 7177291 A JP7177291 A JP 7177291A JP 7177291 A JP7177291 A JP 7177291A JP 3030372 B2 JP3030372 B2 JP 3030372B2
Authority
JP
Japan
Prior art keywords
lead
noble metal
fission
recovered
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7177291A
Other languages
Japanese (ja)
Other versions
JPH07270586A (en
Inventor
奎爾 内藤
恒雄 松井
弘 中平
正俊 北川
浩 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7177291A priority Critical patent/JP3030372B2/en
Publication of JPH07270586A publication Critical patent/JPH07270586A/en
Application granted granted Critical
Publication of JP3030372B2 publication Critical patent/JP3030372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、使用済核燃料の再処理
工程で発生する不溶解残渣及び高レベル廃液中に含まれ
る核分裂生成貴金属を分離回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering insoluble residues generated in a reprocessing step of spent nuclear fuel and fission-generated noble metals contained in a high-level waste liquid.

【0002】[0002]

【従来の技術】使用済核燃料に含まれる各種核分裂生成
貴金属の存在割合は、核燃料の組成,燃焼度及び冷却時
間等によって異なっているが、何れの場合もその量は核
分裂生成物の全量の1/6程度に達する。これらの核分
裂生成貴金属は、その再処理工程において不溶解残渣と
高レベル廃液中に含有されている。かかる不溶解残渣及
び高レベル廃液中の貴金属の回収方法として鉛溶融によ
る方法が知られている。高レベル廃液中からの回収方法
として、加熱脱硝した高レベル廃液にガラス形成剤,一
酸化鉛及び活性炭等の還元剤を混合して1100〜12
00℃で加熱溶融する方法がある(例えば、Nuclear Te
chnology vol.65,305(1984)及び日本原子力学会「1989
秋の大会」予稿集H69 等に記載されている)。更に、不
溶解残渣からの回収方法としては、不溶解残渣にガラス
形成剤,金属鉛を混合して550℃以上で加熱溶融する
方法がある(例えば、Nuclear Science and Technology
vol23, 540(1989) 及び日本原子力学会「1989年年会」
予稿集L6等に記載されている)。これらの方法によれ
ば、核分裂生成貴金属は鉛によって効率良く回収されて
当該貴金属以外の超ウラン元素等から分離されると共
に、この超ウラン元素等はそのままガラス固化体として
処分されるようになっている。
2. Description of the Related Art The abundance ratios of various fission-producing noble metals contained in spent nuclear fuel differ depending on the composition, burnup, cooling time, etc. of the nuclear fuel. / 6. These fission-produced noble metals are contained in insoluble residues and high-level effluents in the reprocessing step. As a method for recovering such insoluble residues and noble metals in high-level waste liquid, a method based on lead melting is known. As a method for recovering from high-level waste liquid, a high-level waste liquid heated and denitrated is mixed with a reducing agent such as a glass-forming agent, lead monoxide and activated carbon to obtain 1100 to 12%.
There is a method of heating and melting at 00 ° C (for example, Nuclear Te
chnology vol.65,305 (1984) and Atomic Energy Society of Japan `` 1989
Fall Meeting ”, etc., are described in the proceedings H69 etc.). Further, as a method for recovering from the insoluble residue, there is a method in which a glass forming agent and metallic lead are mixed with the insoluble residue and heated and melted at 550 ° C. or higher (eg, Nuclear Science and Technology)
vol23, 540 (1989) and Atomic Energy Society of Japan, 1989 Annual Meeting
Proceedings L6 etc.). According to these methods, the fission-generated noble metal is efficiently recovered by lead and separated from transuranium elements and the like other than the noble metal, and the transuranium elements and the like are disposed of as a vitrified material as it is. I have.

【0003】更に、このように鉛溶融法により回収され
た核分裂生成貴金属(複数の種類を含んでいる)を相互
に分離する方法として、所謂、乾式法と湿式法の二種類
がある。乾式法では、鉛溶融により鉛金属とされた貴金
属を亜鉛等の金属によって抽出した後に、亜鉛等の金属
を蒸留により除去し、これにより貴金属が回収されるも
のである。一方、湿式法では、鉛溶融により鉛合金とし
て回収した貴金属を酸に溶解して、この溶解された貴金
属を溶媒抽出又はイオン交換等の方法により相互に分離
して回収するものである。尚、ここで上記湿式法の場
合、製品の純度維持及び設備の簡略化等の経済性の観点
から、溶液中に高濃度で溶解している鉛を貴金属中から
可能な限り早期に分離することが必要である。
Further, there are two types of methods for separating fission-generated noble metals (including a plurality of types) recovered from each other by the lead melting method from each other, a so-called dry method and a wet method. In the dry method, noble metal converted into lead metal by lead melting is extracted with a metal such as zinc, and then the metal such as zinc is removed by distillation, whereby the noble metal is recovered. On the other hand, in the wet method, a noble metal recovered as a lead alloy by melting lead is dissolved in an acid, and the dissolved noble metal is separated and recovered from each other by a method such as solvent extraction or ion exchange. In the case of the above wet method, lead dissolved at a high concentration in the solution should be separated from the noble metal as early as possible from the viewpoint of economics such as maintenance of product purity and simplification of equipment. is necessary.

【0004】かかる湿式法による鉛の分離方法は、中和
により鉛を水酸化物として沈澱分離する方法及び硫酸イ
オンその他の添加物により鉛の沈澱物を形成して分離す
る方法等が廃水処理又は分析法に広く応用されている。
The method of separating lead by such a wet method includes a method of separating and separating lead as hydroxide by neutralization and a method of forming and separating lead precipitate by sulfate ions and other additives. Widely applied to analytical methods.

【0005】[0005]

【発明が解決しようとする課題】ところで、鉛溶融によ
り得られた貴金属を回収した鉛合金を硝酸に溶解した場
合には、ロジウム及びパラジウムは溶液側に移行し又、
ルテニウムは残渣側に移行する。従って、溶液中にはロ
ジウム及びパラジウムと共に鉛が高濃度で残存するの
で、上記沈澱分離方法では沈澱した鉛を分離する場合に
溶液中に存在する大部分の貴金属が鉛の沈澱に随伴して
しまい、この随伴した貴金属は回収されないため結局回
収ロスとならざるを得ず極めて不経済であった。一方、
硫酸塩等の形態で回収された鉛を再利用する場合には腐
食性の硫酸ガスを生ぜしめ、高レベルの放射性物質を取
り扱う施設においてはかかる硫酸ガスの処理及び再利用
が困難になって廃棄物の量が増大する。
When a lead alloy obtained by recovering a noble metal obtained by melting lead is dissolved in nitric acid, rhodium and palladium move to the solution side, and
Ruthenium moves to the residue side. Therefore, since lead remains at a high concentration in the solution together with rhodium and palladium, most of the noble metals present in the solution accompany the precipitation of lead when the precipitated lead is separated by the above precipitation separation method. However, since the associated precious metal is not recovered, it is unavoidable to end up with a recovery loss, which is extremely uneconomical. on the other hand,
When reusing lead recovered in the form of sulfate, etc., corrosive sulfuric acid gas is generated, and disposal and reuse of such sulfuric acid gas becomes difficult in facilities handling high-level radioactive materials. The quantity of things increases.

【0006】本発明は、かかる実情に鑑み、特に高レベ
ルな放射性物質を取り扱う施設等において極めて効果的
に適用し得る、核分裂生成貴金属の分離方法を提供する
ことを目的とする。
[0006] In view of such circumstances, an object of the present invention is to provide a method for separating fission-generated noble metals which can be extremely effectively applied particularly to facilities handling high-level radioactive materials.

【0007】[0007]

【課題を解決するための手段】本発明による核分裂生成
貴金属の分離方法は、使用済核燃料の再処理工程で発生
する不溶解残渣及び高レベル廃液中に含まれる貴金属を
鉛溶融により回収し、回収して得られた貴金属含有鉛合
金を硝酸で溶融して、その溶液中の鉛を、銀/塩化銀の
標準電極を基準にして+1.4〜1.7ボルトの電位に
設定した陽極において酸化せしめることにより、二酸化
鉛として除去するようになっている。
According to the present invention, there is provided a method for separating fission-generated noble metals, wherein undissolved residues generated in a reprocessing step of spent nuclear fuel and noble metals contained in high-level waste liquid are recovered by melting lead. The lead alloy containing the noble metal obtained by the above is melted with nitric acid, and the lead in the solution is oxidized at an anode set to a potential of +1.4 to 1.7 volts with respect to a silver / silver chloride standard electrode. By doing so, they are removed as lead dioxide.

【0008】又、本発明では、貴金属含有鉛合金の溶液
からパラジウムを選択的に電析回収し得るように、陰極
の電位を設定するようになっている。
In the present invention, the potential of the cathode is set so that palladium can be selectively deposited and recovered from the solution of the lead alloy containing a noble metal.

【0009】[0009]

【作用】本発明によれば、鉛溶融により得られた核分裂
生成貴金属の回収方法によって回収された鉛合金を硝酸
に溶解し、これにより得られた硝酸性のロジウム及びパ
ラジウムと共に存在する高濃度の鉛溶液から、電解酸化
により陽極において二酸化鉛の形で鉛を分離し、これと
同時に陰極においてパラジウムを選択的に還元析出によ
り回収することができる。
According to the present invention, a lead alloy recovered by a method for recovering a fission-generated noble metal obtained by melting lead is dissolved in nitric acid, and a high-concentration of high-concentration metal present together with rhodium and palladium nitrates thus obtained is obtained. From the lead solution, lead can be separated in the form of lead dioxide at the anode by electrolytic oxidation, and at the same time palladium can be recovered selectively at the cathode by reductive precipitation.

【0010】[0010]

【実施例】以下、本発明による核分裂生成貴金属の分離
方法の一実施例を説明する。先ずここで、不溶解残渣か
らの核分裂生成貴金属の回収を模擬不溶解残渣を用いて
行ったが、実際の不溶解残渣の組成は、燃料の組成,燃
焼度及び冷却時間によっても相違するが、大部分は、ル
テニウム,ロジウム及びパラジウムの貴金属元素とテク
ネシウム及びモリブデンからなる合金とが占めている。
軽水炉燃料の場合、これら五種類の元素の平均的組成比
率は原子分率で55:10:10:5:20程度であ
る。そこで本発明方法においては、模擬不溶解残渣とし
てルテニウム,ロジウム,パラジウム及びモリブデンか
ら成る合金を想定し、そしてこれらの元素の比率を元素
分率で60:10:10:20に設定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for separating fission-generated noble metals according to the present invention will be described below. First, here, the recovery of fission-generated noble metal from the insoluble residue was performed using the simulated insoluble residue, but the actual composition of the insoluble residue differs depending on the fuel composition, burnup, and cooling time. For the most part, precious metal elements of ruthenium, rhodium and palladium and alloys consisting of technesium and molybdenum are occupied.
In the case of light water reactor fuel, the average composition ratio of these five elements is about 55: 10: 10: 5: 20 in atomic fraction. Therefore, in the method of the present invention, an alloy composed of ruthenium, rhodium, palladium and molybdenum was assumed as the simulated insoluble residue, and the ratio of these elements was set to 60: 10: 10: 20 in elemental fraction.

【0011】前述したように本発明方法は核分裂生成貴
金属を回収するために鉛溶融を行なうが、この鉛溶融
は、模擬不溶解残渣の重量に対してガラス形成剤を10
倍,金属鉛を50倍加えて1100℃の温度で行なわれ
る。そして、得られた鉛合金を3規定硝酸で溶解するこ
とにより、貴金属と鉛の溶液が得られるが、この硝酸溶
液のための電解槽では陽極に白金を又、陰極には炭素を
用いると共にガラスフィルター製の隔膜を併用した。
As described above, the method of the present invention performs lead melting to recover the fission-generated noble metal, and this lead melting involves adding 10 parts of the glass forming agent to the weight of the simulated insoluble residue.
This is carried out at a temperature of 1100 ° C. by adding metal lead 50 times and metal lead 50 times. By dissolving the obtained lead alloy with 3N nitric acid, a solution of noble metal and lead is obtained. In the electrolytic cell for this nitric acid solution, platinum is used for the anode, carbon is used for the cathode, and glass is used. A filter diaphragm was used in combination.

【0012】先ず、上記硝酸溶液中の貴金属の回収を行
なうために陽極において鉛を二酸化鉛として酸化するこ
とにより分離するが、かかる陽極の電位は、銀/塩化銀
の標準電極に対して+1.4〜+1.7ボルトに設定さ
れる。ここで、陽極の電位が銀/塩化銀の標準電極に対
して+1.4ボルトよりも低い場合には二酸化鉛の析出
速度は極めて遅くなり、一方また、+1.7ボルトより
も高い場合には陽極における酸素の発生が著しく増大し
てしまい効率の低下を来すため、陽極の電位としては上
記のように+1.4〜+1.7ボルトの範囲であること
が最適条件になる。一方、かかる陽極における鉛の析出
と同時に、陰極においてパラジウムの還元析出を行なう
が、この析出電位は、パラジウムに対しては+0.1ボ
ルト以下である。従って、陰極の電位を銀/塩化銀の標
準電極に対して+0.1ボルト以下の範囲に設定するこ
とにより、パラジウムのみを選択的に電解析出すること
ができる。
First, in order to recover the noble metal in the nitric acid solution, the lead is separated by oxidizing lead as lead dioxide at the anode. The potential of the anode is + 1.times. With respect to the standard silver / silver chloride electrode. 4 to +1.7 volts. Here, when the potential of the anode is lower than +1.4 volts with respect to the silver / silver chloride standard electrode, the deposition rate of lead dioxide becomes extremely slow, and when the potential is higher than +1.7 volts, Since the generation of oxygen at the anode is remarkably increased and the efficiency is reduced, the optimal condition is that the potential of the anode is in the range of +1.4 to +1.7 volts as described above. On the other hand, at the same time as the precipitation of lead at the anode, reductive precipitation of palladium is performed at the cathode, and the deposition potential is +0.1 volt or less with respect to palladium. Therefore, by setting the potential of the cathode to a range of +0.1 volt or less with respect to the silver / silver chloride standard electrode, only palladium can be selectively electrolytically deposited.

【0013】次に、上記銀/塩化銀の標準電極に対して
陽極の電位を+1.4〜+1.7ボルトに設定すると共
に、陰極の電位を+0.1ボルト以下に設定して電解を
行った場合の結果を表1に示す。
Next, the potential of the anode is set to +1.4 to +1.7 volts with respect to the silver / silver chloride standard electrode, and the potential of the cathode is set to +0.1 volts or less, and electrolysis is performed. Table 1 shows the results of the measurement.

【0014】[0014]

【表1】 [Table 1]

【0015】上記表1から明らかなように、陽極におい
て鉛が電流効率95%以上で回収され又、陰極において
パラジウが選択的に析出回収された。尚、この表1から
明らかなように、陽極の電位が銀/塩化銀の標準電極に
対して+1.4〜+1.7ボルトの範囲であれば、該陽
極側の溶液中の鉛の濃度は充分に低くなる。
As is apparent from Table 1, lead was recovered at the anode at a current efficiency of 95% or more, and palladium was selectively recovered at the cathode. As apparent from Table 1, if the potential of the anode is in the range of +1.4 to +1.7 volts with respect to the silver / silver chloride standard electrode, the concentration of lead in the solution on the anode side is It will be low enough.

【0016】上記実施例において陽極で回収された二酸
化鉛はそのままの状態で再び鉛溶融工程の原料としてリ
サイクル使用することも可能である。又、上記陽極及び
陰極の電極材料には、白金板,炭素材等の一般的な電極
材料を用いることができ、これらの陽極及び陰極を隔離
するための隔膜はガラスフィルター等の一般的な隔膜材
料を用い得る。尚、かかる隔膜は、陽極で析出した二酸
化鉛が極板から剥離して溶液中に分散した場合に陰極に
おいて再び該溶液中に溶解して回収効率を低下せしめる
のを防止する上で必要である。
In the above embodiment, the lead dioxide recovered at the anode can be reused as it is as a raw material in the lead melting step. As the electrode material of the anode and the cathode, a general electrode material such as a platinum plate and a carbon material can be used, and a diaphragm for isolating the anode and the cathode is a general diaphragm such as a glass filter. Materials may be used. In addition, such a diaphragm is necessary for preventing the lead dioxide precipitated at the anode from being dissolved in the solution again at the cathode when the lead dioxide is separated from the electrode plate and dispersed in the solution, thereby lowering the recovery efficiency. .

【0017】[0017]

【発明の効果】上述したように、本発明方法によれば、
特に湿式再処理施設において生じた不溶解残渣と高レベ
ル廃液中に含まれる核分裂生成貴金属を回収するための
鉛溶融法により得られた鉛合金を、硝酸で溶解して得ら
れる溶液中の貴金属と鉛を電解によって分離回収する
が、特に鉛を陽極において鉛溶融工程にリサイクル可能
な酸化物として回収することができる。これにより、核
分裂生成貴金属の回収に際して廃棄物の発生を著しく減
少することができる等の利点がある。更に、核分裂生成
貴金属であるパラジウムの分離を同時に行なうことがで
きるため工程の簡略化を実現することができ、このため
核分裂生成貴金属の回収を極めて経済的なものにするこ
とができる。
As described above, according to the method of the present invention,
In particular, the lead alloy obtained by the lead melting method for recovering the undissolved residue generated in the wet reprocessing facility and the fission-generated noble metal contained in the high-level waste liquid is mixed with the noble metal in the solution obtained by dissolving with nitric acid. Although lead is separated and recovered by electrolysis, particularly, lead can be recovered as an oxide that can be recycled to the lead melting step at the anode. Thereby, there is an advantage that generation of waste can be significantly reduced when fission-generated noble metal is recovered. Further, the separation of palladium, which is a fission-generated noble metal, can be performed at the same time, so that the process can be simplified. Therefore, the recovery of the fission-generated noble metal can be made extremely economical.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中平 弘 茨城県北相馬群守谷町みずき野4−5− 14 (72)発明者 北川 正俊 茨城県那珂郡東海村舟石川547−12 (72)発明者 岡田 浩 茨城県那珂郡東海村豊岡1873−2 (58)調査した分野(Int.Cl.7,DB名) G21F 9/06 G21C 19/46 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Nakahira 4-5-14 Mizukino, Moriya-machi, Kitasoma, Ibaraki Prefecture Person Hiroshi Okada 1873-2 Toyooka, Tokai-mura, Naka-gun, Ibaraki Prefecture (58) Field surveyed (Int. Cl. 7 , DB name) G21F 9/06 G21C 19/46 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 使用済核燃料の再処理工程で発生する不
溶解残渣及び高レベル廃液中に含まれる貴金属を鉛溶融
により回収し、回収して得られた貴金属含有鉛合金を硝
酸で溶融して、その溶液中の鉛を、銀/塩化銀の標準電
極を基準にして+1.4〜1.7ボルトの電位に設定し
た陽極において酸化せしめることにより、二酸化鉛とし
て除去するようにした核分裂生成貴金属の分離方法。
An insoluble residue generated in a reprocessing step of spent nuclear fuel and a noble metal contained in a high-level waste liquid are recovered by lead melting, and a noble metal-containing lead alloy obtained by the recovery is melted with nitric acid. A fission-generating noble metal which is removed as lead dioxide by oxidizing the lead in the solution at an anode set at a potential of +1.4 to 1.7 volts with respect to a silver / silver chloride standard electrode. Separation method.
【請求項2】請求項1に記載の貴金属含有鉛合金の溶液
からパラジウムを選択的に電析回収し得るように、陰極
の電位を設定するようにしたことを特徴とする核分裂生
成貴金属の分離方法。
2. The separation of a fission-generated noble metal, wherein a potential of a cathode is set so that palladium can be selectively electrodeposited and recovered from a solution of the lead alloy containing a noble metal according to claim 1. Method.
JP7177291A 1991-04-04 1991-04-04 How to separate fission-generated noble metals Expired - Lifetime JP3030372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7177291A JP3030372B2 (en) 1991-04-04 1991-04-04 How to separate fission-generated noble metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7177291A JP3030372B2 (en) 1991-04-04 1991-04-04 How to separate fission-generated noble metals

Publications (2)

Publication Number Publication Date
JPH07270586A JPH07270586A (en) 1995-10-20
JP3030372B2 true JP3030372B2 (en) 2000-04-10

Family

ID=13470181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7177291A Expired - Lifetime JP3030372B2 (en) 1991-04-04 1991-04-04 How to separate fission-generated noble metals

Country Status (1)

Country Link
JP (1) JP3030372B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797311B (en) * 2019-02-28 2021-08-24 中南大学 Preparation method of zinc electrodeposition anode

Also Published As

Publication number Publication date
JPH07270586A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
RU2403634C1 (en) Method of spent fuel regeneration
US3891741A (en) Recovery of fission products from acidic waste solutions thereof
KR101047838B1 (en) Recovery of Residual Actinium Elements from Molten Chloride Salts
KR101640462B1 (en) Hydrometalurgical process and apparatus for recovering metals from waste material
WO2004048623A1 (en) Method for recovering trace elements from coal
JPH0627294A (en) Method of extracting technetium radioactive contaminant from radioactive contaminated metal
JPH03123896A (en) Recovery of actinides
EP1240647B1 (en) Actinide production
EP1393324B1 (en) Actinide production
JP3342968B2 (en) Reprocessing of spent fuel
GB2368349A (en) Electrolytic extraction of metals; recycling
JP2000284090A (en) Method for reprocessing spent nuclear fuel
JP3030372B2 (en) How to separate fission-generated noble metals
KR101513652B1 (en) Method of processing composite wastes
JP2997266B1 (en) Method for separating and recovering platinum group elements, technetium, tellurium and selenium
JP5017069B2 (en) Reprocessing of spent fuel
EP1570114B1 (en) Separation of metals
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
US3857763A (en) Recovery of electrolytic deposits of rhodium
JP4025125B2 (en) How to reprocess spent fuel
JP3910605B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
KR20150051928A (en) Method of processing composite wastes
US3491003A (en) Method of separating polonium from irradiated bismuth
JPH07209483A (en) Chemical reprocessing method of spent fuel
KR100542609B1 (en) Method of recovering valuable metal from waste varister chip

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term