JP2004361417A - Melted salt electrolytic re-treatment method of spent fuel - Google Patents

Melted salt electrolytic re-treatment method of spent fuel Download PDF

Info

Publication number
JP2004361417A
JP2004361417A JP2004241253A JP2004241253A JP2004361417A JP 2004361417 A JP2004361417 A JP 2004361417A JP 2004241253 A JP2004241253 A JP 2004241253A JP 2004241253 A JP2004241253 A JP 2004241253A JP 2004361417 A JP2004361417 A JP 2004361417A
Authority
JP
Japan
Prior art keywords
plutonium
ions
molten salt
spent fuel
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241253A
Other languages
Japanese (ja)
Other versions
JP3910605B2 (en
Inventor
Koji Mizuguchi
浩司 水口
Yuichi Shoji
裕一 東海林
Kenichi Matsumaru
健一 松丸
Hiroshi Kamoshita
尋 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2004241253A priority Critical patent/JP3910605B2/en
Publication of JP2004361417A publication Critical patent/JP2004361417A/en
Application granted granted Critical
Publication of JP3910605B2 publication Critical patent/JP3910605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melted salt electrolytic re-treatment method capable of recovering a higher-quality fuel component having no contamination of impurities such as a noble metal element, and prolonging the service life by suppressing corrosion of a crucible base material constituting an electrolytic cell, concerning re-treatment of a spent fuel by melted salt electrolysis. <P>SOLUTION: In this re-treatment method, a process of melting uranium oxide in the spent fuel at a positive electrode and depositing/recovering it at a solid negative electrode is repeated in a plurality of times, and the concentration of plutonium ions in the melted salt is raised, and then the plutonium ions are oxidized into pultonyl ions. Then, a liquid metal is inputted into the melted salt, and the plutonium oxide is deposited and recovered by an exchange reaction between the pultonyl ions and the liquid metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、使用済み燃料の溶融塩電解再処理方法に係わり、さらに詳しくは、原子力発電所で使用済みの燃料を溶融塩電解により再処理する方法に関する。   The present invention relates to a method for reprocessing spent fuel by molten salt electrolysis, and more particularly to a method for reprocessing spent fuel in a nuclear power plant by molten salt electrolysis.

従来から、原子力発電所で使用済みの、酸化ウラン、アルカリ金属元素、貴金属元素、希土類元素、および原子炉内で生成したプルトニウム等の超ウラン元素(TRU)を含む燃料を再処理するには、せん断し脱被覆した後、NaClやKClのような溶融塩中で、陽極と陰極との間に電圧をかけて電解を行なう溶融塩電解方法が行なわれている。   Conventionally, to reprocess fuel containing uranium oxide, alkali metal elements, precious metal elements, rare earth elements, and transuranium elements (TRU) such as plutonium produced in nuclear reactors, used in nuclear power plants, A molten salt electrolysis method in which a voltage is applied between an anode and a cathode to perform electrolysis in a molten salt such as NaCl or KCl after shearing and decoating is performed.

この方法においては、陽極で塩の電解により発生した塩素ガスによって、使用済み燃料の各成分が溶融塩中に溶解し、一方陰極で、電気的に還元されて酸化ウラン(UO)等が顆粒状酸化物として回収される。そして、この溶解および電解回収工程で残った溶融塩に、塩素と酸素の混合ガスを吹き込むことにより、プルトニウムとネプツニウムのイオンがそれぞれ酸化され、かつ電解によりPuO、およびNpOが回収されるように構成されている。 In this method, each component of spent fuel is dissolved in a molten salt by chlorine gas generated by electrolysis of a salt at an anode, while uranium oxide (UO 2 ) and the like are electrically reduced at a cathode to form granules. It is recovered as a state oxide. Then, by blowing a mixed gas of chlorine and oxygen into the molten salt remaining in the melting and electrolytic recovery steps, plutonium and neptunium ions are oxidized, respectively, and PuO 2 and NpO 2 are recovered by electrolysis. Is configured.

しかしながら、このような従来からの溶融塩電解再処理方法においては、以下に示すような種々の問題があった。すなわち、
1)陽極溶解工程で、使用済み燃料に含まれている貴金属元素が溶融塩中に溶解するが、これら貴金属イオンが析出する電位(酸化還元電位)がウラニルイオンのそれと極めて近いため、陰極で貴金属元素も同時に析出してしまい、回収したUO中に貴金属が混入してしまう。
2)パイログラファイトのような電解槽(電解るつぼ)を構成する材料が、ウラニルイオンによって腐食されやすいため、るつぼの寿命が1000〜2000時間と短い。
3)ウラナスイオンやプルトナスイオンの酸化処理に時間がかかる。
4)溶融塩から発生する揮発性成分が、電解槽内の各部に付着し、配管等の目詰まりを引き起こしやすい。
などの問題があった。
However, such a conventional molten salt electrolytic reprocessing method has various problems as described below. That is,
1) In the anode dissolving step, the noble metal element contained in the spent fuel dissolves in the molten salt. However, the potential (oxidation-reduction potential) at which these noble metal ions precipitate is very close to that of uranyl ion. The element is also precipitated at the same time, and the noble metal is mixed into the recovered UO 2 .
2) Since the material constituting the electrolytic cell (electrolytic crucible) such as pyrographite is easily corroded by uranyl ions, the crucible has a short life of 1000 to 2000 hours.
3) It takes time to oxidize uranas ions or plutonas ions.
4) Volatile components generated from the molten salt adhere to various parts in the electrolytic cell, and easily cause clogging of pipes and the like.
There was such a problem.

本発明は、これらの問題を解決するためになされたもので、使用済み燃料の溶融塩電解による再処理において、貴金属元素等の不純物の混入のない、より高品質の燃料成分を回収することができ、また電解槽を構成するるつぼ基材の腐食を抑制し、寿命の延長が可能な溶融塩電解再処理方法を提供することを目的とする。   The present invention has been made to solve these problems, and in the reprocessing of spent fuel by molten salt electrolysis, it is possible to collect higher quality fuel components without contamination of impurities such as noble metal elements. It is another object of the present invention to provide a molten salt electrolysis reprocessing method capable of suppressing corrosion of a crucible base material constituting an electrolytic cell and extending the life.

本発明の使用済み燃料の溶融塩電解再処理方法は、使用済み燃料をせん断し脱被覆した後、溶融塩中で電解を行ない、陽極で溶解するとともに、所要の成分を陰極に析出させて回収する再処理方法において、前記燃料中の酸化ウランを陽極で溶解し固体陰極で析出・回収する工程を複数回繰り返し、前記溶融塩中のプルトニウムイオンの濃度を上昇させた後、該プルトニウムイオンを酸化してプルトニルイオンとし、次いで前記溶融塩中に液体金属を投入し、前記プルトニルイオンと該液体金属との交換反応により、酸化プルトニウムを析出させて回収することを特徴とする。   In the method for reprocessing spent fuel for molten salt of the present invention, after the spent fuel is sheared and uncoated, electrolysis is performed in a molten salt, the anode is dissolved at the same time, and the required components are deposited on the cathode and recovered. In the reprocessing method, the step of dissolving uranium oxide in the fuel at the anode and depositing and recovering it at the solid cathode is repeated a plurality of times to increase the concentration of plutonium ions in the molten salt, and then oxidize the plutonium ions. Then, a liquid metal is introduced into the molten salt, and a plutonium oxide is precipitated and recovered by an exchange reaction between the plutony ion and the liquid metal.

本発明の再処理方法においては、陽極溶解同時電解後の溶融塩中のプルトニウムイオンを酸化し、次いで溶融塩中に液体金属を投入しプルトニルイオンと液体金属との交換反応により、酸化プルトニウムを析出させて回収しているので、従来の沈殿方式での回収方法に比べてプロセスの操業時間を大幅に短縮することができるうえに、回収が容易で特別な回収装置を必要とせず、装置を簡素化することができる。   In the reprocessing method of the present invention, the plutonium ion in the molten salt after anodic dissolution simultaneous electrolysis is oxidized, and then the liquid metal is charged into the molten salt, and the plutonium ion is exchanged with the liquid metal to convert the plutonium oxide. Since it is deposited and collected, the operation time of the process can be significantly reduced compared to the conventional collection method using the precipitation method.In addition, the collection is easy and no special collection device is required. It can be simplified.

そして、回収する燃料中への貴金属元素等の不純物の混入を低減することができ、より高品質の燃料を得ることができる。また、使用済み燃料の陽極側での溶解と核燃料物質の陰極側での析出を同時に効率よく行なうことができ、使用済み燃料の処理効率を向上させることができる。さらに、アメリシウムやキュウリウムのようなマイナーアクチノイドとわずかに残るウラン、プルトニウムをともに回収することができ、これらの超半減期核種を再び炉心で消滅処理することができる。またさらに、従来からの沈殿法の処理時間と比べて、30分程度と極めて短時間で処理を行なうことができ、プロセスの操業時間が大幅に短縮される。   In addition, the contamination of impurities such as noble metal elements into the recovered fuel can be reduced, and a higher quality fuel can be obtained. Further, the dissolving of the spent fuel on the anode side and the precipitation of the nuclear fuel material on the cathode side can be performed efficiently at the same time, and the processing efficiency of the spent fuel can be improved. Furthermore, minor actinoids such as americium and cuurium, as well as slightly remaining uranium and plutonium, can be recovered, and these ultra-half-life nuclides can be extinguished again in the core. Furthermore, the processing can be performed in an extremely short time of about 30 minutes as compared with the processing time of the conventional precipitation method, and the operation time of the process is greatly reduced.

以下、本発明の実施例を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施例である、使用済み燃料からプルトニウムを回収する方法について説明する。この実施例のフローチャートを、図1に示す。   A method for recovering plutonium from spent fuel, which is an example of the present invention, will be described. FIG. 1 shows a flowchart of this embodiment.

実施例では、まず使用済み燃料を電解槽の溶融塩中に投入し、陽極溶解同時陰極析出法により、陰極に顆粒状の酸化ウラン(UO)を析出させて回収する。この操作を10回程度繰り返すと、使用済み燃料中に含まれるウラン、プルトニウム、マイナーアクチノイドの各成分は、溶融塩中で、図2に示すような濃度変化をする。 In the embodiment, first, spent fuel is put into a molten salt in an electrolytic cell, and uranium oxide (UO 2 ) is precipitated and recovered on a cathode by an anodic dissolution simultaneous cathodic deposition method. When this operation is repeated about ten times, the components of uranium, plutonium, and minor actinoids contained in the spent fuel change in the molten salt as shown in FIG.

すなわち、陰極では酸化ウランのみを回収しているので、ウラニルイオンの濃度は一定値を示し、プルトニウムイオンおよびマイナーアクチノイドイオンの濃度は、10倍程度上昇する。その後さらに電解を継続(しぼり電解)し、UOをさらに回収すると、溶融塩中のウラニルイオン濃度は低下し、プルトニウムイオンおよびマイナーアクチノイドイオンの濃度よりも低いレベルに達する。この段階で、溶融塩中に酸素と塩素との混合ガスを吹き込み、プルトニウムイオン(Pu4+,Pu3+)を酸塩化物イオン(プルトニルイオン:PuO 2+)の状態まで酸化する。 That is, since only uranium oxide is recovered at the cathode, the concentration of uranyl ion shows a constant value, and the concentrations of plutonium ion and minor actinoid ion increase about 10 times. Thereafter, when the electrolysis is further continued (squeezing electrolysis) and UO 2 is further recovered, the uranyl ion concentration in the molten salt decreases, reaching a level lower than the concentrations of plutonium ions and minor actinoid ions. At this stage, a mixed gas of oxygen and chlorine is blown into the molten salt to oxidize the plutonium ions (Pu 4+ , Pu 3+ ) to the state of acid chloride ions (Plutonyl ions: PuO 2 2+ ).

さらに、セラミック製の容器(るつぼ)に入れたビスマスのような金属を、溶融塩中に投入して溶融させると、溶融した金属とプルトニルイオンとが反応し、プルトニウムは酸化プルトニウムとして液体金属(ビスマス)中に粉末状で析出する。こうして、プルトニルイオンが液体金属中に回収される。   Furthermore, when a metal such as bismuth placed in a ceramic container (crucible) is thrown into a molten salt and melted, the molten metal reacts with plutonium ions, and plutonium becomes liquid metal (plutonium oxide). (Bismuth) in the form of a powder. Thus, plutony ions are collected in the liquid metal.

さらに、プルトニルイオンの析出・回収後の処理は、以下に示すように行なわれる。すなわち、図3に示すように、セラミック製の容器1に入れられた液体金属2を撹拌機3により撹拌して、邪魔板4が取付けられた壁面方向への対流5を生じさせ、液体金属2の表面に析出したPuOを容器1の内壁方向に移動させて堆積させる。そして、常に液体金属2の表面が更新されるようにし、液体金属2を陰極として電解を行なう。この電解工程では、UOのしぼり電解よりもさらに電位を下げ、しぼり電解では回収できずにわずかに残ったプルトニウムイオンやマイナーアクチノイドイオンを、金属として、液体金属2の表面に回収する。こうしてこれらの成分を液体金属2の陰極で回収した後、セラミック製の容器1を溶融塩6中から引き上げて冷却し、固体となった金属を回収する。そして、蒸留またはろ過により、液体金属2と回収された酸化プルトニウムやマイナーアクチノイドの金属粒子とを分離し、燃料成分を再度原子炉に戻して使用する。 Further, the treatment after the precipitation and recovery of plutonyl ion is performed as described below. That is, as shown in FIG. 3, the liquid metal 2 placed in the ceramic container 1 is agitated by the stirrer 3 to generate convection 5 in the direction of the wall surface on which the baffle plate 4 is mounted. PuO 2 deposited on the surface of the container 1 is moved toward the inner wall of the container 1 and deposited. Then, the surface of the liquid metal 2 is constantly renewed, and electrolysis is performed using the liquid metal 2 as a cathode. In this electrolysis step, the potential is further lowered than in the squeezing electrolysis of UO 2 , and the remaining plutonium ions and minor actinoid ions that cannot be collected by the squeezing electrolysis are collected as metal on the surface of the liquid metal 2. After recovering these components using the liquid metal 2 cathode, the ceramic container 1 is pulled out of the molten salt 6 and cooled, and the solid metal is recovered. Then, the liquid metal 2 and the recovered metal particles of the plutonium oxide and the minor actinoid are separated by distillation or filtration, and the fuel component is returned to the nuclear reactor and used again.

なお、さらに高除染の燃料を得るためには、酸化プルトニウムとマイナーアクチノイドを回収した液体金属2を、溶融塩と接触させて塩化ビスマスを投入し、塩化物になりやすい希土類元素を溶融塩中に抽出して除染することも可能である。   In addition, in order to obtain a fuel with higher decontamination, the liquid metal 2 in which plutonium oxide and minor actinoid were recovered was brought into contact with a molten salt, and bismuth chloride was introduced. It is also possible to extract and decontaminate the water.

このような酸化プルトニウムの回収方法においては、従来の沈殿方式での回収方法に比べて、以下に示す利点を有している。すなわち、従来の沈殿法では、酸化プルトニウムの沈殿が完了するのに24時間程度かかっていたが、前記した実施例の回収方法では、30分程度の短時間で液体金属とプルトニルイオンとの化学反応が進行するので、プロセスの操業時間を大幅に短縮することができる。   Such a method for recovering plutonium oxide has the following advantages as compared with a conventional recovery method using a precipitation method. That is, in the conventional precipitation method, it took about 24 hours to complete the precipitation of plutonium oxide. However, in the recovery method of the above-described embodiment, the chemical reaction between the liquid metal and the plutony ion was performed in a short time of about 30 minutes. As the reaction proceeds, the operation time of the process can be greatly reduced.

また沈殿法では、析出するPuOの粒径が小さいため、回収装置が複雑になるばかりでなく、高温高湿雰囲気での操作なので装置の寿命が短く、信頼性に乏しい等の問題があったが、実施例の方法では、液体金属2の陰極をセラミック製容器1ごと引き上げることで、容易に回収することができ、特別な回収装置を必要とせず、装置全体を簡素化することができる。さらに従来は、小粒径の酸化プルトニウムを高率で回収することが難しかったが、実施例では、液体金属2界面の反応により生じた酸化プルトニウムの全量を、液体金属2中に回収することができるので、回収率はほぼ100%と極めて高くなる。 In addition, in the precipitation method, the particle size of the deposited PuO 2 is small, so that not only the recovery device becomes complicated, but also because the operation is performed in a high-temperature, high-humidity atmosphere, the life of the device is short and the reliability is poor. However, in the method of the embodiment, the cathode of the liquid metal 2 is pulled up together with the ceramic container 1, whereby the liquid metal 2 can be easily recovered, no special recovery device is required, and the entire device can be simplified. Furthermore, conventionally, it was difficult to recover plutonium oxide having a small particle diameter at a high rate. As a result, the recovery rate is extremely high at almost 100%.

またさらに、沈殿法では、マイナーアクチノイドを一括して回収することができなかったが、実施例によれば、電解を併用することで酸化プルトニウムの他にマイナーアクチノイドも同時に回収して、燃料とすることができる。これらは超半減期核種であるため、再び炉心で消滅処理を行なうことができ、放射性廃棄物の処分の上で非常に有利である。   Furthermore, in the precipitation method, the minor actinoids could not be collectively recovered. However, according to the embodiment, in addition to the plutonium oxide, the minor actinoids were simultaneously recovered by using electrolysis together, and used as fuel. be able to. Since these are ultra-half-life nuclides, they can be annihilated again in the core, which is very advantageous in disposing of radioactive waste.

次に、析出・回収されたUOと貴金属元素とを分離する方法について説明する。 Next, a method of separating the precipitated and recovered UO 2 from the noble metal element will be described.

使用済み燃料を溶融塩電解により再処理し、UOを析出させる場合には、図4に示すように、ウラニルイオン(UO 2+)と同じ酸化還元電位を有する貴金属元素(モリブデン(Mo)、ルテニウム(Ru)、ジルコニウム(Ζr)、ニッケル(Νi)、銀(Ag))が析出し、UOとの分離が悪くなるが、以下に示すようにして、両者を効率よく分離することができる。 When the spent fuel is reprocessed by molten salt electrolysis to precipitate UO 2 , as shown in FIG. 4, a noble metal element (molybdenum (Mo), which has the same oxidation-reduction potential as uranyl ion (UO 2 2+ ), Ruthenium (Ru), zirconium (Ζr), nickel (Νi), silver (Ag)) are precipitated and the separation from UO 2 is deteriorated, but both can be efficiently separated as shown below. .

UOは酸化物であるが、図5に示すように、高温においては電気伝導性(導電性)を有し、溶融塩を用いた比較的高い温度(550から700℃)で電解精製して回収できることが知られている。ここで、UOを電解で回収する際の温度は、UOの導電性を確保する上からも、最低550℃程度が必要である。そして、一旦回収したUOを、次に 500℃以下の溶融塩中で電解しても、導電性が著しく低下しているため、UOにはほとんど電流が流れない。しかし、UOと共に析出する貴金属元素は、金属であるため、温度を500℃以下に保持しても電流が流れ、陽極から貴金属元素がイオンとして溶出するので、このような溶出量の差を利用して、UOと貴金属元素とを分離し回収することができる。 Although UO 2 is an oxide, as shown in FIG. 5, it has electrical conductivity (conductivity) at a high temperature, and is subjected to electrolytic purification at a relatively high temperature (550 to 700 ° C.) using a molten salt. It is known that it can be recovered. Here, the temperature at which the recovery of UO 2 in electrolysis, from top to ensure conductivity of UO 2, it is required to be about a minimum 550 ° C.. Then, even if the recovered UO 2 is subsequently electrolyzed in a molten salt at 500 ° C. or lower, almost no current flows through the UO 2 because the conductivity is significantly reduced. However, since the noble metal element precipitated together with UO 2 is a metal, a current flows even if the temperature is kept at 500 ° C. or less, and the noble metal element is eluted as ions from the anode. Thus, UO 2 and the noble metal element can be separated and recovered.

具体的例としては、650℃の溶融塩(NaCl−KCl)中でグラファイトの陰極上に電解析出したUOと貴金属元素(Mo、Ru、Rh、Pd、Ag)とを、500℃に保持したLiCl−KCl溶融塩中に電極ごと入れ、塩素基準電極に対して−0.3Vに保持して電解を行なったところ、UOはほとんど溶出しなかったが、他の金属は溶出した。溶出した貴金属元素を回収した後、温度を600℃に上げて電解を行ない、UOを回収することができた。 As a specific example, UO 2 electrolytically deposited on a graphite cathode in 650 ° C. molten salt (NaCl—KCl) and a noble metal element (Mo, Ru, Rh, Pd, Ag) are kept at 500 ° C. put each electrode, in LiCl-KCl molten salt was carried out electrolytic held in -0.3V against chlorine reference electrode, UO 2 is hardly eluted, other metals eluted. After recovering the eluted noble metal element, the temperature was raised to 600 ° C. and electrolysis was performed, whereby UO 2 could be recovered.

また、650℃の溶融塩(NaCl−KCl)中でグラファイトの陰極上に電解析出したUOと貴金属元素とを、冷却後一旦電極から剥脱して粗粉砕し、顆粒状にした後、これに導電性物質であるグラファイトを混合し、陽極として溶融塩中で使用した。前記具体例と同じ電位、温度に保持して溶出させると、貴金属元素は導電性グラファイトの働きでより電流が通じやすくなるため、容易に溶融塩中に溶出し、陰極上に貴金属のみを回収することができた。この操作の終了後、温度を600℃に上げて電解を行なうことで、UOが陰極上に析出しこれを回収することができた。 Further, UO 2 and a noble metal element electrolytically deposited on a graphite cathode in a molten salt (NaCl-KCl) at 650 ° C. are once separated from the electrode after cooling, coarsely pulverized, and then granulated. Was mixed with graphite as a conductive material, and used as a positive electrode in a molten salt. When eluting while maintaining the same potential and temperature as in the above specific example, the noble metal element is easily eluted in the molten salt because the current flows more easily by the action of conductive graphite, and only the noble metal is recovered on the cathode. I was able to. After the completion of this operation, the temperature was raised to 600 ° C., and electrolysis was carried out, whereby UO 2 was deposited on the cathode and could be recovered.

本発明の使用済み燃料の溶融塩電解再処理方法によれば、回収する燃料中への貴金属元素等の不純物の混入を低減することができ、より高品質の燃料を得ることができる。また、使用済み燃料の陽極側での溶解と核燃料物質の陰極側での析出を同時に効率よく行なうことができ、使用済み燃料の処理効率を向上させることができる。さらに、アメリシウムやキュウリウムのようなマイナーアクチノイドとわずかに残るウラン、プルトニウムをともに回収することができ、これらの超半減期核種を再び炉心で消滅処理することができる。またさらに、従来からの沈殿法の処理時間と比べて、30分程度と極めて短時間で処理を行なうことができ、プロセスの操業時間が大幅に短縮される。   ADVANTAGE OF THE INVENTION According to the molten salt electrolysis reprocessing method of the used fuel of this invention, contamination of impurities, such as a noble metal element, in the collect | recovered fuel can be reduced, and a higher quality fuel can be obtained. Further, the dissolving of the spent fuel on the anode side and the precipitation of the nuclear fuel material on the cathode side can be performed efficiently at the same time, and the processing efficiency of the spent fuel can be improved. Furthermore, minor actinoids such as americium and cuurium, as well as slightly remaining uranium and plutonium, can be recovered, and these ultra-half-life nuclides can be extinguished again in the core. Furthermore, the processing can be performed in an extremely short time of about 30 minutes as compared with the processing time of the conventional precipitation method, and the operation time of the process is greatly reduced.

本発明の実施例である、使用済み燃料からプルトニウムを回収する方法を示すフローチャートである。4 is a flowchart illustrating a method for recovering plutonium from spent fuel, which is an embodiment of the present invention. ウラン、プルトニウム、マイナーアクチノイドの溶融塩中の濃度変化を示すグラフである。It is a graph which shows the concentration change in the molten salt of uranium, plutonium, and a minor actinoid. 実施例で生成したPuOの撹拌による挙動を示す断面図である。It is a sectional view showing a behavior of stirring PuO 2 produced in Example. 本発明の実施例に係わる代表的核種の酸化還元電位を示す図である。FIG. 3 is a diagram showing oxidation-reduction potentials of typical nuclides according to the example of the present invention. UOの導電率の温度依存性を示すグラフである。Is a graph showing the temperature dependence of the conductivity of UO 2.

符号の説明Explanation of reference numerals

1…セラミック製の容器、2…液体金属、3…撹拌機、4…邪魔板、6…溶融塩。   DESCRIPTION OF SYMBOLS 1 ... Ceramic container, 2 ... Liquid metal, 3 ... Stirrer, 4 ... Baffle plate, 6 ... Molten salt.

Claims (2)

使用済み燃料をせん断し脱被覆した後、溶融塩中で電解を行ない、陽極で溶解するとともに、所要の成分を陰極に析出させて回収する再処理方法において、
前記燃料中の酸化ウランを陽極で溶解し固体陰極で析出・回収する工程を複数回繰り返し、前記溶融塩中のプルトニウムイオンの濃度を上昇させた後、該プルトニウムイオンを酸化してプルトニルイオンとし、次いで前記溶融塩中に液体金属を投入し、前記プルトニルイオンと該液体金属との交換反応により、酸化プルトニウムを析出させて回収することを特徴とする使用済み燃料の溶融塩電解再処理方法。
After the spent fuel is sheared and uncoated, electrolysis is performed in a molten salt, and the anode is dissolved at the same time.
The process of dissolving uranium oxide in the fuel at the anode and depositing and recovering it at the solid cathode is repeated a plurality of times, and after increasing the concentration of plutonium ions in the molten salt, the plutonium ions are oxidized to plutonium ions. And then subjecting the molten salt to a liquid metal, exchanging plutonium ions with the liquid metal to precipitate and recover plutonium oxide, and the molten salt electrolytic reprocessing method for a spent fuel. .
前記酸化プルトニウムを回収した後、前記溶融塩中に残存するマイナーアクチノイドイオンを、液体金属を陰極として電解により回収することを特徴とする請求項2記載の使用済み燃料の溶融塩電解再処理方法。   The method according to claim 2, wherein after the plutonium oxide is recovered, minor actinide ions remaining in the molten salt are recovered by electrolysis using a liquid metal as a cathode.
JP2004241253A 2004-08-20 2004-08-20 Method for electrolytic reprocessing of spent salt from spent fuel Expired - Fee Related JP3910605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241253A JP3910605B2 (en) 2004-08-20 2004-08-20 Method for electrolytic reprocessing of spent salt from spent fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241253A JP3910605B2 (en) 2004-08-20 2004-08-20 Method for electrolytic reprocessing of spent salt from spent fuel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22047797A Division JP3872873B2 (en) 1997-08-15 1997-08-15 Method for electrolytic reprocessing of spent salt from spent fuel

Publications (2)

Publication Number Publication Date
JP2004361417A true JP2004361417A (en) 2004-12-24
JP3910605B2 JP3910605B2 (en) 2007-04-25

Family

ID=34056485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241253A Expired - Fee Related JP3910605B2 (en) 2004-08-20 2004-08-20 Method for electrolytic reprocessing of spent salt from spent fuel

Country Status (1)

Country Link
JP (1) JP3910605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308442A (en) * 2005-04-28 2006-11-09 Toshiba Corp Minor actinide recycling method for
CN110055433A (en) * 2019-01-21 2019-07-26 中国科学院金属研究所 A kind of method of rare earth element in liquid metal bismuth extraction and recovery neodymium iron boron waste material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308442A (en) * 2005-04-28 2006-11-09 Toshiba Corp Minor actinide recycling method for
JP4504247B2 (en) * 2005-04-28 2010-07-14 株式会社東芝 Minor actinide recycling method
CN110055433A (en) * 2019-01-21 2019-07-26 中国科学院金属研究所 A kind of method of rare earth element in liquid metal bismuth extraction and recovery neodymium iron boron waste material
CN110055433B (en) * 2019-01-21 2021-05-18 中国科学院金属研究所 Method for extracting and recycling rare earth elements in neodymium iron boron waste material by using liquid metal bismuth

Also Published As

Publication number Publication date
JP3910605B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP4504247B2 (en) Minor actinide recycling method
JP2009288178A (en) Method for reprocessing spent nuclear fuel
JPH05209998A (en) Extraction method of technetium from radioactive polluted metal
JPH0627294A (en) Method of extracting technetium radioactive contaminant from radioactive contaminated metal
Zaikov et al. Research and Development of the pyrochemical processing for the mixed nitride uranium-plutonium fuel
JP2005519192A (en) Electrochemical cells for metal production
JPH03123896A (en) Recovery of actinides
EP1393324B1 (en) Actinide production
JP3342968B2 (en) Reprocessing of spent fuel
EP1240647B1 (en) Actinide production
JP3910605B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
JP3519557B2 (en) Reprocessing of spent fuel
EP1570114B1 (en) Separation of metals
JP4025125B2 (en) How to reprocess spent fuel
JPWO2004036595A1 (en) Light water reactor spent fuel reprocessing method and apparatus
JPH1164577A (en) Fused salt electrolytic reprocessing method for spent fuel
JP2997266B1 (en) Method for separating and recovering platinum group elements, technetium, tellurium and selenium
JPH11223698A (en) Regenerating method of polluted metal and device therefor
KR101693775B1 (en) Methods and devices using liquid metal including Bi or Pb or Bi-Pb alloy for separating actinides and rare earth elements in high-level radioactive molten salts from pyroprocessing
JP3892864B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
JPWO2003063178A1 (en) Method of electrolytic reduction of spent oxide fuel and simple dry reprocessing method
JP3030372B2 (en) How to separate fission-generated noble metals
WO2011144937A1 (en) Novel reprocessing method
JP2000155193A (en) Reprocessing method and device of spent oxide fuel
JPH07209483A (en) Chemical reprocessing method of spent fuel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees